杜慧勇,周文瑾,李 民,劉建新,李鵬濤,徐 斌
?
發(fā)動機(jī)冷卻水套穴蝕機(jī)理分析與試驗(yàn)
杜慧勇,周文瑾,李 民,劉建新,李鵬濤,徐 斌
(河南科技大學(xué)車輛與交通工程學(xué)院,洛陽 471003)
為研究柴油機(jī)冷卻水套內(nèi)空化現(xiàn)象的產(chǎn)生機(jī)理,該文使用計算流體力學(xué)(CFD)方法研究施加壁面振動的不同入口流速、不同流場溫度時冷卻水套內(nèi)部流體的流動特性及空化特性,同時設(shè)計并搭建可施加壁面振動的可視化空化試驗(yàn)臺,對計算結(jié)果進(jìn)行了驗(yàn)證。研究結(jié)果表明:空化現(xiàn)象主要發(fā)生在圓弧壁最小間隙位置,并在下游區(qū)域發(fā)展壯大;冷卻水入口流速的增加會使得空化現(xiàn)象略有加強(qiáng),但并不明顯;當(dāng)冷卻水溫為50℃時,空化現(xiàn)象較強(qiáng),當(dāng)水溫逐漸升高時,空化現(xiàn)象反而減弱;當(dāng)圓弧壁面有振動時,空穴現(xiàn)象明顯加強(qiáng),并且其產(chǎn)生的空化效果明顯強(qiáng)于冷卻水溫及入口流速等因素的變化所產(chǎn)生的空化波動。此研究的結(jié)果將有助于控制發(fā)動機(jī)冷卻水套中空化現(xiàn)象的發(fā)生,并降低冷卻水套穴蝕的發(fā)生風(fēng)險。
發(fā)動機(jī);計算流體力學(xué);試驗(yàn);冷卻水套;空化;穴蝕
穴蝕是柴油機(jī)冷卻水套失效的重要原因之一[1-4]。柴油機(jī)的冷卻水套一旦發(fā)生穴蝕損壞,其穴蝕處壁面變薄甚至穿透,造成燃燒室氣密性下降,機(jī)油溫度和油耗升高,潤滑性能下降,柴油機(jī)動力性經(jīng)濟(jì)性嚴(yán)重下降,甚至產(chǎn)生拉缸等嚴(yán)重事件,嚴(yán)重影響柴油機(jī)的工作壽命,后期的檢修及更換新冷卻水套更會耗費(fèi)大量成本[5-8]。因此,深入研究冷卻水套穴蝕機(jī)理,分析冷卻水套穴蝕的影響因素,找出冷卻水套穴蝕的預(yù)防措施,具有重要的理論和實(shí)際意義[9-12]。
國內(nèi)外對冷卻水套穴蝕和冷卻水空化的機(jī)理進(jìn)行了許多研究。日本學(xué)者米沢徹等[13-14]研究了柴油機(jī)冷卻水套振動空蝕的機(jī)理,認(rèn)為活塞敲擊冷卻水套致其振動引起了冷卻水的壓力波動,從而導(dǎo)致空蝕的產(chǎn)生。Shuji等[15]通過空蝕速率與液體沖擊侵蝕速率的對比試驗(yàn),發(fā)現(xiàn)2種形式的侵蝕之間的相關(guān)性非常高。陳劍[16]綜合分析了冷卻水套空蝕的機(jī)械作用機(jī)制與電化學(xué)機(jī)制,認(rèn)為機(jī)械作用在空蝕過程中占主要地位。薛偉等[17]通過掃描電鏡對空蝕樣件的破壞過程進(jìn)行了觀察和研究,認(rèn)為空泡潰滅時的微射流造成了金屬表面的空蝕針孔,而空蝕破壞則是氣泡潰滅產(chǎn)生的微射流和沖擊波對金屬表面的累計損失過程。Chen等[18-19]通過氣泡崩潰過程模擬并解釋了凹坑形成的機(jī)理是高溫高壓及微射流沖擊作用。
杜慧勇等[20]已通過計算流體力學(xué)的方法(CFD)研究施加壁面振動的冷卻水套在不同入口流速時的內(nèi)部流體空化特性。本文在此基礎(chǔ)上通過對柴油機(jī)冷卻水套在外界敲擊力作用下實(shí)際工作過程的研究建立冷卻水套試驗(yàn)?zāi)P?,設(shè)計并搭建可視化空化試驗(yàn)臺,研究施加壁面振動的冷卻水套在不同入口流速、流場溫度時的內(nèi)部流體空化特性,并分析壁面振動、入口流速、流場溫度對冷卻水套內(nèi)部流動的影響,找到冷卻水套穴蝕的主要原因,為減少冷卻水套穴蝕提供理論依據(jù)。
1.1 冷卻水套及其穴蝕
缸徑100 mm,壁面狹隙厚度10 mm,高度為120 mm的某濰柴4100發(fā)動機(jī)冷卻水套的簡化圖如圖1所示。根據(jù)前人進(jìn)行的冷卻水套穴蝕試驗(yàn)結(jié)果[21]和實(shí)際使用中對柴油機(jī)冷卻水套穴蝕位置的實(shí)際統(tǒng)計觀測,冷卻水套穴蝕通常會出現(xiàn)在與活塞銷垂直平面上的活塞敲擊側(cè)面附近,呈蜂窩狀帶狀沿柱面分布,主推側(cè)面及次推側(cè)面較為嚴(yán)重[22-25](如圖2所示),圖2[26]柴油機(jī)冷卻水套活塞敲擊兩側(cè)面的穴蝕圖。即圖2為圖1中冷卻水入口及出口所在面的實(shí)際穴蝕圖,對比圖1、圖2可明顯發(fā)現(xiàn)圖中穴蝕部分穴蝕孔的排列位置與冷卻水流向有關(guān)[27-28]。
1.2 冷卻水套近振動壁面三維模型構(gòu)建
1.2.1 模型構(gòu)建
本文主要研究施加壁面振動條件下,入口流速、流場溫度不同時冷卻水套內(nèi)部流體流動特性及空化特性。而壁面振動產(chǎn)生空化的原因是壁面振動產(chǎn)生的冷卻水?dāng)_動使近壁面處的壓力場出現(xiàn)突變[29],所以建立模型的關(guān)鍵要保證振動壁面的振動速度變化與實(shí)際相一致,且試驗(yàn)所用等比例簡化模型與冷卻水套內(nèi)部流體實(shí)際運(yùn)動具有相似性。取某濰柴4100型發(fā)動機(jī)近振動壁面狹隙處的部分冷卻水套作研究對象,為簡化模型,突出振動壁面對空化的影響,去掉不必要的結(jié)構(gòu),本文只保留主推側(cè)面部分冷卻水套,對近振動壁面冷卻水套進(jìn)行三維建模,設(shè)置圓弧振動壁面半徑50 mm,壁面狹隙間距10 mm,如圖3所示[20],用正六面體結(jié)構(gòu)網(wǎng)格進(jìn)行劃分,最終獲得整個計算域的網(wǎng)格數(shù)量為15 288。
圖1 柴油機(jī)冷卻水套模型
圖2 柴油機(jī)冷卻水套穴蝕
注:EFGH壁面為圓弧振動壁面,ABCD壁面為冷卻水流入面,IJKL壁面為冷卻水流出面,其余壁面簡化為長方體壁面以簡化計算模型。
1.2.2 動網(wǎng)格設(shè)置
在活塞往復(fù)運(yùn)動過程中,活塞側(cè)面及裙部會對冷卻水套內(nèi)壁面形成側(cè)推力。當(dāng)活塞運(yùn)動至做功沖程,越過上止點(diǎn)(top dead center)并在其附近時,活塞側(cè)推力變向,此時活塞側(cè)推力的變化最為劇烈,形成活塞對冷卻水套的在主推側(cè)壁面的敲擊力,在該力作用下冷卻水套振動,且壁面振幅呈衰減形式[30-31]。本試驗(yàn)所用振動壁面構(gòu)件為壓緊后曲率半徑為50mm的金屬薄片。使用北京東方振動和噪聲技術(shù)研究所(Coinv)振動信號采集分析儀(INV1861A應(yīng)變調(diào)理器與INV3060S網(wǎng)絡(luò)分布式采集儀)對試驗(yàn)中的模擬振動壁面構(gòu)件的單次敲擊振動形變數(shù)據(jù)進(jìn)行采集分析,得到的試驗(yàn)所用振動壁面構(gòu)件的振動形變趨勢曲線(如圖4),計算出振動壁面構(gòu)件的實(shí)際振動速度變化,再根據(jù)實(shí)際敲擊振動過程中冷卻水套振動頻率[32],以及冷卻水套的剛度等實(shí)際參數(shù),對冷卻水套實(shí)際振動頻率為20 kHz時的振動特性進(jìn)行研究,計算冷卻水套壁面振動位移隨時間的變化,根據(jù)試驗(yàn)與計算結(jié)果:其波峰值最大是0.081 mm,波谷值最小是-0.031 mm。設(shè)置曲軸轉(zhuǎn)動1°所用時間(7e-5s)作為度量振動衰減位移函數(shù)曲線的橫坐標(biāo)的單位,模擬曲線如圖5所示,與杜慧勇等的計算結(jié)果一致[20],活塞敲擊時振動出現(xiàn)在上止點(diǎn)后4°附近,在6°曲軸轉(zhuǎn)角時衰減振動結(jié)束,并根據(jù)此設(shè)置動網(wǎng)格。
圖4 振動壁面構(gòu)件的振動形變趨勢曲線
圖5 振動衰減曲線
將冷卻水套出現(xiàn)穴蝕的振動壁面處的振動特性及其附近冷卻水的流場特性進(jìn)行耦合分析,模擬計算分析近壁面振動影響(壁面振動時衰減振動頻率為20 kHz,振幅為81m)下流場的空化特性,并對比分析了壁面振動影響下的不同入口流速,不同流場溫度時的冷卻水套內(nèi)流體空化特性[14]。模擬空化云圖中靠近紅色區(qū)域?yàn)闅庀?,靠近藍(lán)色區(qū)域?yàn)橐合唷?/p>
2.1 壁面振動條件下的空化情況對比
圖6為冷卻水入口流速2 m/s,流場溫度70 ℃時,施加振動條件和不施加壁面振動條件下某些時刻的近振動壁面處流體流場區(qū)域的模擬空化云圖。由圖6可看到,振動壁面受到振動激勵后,空化區(qū)域逐漸出現(xiàn),在此時刻前流場不受振動擾動,流體內(nèi)部壓力較穩(wěn)定,不會突降至飽和蒸汽壓,因此不會有空化區(qū)域出現(xiàn)。受到振動激勵后,流場壓力場受壁面振動擾動而降至液體飽和蒸汽壓,空化區(qū)域形成并隨時間增大。
注:冷卻水入口流速2 m×s-1,流場溫度70 ℃
2.2 入口流速對冷卻水流場空化的影響
圖7為施加振動條件下,流場溫度70 ℃,入口流速從0到5 m/s變化的不同入口流速條件下某個時刻(5.004e-4s)的模擬空化云圖。由圖7可知:雖然空化區(qū)域面積隨著流速增加而增大[20],但增大幅度并不明顯,可忽略不計。
注:施加壁面振動條件下,流場溫度70 ℃,冷卻水入口流速分別為0.5、2、3.5、5 m×s-1,5.004e- 4s時的模擬空化云圖
2.3 溫度對冷卻水流場空化的影響
圖8給出流場入口流速為2 m/s條件下,流場溫度分別為50、60、70和80 ℃的某個時刻(5.004e-4s)的模擬空化云圖。由圖8可知:在同一條件下,低溫度下如50 ℃左右的空化區(qū)域面積更大[20],即冷卻水在溫度較低時(在50 ℃左右),流場更容易出現(xiàn)空化區(qū)域。
注:施加壁面振動條件下,冷卻水入口流速2 m×s-1,流場溫度分別為50、60、70、80 ℃,5.004e-4s時的模擬空化云圖
3.1 可視化試驗(yàn)臺設(shè)計布置
試驗(yàn)所用的穴蝕可視化試驗(yàn)臺設(shè)計布置如圖9,整套試驗(yàn)系統(tǒng)各個部件之間由直徑為DN40的橡膠管連接,試驗(yàn)采用壓緊塊部件固定的金屬薄片(彎曲的半徑為50 mm,與可視壁面距離為10 mm)來模擬振動壁面,使用可視化視窗組件,來建立模擬近振動壁面處冷卻水套振動空化致冷卻水套穴蝕的系統(tǒng),可近似觀察到柴油機(jī)工作中冷卻水套受活塞主敲擊振動時振動壁面處空化穴蝕的情況。其中激振器對壁面施加敲擊力,模擬活塞敲擊冷卻水套,空化試驗(yàn)視窗組件主要模擬冷卻水套受活塞主敲擊振動時振動壁面處冷卻水套空化穴蝕的情況并進(jìn)行觀察,GX-8型高速攝像機(jī)可對試驗(yàn)中的空化現(xiàn)象進(jìn)行實(shí)時記錄,恒溫系統(tǒng)使冷卻水保持試驗(yàn)所需的恒定溫度。
1. 潛水泵2. 橡膠管3. 分流三通4. 控制球閥一5. 控制球閥二6. 轉(zhuǎn)子流量計7. 溫度計8. 入口壓力表9. 激振器10. 空化試驗(yàn)視窗組件11. 光源系統(tǒng)12. 出口壓力表13. 控制球閥三14. 高速攝影儀15. 電腦16. 恒溫裝置17. 冷卻水箱
3.2 壁面振動對空化的影響
由圖7可知入口流速對冷卻水套內(nèi)部空化區(qū)域的產(chǎn)生影響不大,所以為方便試驗(yàn)中取入口流速約為0.45 m/s。如圖10給出冷卻水70 ℃,循環(huán)流量2 000 L/h(入口流速約為0.45 m/s)時施加振動條件和不施加壁面振動條件下的近振動壁面處流體流場區(qū)域的空化試驗(yàn)圖。試驗(yàn)從開始產(chǎn)生氣泡開始計時,圖中F箭頭指代方向?yàn)檎駝颖诿媸芰Ψ较?,閃白點(diǎn)處為氣泡群。
如圖10可以觀察到,不施加壁面振動條件時在流場流動很穩(wěn)定,施加敲擊振動激勵后,觀察到視窗組件內(nèi)壓緊塊壁面處出現(xiàn)部分氣泡,并聚集在狹隙下游圓弧壁面處。由試驗(yàn)結(jié)果可以看出其與模擬結(jié)果(如圖6)一致,都是在狹隙下游側(cè)壁面處穴蝕更為嚴(yán)重。這是因?yàn)闆]有施加振動條件時,近振動壁面處幾乎不會出現(xiàn)空化區(qū)域,因?yàn)闆]有擾動,穩(wěn)定的流場區(qū)域其壓力場將處于相對穩(wěn)定的狀態(tài),近壁面流體區(qū)域壓力不會突降到液體飽和蒸汽壓之下,因此不會出現(xiàn)大量的空化氣泡形成空化區(qū)域。施加振動時由于擾動的影響,近壁面處的壓力場將出現(xiàn)突變,大量空化氣泡群將沿著振動壁面出現(xiàn)形成空化區(qū)域,同時隨著時間推移,空化氣泡群將在狹隙下游圓弧壁面處聚集,形成空化區(qū)域,沿流體流動方向向出口發(fā)展,并在此區(qū)域空泡大量潰滅,對后圓弧壁面進(jìn)行高溫高壓微射流和壓力波的沖擊,最終造成冷卻水套在此區(qū)域的穴蝕。因此冷卻水套壁面振動是冷卻水套穴蝕的主要因素,減小冷卻水套振動振幅時可以有效減少穴蝕產(chǎn)生。
注:F為振動壁面所受力,箭頭方向?yàn)镕作用力方向。冷卻水入口流速2 m×s-1,流場溫度70 ℃時的空化試驗(yàn)圖。冷卻水入口流速2 m×s-1,流場溫度70 ℃的空化試驗(yàn)圖。
3.3 入口流速對空化的影響
如圖11給出其他條件相同,循環(huán)流量分別為2 000、2 500、3 000 L/h(即0.45、0.57、0.68 m/s)時,施加振動條件的近振動壁面處空化區(qū)域在同一時刻的空化試驗(yàn)圖,圖中隨著冷卻水流速增加,振動壁面處空化區(qū)域面積增大幅度并不明顯,此結(jié)果與模擬結(jié)果(如圖7)一致。這是由于流速增大時流場內(nèi)壓力場趨于減小,同時由于振動壁面的諧振擾動,使得流場內(nèi)壓力更容易降低至飽和蒸汽壓,從而出現(xiàn)更大面積的空化區(qū)域。所以冷卻水入口流速對冷卻水套穴蝕影響較小,在試驗(yàn)范圍內(nèi)可忽略。
3.4 冷卻水溫度對空化的影響
圖12給出循環(huán)流量2 000 L/h時,50、70 ℃冷卻水施加振動后的近振動壁面處流體流場區(qū)域的空化試驗(yàn)圖。從試驗(yàn)現(xiàn)象來看,50 ℃低溫時近壁面處的空化現(xiàn)象比70 ℃時明顯,與模擬結(jié)果(如圖8所示)一致。這是由于溫度會影響氣體在冷卻水中溶解度的變化,在溫度較高時冷卻水的氣化壓強(qiáng)越高,氣泡相對不易產(chǎn)生,所以冷卻水套穴蝕情況有所減輕。所以在低溫時冷卻水套比較容易出現(xiàn)穴蝕。
a. 2 000 L×h-1b. 2 500 L×h-1 c. 3 000 L×h-1
a. 50 ℃, 2.5e-4sb. 50 ℃, 5.0e-4s c. 70 ℃, 2.5e-4sd. 70 ℃, 5.0e-4s
1)冷卻水套壁面振動是冷卻水套穴蝕的關(guān)鍵因素,壁面振動對冷卻水流場的擾動影響,導(dǎo)致大量空化氣泡出現(xiàn)并形成空化區(qū)域,所以減小冷卻水套振動振幅是減少穴蝕產(chǎn)生的有效方法。
2)冷卻水入口流速的增加會使得空化現(xiàn)象略有加強(qiáng),但并不明顯(試驗(yàn)中隨著冷卻水入口流速增加空化區(qū)域幾乎沒有變化);當(dāng)冷卻水溫為50 ℃時,空化現(xiàn)象最強(qiáng),當(dāng)水溫逐漸升高時,空化現(xiàn)象反而減弱,其冷卻水套壁面振動產(chǎn)生的空化效果明顯強(qiáng)于冷卻水溫及入口流速等因素變化所產(chǎn)生的空化波動。
3)空化現(xiàn)象主要發(fā)生在圓弧壁最小間隙位置,并在下游區(qū)域發(fā)展長大,所以冷卻水套狹隙下游圓弧壁面處穴蝕較為嚴(yán)重。
[1] 王澤民,陶曉明,王明泉,等. 柴油機(jī)缸套穴蝕成因分析和提高抗穴蝕能力的措施[J]. 內(nèi)燃機(jī),2004(2):43-45,47. Wang Zemin, Tao Xiaoming, Wang Mingquan, et al. Analysis of cavitation reasons of cylinder-bushing and measures for improving anti-cavitation ability[J]. Internal Combustion Engines, 2004(2): 43-45, 47. (in Chinese with English abstract)
[2] 胡斌,羅昕.柴油機(jī)濕式汽缸套穴蝕的原因分析及預(yù)防措施[J].農(nóng)機(jī)化研究,2006(7):208-210. Hu Bin, Luo Xin. Analysis of reason on the wet-type cylinder liner corrosive pitting of the diesel engine and its preventive measurements[J]. Journal of Agricultural Mechanization Research, 2006(7): 208-210. (in Chinese with English abstract)
[3] 劉彥輝. 柴油機(jī)缸套穴蝕問題探討[J]. 腐蝕與防護(hù),2011(6):490-493.Liu Yanhui. Discussion of diesel engine cylinder cavitation[J]. Corrosion and Protection, 2011(6): 490-493. (in Chinese with English abstract)
[4] 管金發(fā),鄧松圣,張攀鋒,等. 空化特性研究進(jìn)展[J]. 科學(xué)技術(shù)與工程, 2011(27):6674-6680. Guan Jinfa, Deng Songsheng, Zhang Panfeng. et al. Research progress of cavitation characteristics[J]. Sicence Technology and Engineering, 2011(27): 6674-6680. (in Chinese with English abstract)
[5] Petracchi G. Investigations of cavitation corrosion[J]. Metallurgia Italiana, 1949, 41: 1-6.
[6] Bazanini G, Bressan J D. Preliminary experience with a new compact disk apparatus for cavitation erosion studies[J]. Wear. 2007, 263(1/6): 251-257.
[7] Kornfeld. M, Suvarov. L. On the destructive action of cavitation [J]. Journal of Applied Physics, 1944, 15: 495-506.
[8] 杜川,徐萬里,汪家道,等. 空蝕初生期破壞程度的表征方法[J]. 潤滑與密封, 2011(3):16-19. Du Chuan, Xu Wanli, Wang Jiadao. et al. A characterazition method for cavitation erosion incubation period[J]. Lubrication Engineering, 2011(3): 16-19. (in Chinese with English abstract)
[9] 劉凱,杜潤,柯堅,等. 氣蝕的CFD評價方法[J]. 液壓氣動與密封, 2011(5):32-35. Liu Kai, Du Ruen, Ke Jian. et al. Evalution method of cavitation erosion with CFD[J]. Hydraulics Pneumatics and Seals, 2011(5): 32-35. (in Chinese with English abstract)
[10] 董洪全,馮慧華,董彪,等. 移動載荷作用下的氣缸套動態(tài)特性建模與穴蝕傾向分析[J]. 內(nèi)燃機(jī)學(xué)報,2013(5):467-472. Dong Hongquan, Feng Huihua, Dong Biao, et al. Dynamic modeling and cavitation tendency analysis of cylinder liner considering the effects of moving loads[J]. Transactions of Csice, 2013(5): 467-472. (in Chinese with English abstract)
[11] 黃新明. 如何提高船用柴油機(jī)氣缸套的抗穴蝕能力[J]. 內(nèi)燃機(jī),2006(1):51-52. Huang Xinming. How to raise the ability of resisting cave corrosion on marine diesel cylinder sleeve[J]. Internal Combustion Engines, 2006(1): 51-52. (in Chinese with English abstract)
[12] 寧海強(qiáng). 高頻振動對柴油機(jī)濕式氣缸套穴蝕的影響[J]. 船海工程, 2008,37(3):59-61. Ning Haiqiang. Study of the impact of high-frequency vibration on the cavitation of engine wet cylinder liner[J]. Ship and Ocean Engineering, 2008, 37(3): 59-61. (in Chinese with English abstract)
[13] 米沢徹. 柴油機(jī)氣缸套穴蝕分析[J]. 國外內(nèi)燃機(jī)車, 1992(267):7-14.
[14] 米沢徹,前田廣,王伯福,等. 抑制柴油機(jī)氣缸套的振動防止氣缸套穴蝕[J]. 國外內(nèi)燃機(jī)車, 1988(333):44-49.
[15] Shuji Hattori, Makoto Takinami. Comparison of cavitation erosion rate with liquid impingement erosion rate [J]. Wear, 2010(269): 310-316.
[16] 陳劍. 柴油機(jī)缸套穴蝕產(chǎn)生的機(jī)理[J]. 上海師范大學(xué)學(xué)報:自然科學(xué)版, 2000,29(1):63-69. Chen Jian. Mechanism and causes of the emergence of the corroded-holes on the external surface of the cylinder of the diesel engine[J]. Journal of Shanghai Normal University; Natural Sciences, 2000, 29(1): 63-69. (in Chinese with English abstract)
[17] 薛偉,陳昭運(yùn). 空蝕破壞的微觀過程研究[J]. 機(jī)械工程材料, 2005,29(2):59-62. Xue Wei, Chen Zhaoyun. The micro cours of the cavitation erosion[J]. Materials For Mechanical Engineering, 2005, 29(2): 59-62. (in Chinese with English abstract)
[18] Chen Haosheng, Li Yongjian, Chen Darong. et al. Experimental and numerical investigations on development of cavitation erosion pits on solid surface[J]. Tribology Letters, 2007(26): 153-159.
[19] Chen Haosheng, Li Yongjian, Chen Darong . et al. Damages on steel surface at the incubation stage of the vibration cavitation erosion in water[J]. Wear, 2008(265): 692-698.
[20] 杜慧勇,李鵬濤,李民,等. 壁面振動致氣缸套空蝕現(xiàn)象模擬[J]. 排灌機(jī)械工程學(xué)報,2016(12):1065-1069. Du Huiyong, Li Pengtao, Li Min, et al. Simulating cavitation erosion of cylinder liner caused by wall vibration[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016(12): 1065-1069. (in Chinese with English abstract)
[21] 彭存達(dá),李健. 船用柴油機(jī)氣缸套穴蝕成因與防治[J]. 船舶, 2006(5):33-34. Peng Cunda, Li Jian. Formation cause and prevention of corrosion in pit form in cylinder jacket of marine diesel engine[J]. Ship and Boat, 2006(5): 33-34. (in Chinese with English abstract)
[22] Matsumoto Y. Influence of homogeneous condensation inside a small gas bubble on its pressure response[J]. Journal of fluids engineering, 1985, 107(2): 28l-286.
[23] REA Arndt. Cavitation in fluid machinery and hydraulic structures[J]. Annual Review of Fluid Mechanics, 1981, 13: 273-328.
[24] Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles[J]. Journal of Fluid Mechanics, 1998, 361: 75-116.
[25] Brujan E A, Ikeda T, Matsumoto Y. On the pressure of cavitation bubbles[J]. Experimental Therma1 and Fluid Science, 2008, 32(5): 1188-1191.
[26] 銀增輝,李民,杜慧勇, 等. 基于線陣相機(jī)的柱面外表面全景自動采集系統(tǒng): CN102589465A [P]. 2012-07-18.
[27] Iwai Y, Li S. Cavitation erosion in waters having different surface tensions[J]. Wear, 2003, 254(1-2): 1-9.
[28] 隋江華,賈明莆,孫豐雷. 柴油機(jī)氣缸套穴蝕的成因以及預(yù)防措施[J]. 船舶工程,2009(增刊1):45-47,62. Sui Jianghua, Jia Mingpu, Sun Fenglei. Diesel engine cylinder liner cavitation causes and preventive measures[J]. Ship Engineering, 2009(Supp.1): 45-47, 62. (in Chinese with English abstract)
[29] Dular M, Stoffel B, Irok B. Development of a cavitation erosion model[J]. Wear, 2006, 261(5/6): 642-655.
[30] Li Xiaolei, Liu Jianmin, Qiao Xinyong. et al. The influencing factors research of piston slap vibration from diesel[J]. Machinery Design & Manufacture, 2013(5): 197-200.
[31] Zhou Y K, He J G, Hammitt F G. Cavitation erosion of cast iron diesel engine liners[J]. Wear, 1982, 76: 329-335.
[32] 李曉磊,劉建敏,喬新勇,等. 柴油機(jī)活塞敲擊及其振動響應(yīng)機(jī)理研究[J]. 車用發(fā)動機(jī),2014(1):32-37. Li Xiaolei, Liu Jianmin, Qiao Xinyong. et al. Piston slap and its vibration response mechanism of diesel engine[J]. Vehicle Engine, 2014(1): 32-37. (in Chinese with English abstract)
Analysis and experiment on cavitation mechanism in cooling water jacket of diesel engine
Du Huiyong, Zhou Wenjin, Li Min, Liu Jianxin, Li Pengtao, Xu Bin
(471003,)
Light weight and high power become the trend of the development of diesel engine. At the same time, the liner cavitation erosion of engine cylinder becomes one of the important restrictions of engine reliability and life. A lot of research has been made and the results show that cooling water jacket cavitation erosion theories widely accepted are: A high frequency vibration of cooling water jacket leads to the cavitation and the cavitation bubbles breaking produces a shock wave and micro-jet, which have the mechanical action to cooling water jacket and lead to the occurrence of cavitation erosion. Therefore, the study of the flow characteristics of the cooling water jacket near the vibrating wall is an effective way to understand the spatial and temporal distribution of cavitation. In this paper, the computational fluid dynamics (CFD) simulation method was used to investigate the forming mechanism of cavitation in engine cooling jacket. By analyzing the cooling water jacket of the diesel engine, taking the part of cooling water jacket in the minimum space of the flow channel near the vibration wall as the research object, a three-dimentional model ofdiesel cooling water jacket was built. Then according to the calculation and analysis of the vibration wall components’ single knock experiment, the moving mesh was set. Then the characteristics of flow and cavitation under various inlet velocity and fluid temperature with and without wall vibration were simulated. The cavitation characteristics were compared and analyzed under the conditions of different inlet velocity and different flow field temperature with the influence of cylinder wall vibration,and the numerical theory of cooling water jacket cavitation erosion was improved, which also guided the cooling water jacket cavitation erosion experiment of the vibration. According to the simulation results, a wall vibration cavitation erosion visualization bench was designed and built, the related experimental verification was proceeded in the visual experiment platform, and the credibility of the simulation calculation was confirmed.The simulation results were validated by the experiments on this optical rig. The outcome of the study indicated that cavitation occurred in the minimum space of the flow channel, and grew up in the downstream. Higher velocity of inlet flow (from 2 000 to 3 000 liters per hour) caused stronger cavitation near the vibration wall of the cooling water flow field, but it was not significant, so the significant change was not observed in the cavitation images under the condition of different inlet flow velocity. On the contrary, higher temperature of inlet flow (above 50 ℃) caused weaker cavitation, and the strongest cavitation occurred at the temperature of 50 ℃. An obvious cavitation phenomenon appeared when the wall which fluid flowed by was vibrated in a very high frequency, and this change of cavitation was much stronger than those caused by various inlet flow velocity and fluid temperature. So the author thought that cooling water jacket vibration was the more important factor than cooling water flow velocity and temperature that caused cavitation. This study will be helpful in controlling the occurrence of cavitation in cooling water jacket and lowering the cavitation erosion risk of cooling water jacket.
engines; computational fluid dynamics; experiments; cooling water jacket; cavitation; cavitation erosion
10.11975/j.issn.1002-6819.2017.08.010
TK421+.1
A
1002-6819(2017)-08-0076-06
2016-08-11
2017-03-22
國家重點(diǎn)研發(fā)計劃(2016YFD0700700)
杜慧勇,男,河南洛陽人,教授,博士,主要從事內(nèi)燃機(jī)CFD方面研究。洛陽 河南科技大學(xué)車輛與交通工程學(xué)院,471003。Email:dhy@mail.haust.edu.cn
杜慧勇,周文瑾,李 民,劉建新,李鵬濤,徐 斌.發(fā)動機(jī)冷卻水套穴蝕機(jī)理分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(8):76-81. doi:10.11975/j.issn.1002-6819.2017.08.010 http://www.tcsae.org
Du Huiyong, Zhou Wenjin, Li Min, Liu Jianxin, Li Pengtao, Xu Bin. Analysis and experiment on cavitation mechanism in cooling water jacket of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 76-81. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.08.010 http://www.tcsae.org