方 亮,李 威,聞望喜,孫宜華,李純純
?
AB2O4型尖晶石結構微波介質陶瓷研究進展
方 亮1,2,李 威1,2,聞望喜2,孫宜華2,李純純1,3
(1. 桂林理工大學材料科學與工程學院,廣西有色金屬及特色材料加工省部共建國家重點實驗室培育基地,廣西桂林 541000;2. 三峽大學材料與化工學院,湖北宜昌 443000;3. 桂林理工大學信息科學與工程學院,廣西桂林 541000)
AB2nO4n(= 1,2,3)系列尖晶石陶瓷普遍具有高的品質因數(shù)、可調的介電常數(shù)和諧振頻率溫度系數(shù),并與Ag電極具有良好的化學共容性,是極有可能應用在低溫共燒陶瓷上的一類微波介質陶瓷。介紹了尖晶石陶瓷的晶體結構,總結了不同取值陶瓷的微波介電性能及其調控,討論了Li元素進入尖晶石晶格后離子分布的演變,并重點討論Li基尖晶石陶瓷的燒結溫度和微波介電性能,以及離子取代對其性能的調節(jié)。另外,還嘗試改變一些代表性陶瓷的成分以獲得更好的綜合微波介電性能。具體的方法包括形成固溶體和第二相,以及非化學計量比調節(jié)。最后,對Li基尖晶石結構微波介質陶瓷工業(yè)化應用進行了展望。
微波介質陶瓷;AB2nO4n;綜述;尖晶石結構;低溫共燒陶瓷;調整
微波介質陶瓷是指應用在微波頻段(300 MHz~30 GHz)作為介質材料并完成一種或多種功能的陶瓷。它是制造微波介質諧振器和濾波器的關鍵材料[1]。目前,隨著電子產(chǎn)品的小型化、高頻化、高可靠以及低成本,對微波介質陶瓷的性能提出了越來越高的要求[2-3]。高介電常數(shù)是為了減小器件尺寸,高品質因數(shù)有助于提高器件工作頻率的可選擇性,近零的諧振頻率溫度系數(shù)利于提高器件頻率溫度穩(wěn)定特性[4-6]。此外,低溫共燒陶瓷技術(Low Temperature Co-fired Ceramic, LTCC)是近年興起的一種組件整合技術。LTCC可以實現(xiàn)分層設計,一體燒結[7]。LTCC技術不僅要求陶瓷具有優(yōu)異的微波介電性能,而且陶瓷的燒結溫度要低于Ag的熔點,能與之共燒,而且彼此收縮匹配[8-9]。這些要求使得能應用于LTCC的微波介質陶瓷種類比較有限。
近年來,越來越多的研究集中在AB2O4型尖晶石微波介質陶瓷上。這類陶瓷普遍品質因數(shù)高,介電常數(shù)高,而且諧振頻率溫度系數(shù)可調,能與Ag共燒,是極有可能應用在LTCC上的一類微波介質陶瓷。此外這類陶瓷質量輕,原料便宜,具有很好的溫度穩(wěn)定性,極有可能實現(xiàn)產(chǎn)業(yè)化。本文綜述了AB2nO4n(= 1,2,3)系列尖晶石陶瓷的微波介電性能,不同離子占位對結構和性能的影響,展望了該類陶瓷應用面臨的困難以及解決方案。
天然鎂鋁化合物MgAl2O4所具有的一種獨特的晶體結構被稱為尖晶石結構。該結構屬于立方晶系,空間群為Fd3m。該結構可以看成氧離子形成最密堆結構,再由A離子占據(jù)64個四面體的間隙的1/8,即8個A位,B離子占據(jù)32個八面體的間隙的1/2,即16個B位。故尖晶石單位單胞通式為A8B16O32,化簡為AB2O4。尖晶石是一類結構,有多種價態(tài)的離子可以形成這種結構。最常見的是A與B位的化合價之比為2:3,稱之為正型尖晶石,例如MgAl2O4,ZnAl2O4。除了2:3的電價比外常見的還有2:4,稱之為反尖晶石結構,例如Mg2TiO4。這種結構有一半二價元素進入B位。而實際上大多數(shù)尖晶石化合物趨向于混合型結構[10-11]。
2.1 離子取代對尖晶石的微波介電性能的調節(jié)
2.1.1 AB2nO4n(= 1)型的性能與調控
Shannon等[12]最早報道了MgAl2O4單晶的介電性能:介電損耗0.0008(1 MHz),相對介電常數(shù)8.325。隨后,Surendran等[13]報道了由固相合成法(燒結溫度460℃)制備的MgAl2O4的微波介電性能:r= 8.75,·= 68 900 GHz,τ= –75×10–6/℃。而且添加適量TiO2有效提高了MgAl2O4的致密度,使0.75MgAl2O4-0.25TiO2陶瓷的·值進一步提高到105 400 GHz,并且調節(jié)τ值達到–12×10–6/℃。但該體系容易出現(xiàn)MgTiO3(τ=–55×10–6/℃)和Mg2TiO4(τ= –50×10–6/℃)相[14-15],這大大削弱了TiO2對該材料溫度系數(shù)的調節(jié)功能,使τ= 0的點出現(xiàn)在富TiO2端,此時·已大幅降低。Zheng等[16]報道了用Zn取代Mg來改善MgAl2O4微波介電性能的研究情況。(Mg1–xZn)Al2O4在= 0~1全范圍合成了固溶體,隨著從0增加到1,相對介電常數(shù)從7.90增加到8.56,·值有了顯著改善,達到106 000 GHz。而且,τ值從–73×10–6/℃變化到–63×10–6/℃。
Belous等[15]報道了Mg2TiO4的微波介電性能:r= 14,·= 150 000 GHz,τ= –50×10–6/℃,其燒結溫度為1450℃。此項工作還針對Mg2TiO4進行了一系列復合摻雜改性研究:用等價的Co取代Mg,用CaTiO3調節(jié)τ值,用ZnO-B2O3作為燒結助劑降低燒結溫度。0.93[0.98Mg2TiO4-0.02Co2TiO4]+0.07 CaTiO3添加5%(質量分數(shù))ZnO-B2O3復合陶瓷在1200℃燒結致密,并且具有極優(yōu)異的綜合微波介電性能:r= 16,·= 85 000 GHz,τ= –8×10–6/℃。針對Mg2TiO4燒結溫度過高,存在第二相MgTiO3的問題,Cheng等[17]報道了用高能球磨法合成純相Mg2TiO4陶瓷。當球磨時間達到30 h,其燒結溫度降低到1175℃,并且為單一Mg2TiO4相?;瘜W計量比的Zn2TiO4不能合成單一物相,Kim等[18]則通過調節(jié)Zn:Ti摩爾比,制備出了純相Zn2TiO4,大幅提高了其微波介電性能。
2.1.2 AB2nO4n(= 2)型的性能與調控
Li2MTi3O8(M = Mg,Zn)的微波介電性能一經(jīng)報道便引起廣泛關注和研究[19]。由于Li進入尖晶石晶格,其燒結溫度大幅下降,而且τ值已在實用范圍內。尤其是Li2MgTi3O8,其τ值已達到近零。由于Co2+,Cu2+,Ni2+的離子半徑與Mg2+和Ti2+的離子半徑相近,用其取代M尋找新的微波介質陶瓷已有報道,見表1。本課題組Fang等[20]制備出了τ值為正的Li2CoTi3O8陶瓷。該陶瓷在1025℃燒結致密,具有優(yōu)異的微波介電性能:r= 28.9,·=52 600 GHz,τ= 7.4×10–6/℃。添加少量的BCB和B2O3[21]燒結助劑均能將Li2CoTi3O8陶瓷的燒結溫度降低到900℃,并且能與Ag共燒。Singh等[22]用Ni取代Zn制備出了全范圍的固溶體。隨著Ni取代Zn,·值急劇下降。Li2NiTi3O8的·值已嚴重惡化,僅為2600 GHz。作者用Raman圖譜解釋了性能與本征結構因素的關系,指出AC電導率增加是介電損耗變大的原因。Li2CuTi3O8的微波介電性能尚未報道,但本課題組Fang和Tang等[23-24]用部分Cu取代Li2MTi3O8(M = Mg,Zn),合成的Li2Zn0.9Cu0.1Ti3O8和Li2Mg0.9Cu0.2Ti3O8燒結溫度明顯降低,而且這兩種陶瓷均具有優(yōu)異的·值??梢钥闯鯨i2CuTi3O8具有正的τ值,能將Li2ZnTi3O8的τ值調節(jié)近零(τ= +1.6×10–6/℃)。并且這兩種陶瓷均與Ag有良好的兼容性,這使它們可以用于LTCC上。
Ti基尖晶石微波介質陶瓷普遍燒結溫度高,本課題組嘗試用Ge取代Li2MTi3O8的Ti,制備出了性能優(yōu)異的系列陶瓷,并且燒結溫度降到Ag的熔點以下。Xiang和Luo等[25-26]合成的Li2MGe3O8(M = Zn,Co,Ni)陶瓷均在950℃左右燒結致密,而且具有優(yōu)異的微波介電性能:r= 8.5~10.5,·= 40 000~ 48 000 GHz,τ= (–40 ~ –80)×10–6/℃。這三種Ge基尖晶石微波介質陶瓷均顯示出了與Ag良好的化學兼容性。Ge基相比Ti基尖晶石微波介質陶瓷,介電常數(shù)更小,這主要是因為Ge(= 1.63)相比Ti(= 2.93)而言具有更小的極化率[27]。但是,Ge基尖晶石微波介質陶瓷具有較負的τ值。Xiang和Luo等的研究表明,TiO2能有效調節(jié)其τ值至近零,而不會引起介電損耗的明顯增大。
表 1 Li2MM'3O8(M = Zn, Mg, Co, Cu, Ni; M' = Ti, Ge)陶瓷的燒結溫度,微波介電性能和離子分布[b:Li1–YM(LiM0.5–YM'1.5)中值的改變量]
Tab.1 Sintering temperature, microwave dielectric properties and cation distributions of Li2MM'3O8 (M = Zn, Mg, Co, Cu, Ni; M' = Ti, Ge) ceramics [(Yb: changes in the formula Li1–YMY(LiYM0.5–YM'1.5)]
值得注意的是,隨著用Zn,Mg,Co,Cu,Ni取代Li2MM'3O8(M' = Ti, Ge)中的M位,·值有惡化的趨勢。Li2ZnM'3O8(M' = Ti, Ge)中一半的Li和全部Zn占據(jù)四面體,另外一半Li進入八面體位和Ti(或Ge)呈1:3有序排列[28],見圖1,這是該陶瓷具有高·值的主要原因。其離子分布如表1所示。對于Li2MgTi3O8,Li2CoTi3O8和Li2CoGe3O8,1/10的Mg和Co進入八面體位,這降低了八面體中的有序度,使·值有所下降。對于Li2CuTi3O8,2/5的Cu進入八面體位。當用Ni取代Li2MM'3O8(M' = Ti, Ge)中的M位時,Ni不再占據(jù)四面體位(b= 0),而是進入八面體位,其中Ni:Ti摩爾比為1:3是完全無序的[22,29],這解釋了Li2NiTi3O8的·值更加惡化的原因。但對于Li2NiGe3O8,其·值卻發(fā)生逆轉,達到42 200 GHz。由此可見Ge基尖晶石材料產(chǎn)生了更多性能調節(jié)的可能性,繼續(xù)深一步探究Ge基尖晶石材料結構與微波介電性能的關系具有重要意義。
圖1 具有有序TiO6和LiO6八面體和無序LiO4四面體的Li2ZnTi3O8部分結構投影圖
2.1.3 AB2nO4n(= 3)型的性能與調控
為了進一步擴展Li基尖晶石微波介質陶瓷的種類,本課題組研究了AB2nO4n(= 3)的Li基尖晶石微波介質陶瓷,見表2,制備出了系列陶瓷Li2M3Ti4O12(M = Zn,Mg,Co)[30-32]。該系列陶瓷具有極高·值,但燒結溫度高。本課題組用Li全取代M位元素,制備Li4Ti5O12的陶瓷[33],其燒結溫度大幅降低,在925℃燒結致密,性能優(yōu)異,且能與Ag共燒。
表 2 Li2M3Ti4O12(M = Zn, Mg, Co)和Li4Ti5O12陶瓷的燒結溫度和微波介電性能
Tab.2 Sintering temperature, microwave dielectric properties of Li2M3Ti4O12 (M = Zn, Mg, Co) and Li4Ti5O12 ceramics
2.2 尖晶石微波介電性能的復合調節(jié)
尖晶石微波介質陶瓷普遍具有燒結溫度高,溫度系數(shù)過負的問題。常用的調節(jié)機制除了離子取代外,利用多相復合或形成固溶體也是一種有效調節(jié)性能的方法。Zn2TiO4、Li2Zn3Ti4O12、Li2ZnTi3O8和Li4Ti5O12是近年來廣泛研究的尖晶石代表物,它們對應的是Li1.33xZn2–2xTi1+0.67xO4中分別為0,0.5,0.75和1的組分[34]。
據(jù)報道,巖鹽結構的Li2TiO3具有正τ值(τ= (+20~+40)×10–6/℃)和優(yōu)異的微波介電性能:r= 20~24,·= 20 000~70 000 GHz[35-37]。它已成功調節(jié)Li2ZnTi3O8和Li2Zn3Ti4O12的溫度系數(shù)至近零[38-39]。本課題組Li等[40]通過設計化學式Li4+xTi5O12(= 0~1.2),制備了溫度系數(shù)近零的復合陶瓷Li4Ti5O12-Li2TiO3,見表3。通過調節(jié)Li含量,不僅能補充在燒結過程中Li的揮發(fā)從而促進燒結,還能控制第二相的含量以調節(jié)τ值。樣品= 1.2在1000℃燒結致密,τ近零,而且·值達到最大。加入少量B2O3(質量分數(shù)0.5%)能將其燒結溫度降低到940℃,而且能與Ag共燒。這種復合陶瓷極具LTCC應用潛力。
表 3 Li4+xTi5O12(0 ≤≤ 1.2)陶瓷的燒結溫度,密度和微波介電性能
Tab.3 Sintering temperature, density and microwave dielectric properties of Li4+xTi5O12 (0 ≤x≤ 1.2) ceramics
2.3 非化學計量比對尖晶石微波介電性能的調節(jié)
Li基尖晶石陶瓷存在Li的揮發(fā)問題。Li的揮發(fā)是所有含Li陶瓷共同面臨的問題,由于Li的揮發(fā),導致偏離化學計量比,從而不能制備單相,降低致密度,這大大影響了微波介電性能。Li的揮發(fā)雖不可避免,但卻為提升材料性能預留了一個空間。目前,Bian等[41]研究發(fā)現(xiàn),適當增加Li的含量能補充Li在燒結過程中的揮發(fā),使材料的·值大幅提高。Zhang等[42]通過減少Ti含量,制備了純相Li4Ti5O12,提高了材料的致密度,使介電損耗大幅減小。
尖晶石微波介質陶瓷表現(xiàn)出了極優(yōu)異的微波介電性能和與銀良好的化學共容性,隨著LTCC技術的發(fā)展和微波電子元器件向集成化和模塊化發(fā)展,它們有望得到產(chǎn)業(yè)化應用。尖晶石微波介質陶瓷存在高性能與高燒結溫度的矛盾,能真正實用化的陶瓷種類很少。AB2nO4n(= 2)型尖晶石,特別是Li2MTi3O8(M = Mg,Zn),是少有的可低溫燒結且具有優(yōu)異微波介電性能的一類尖晶石陶瓷。對此類陶瓷進行非化學計量比研究,選擇合適的燒結助劑以制備出性能穩(wěn)定的漿料是下一步的研究重點。此外,尋找新的尖晶石型微波介質陶瓷也是今后研究的一個方向。
[1] 尹雪帆, 喻佑華, 周川鈞, 等. 微波介質陶瓷材料發(fā)展綜述 [J]. 中國陶瓷, 2006, 42(4): 3-7.
[2] 曾群, 霍良, 周永恒. 微波介質陶瓷材料的低溫燒結 [J]. 材料導報, 2010, 24(9): 24-27.
[3] 雷文, 呂文中. 低介微波介質陶瓷基板材料研究進展 [J]. 中國材料進展, 2012, 31(7): 16-25.
[4] FANG L, GUO H H, FANG W S, et al. BaTa2V2O11: a novel low fired microwave dielectric ceramic [J]. J Eur Ceram Soc, 2015, 35: 3765-3770.
[5] LI J, FANG L, LUO H, et al. Li4WO5: a temperature stable low-firing microwave dielectric ceramic with rock salt structure [J]. J Eur Ceram Soc, 2015, 36(1): 243-246.
[6] JIANG X W, LI C C, SU C X, et al. Low temperature firing and microwave dielectric properties of BaCaV2O7[J]. Ceram Int, 2015, 41(3): 5172-5176.
[7] 李冉, 傅仁利, 何洪, 等. 低溫共燒陶瓷技術(LTCC)與低介電常數(shù)微波介質陶瓷 [J]. 材料導報, 2010, 24(5): 40-44.
[8] XIANG H C, FANG L, JIANG X W, et al. A novel temperature stable microwave dielectric ceramic with garnet structure: Sr2NaMg2V3O12[J]. J Am Ceram Soc, 2016, 99(2): 399-401.
[9] LUO H, FANG W S, FANG L, et al. Microwave dielectric properties of novel glass-free low temperature firing ACa2Mg2V3O12(A = Li, K) ceramics [J]. Ceram Int, 2016, 42(8): 10506-10510.
[10] 劉俊, 雷躍榮, 陳希明, 等. 尖晶石結構材料的最新研究進展 [J]. 材料導報, 2008, 22(11): 26-29.
[11] 向勇, 謝道華. 尖晶石結構功能材料的新進展 [J]. 磁性材料及器件, 2001, 32(3): 21-25.
[12] SHANNON R D, ROSSMAN G R. Dielectric constant of MgAl2O4spinel and the oxide additivity rule [J]. J Phys Chem Solids, 1991, 52(9): 1055-1059.
[13] SURENDRAN K P, BIJUMON P V, MOHANAN P, et al. (1–)MgAl2O4-TiO2dielectrics for microwave and millimeter wave applications [J]. Appl Phys A-Mater, 2005, 81(4): 823-826.
[14] SOHN J H, INAGUMA Y, YOON S O, et al. Microwave dielectric characteristics of ilmenite-type titanates with highvalues [J]. Jpn J Appl Phys, 1994, 33: 5466-5470.
[15] BELOUS A, OVCHAR O, DURILIN D, et al. High-microwave dielectric materials based on the spinel Mg2TiO4[J]. J Am Ceram Soc, 2006, 89(11): 3441-3445.
[16] ZHENG C W, WU S Y, CHEN X M, et al. Modification of MgAl2O4microwave dielectric ceramics by Zn substitution [J]. J Am Ceram Soc, 2007, 90(5): 1483-1486.
[17] CHENG L, LIU P, QU S X, et al. Microwave dielectric properties of Mg2TiO4ceramics synthesized via high energy ball milling method [J]. J Alloys Compd, 2015, 623: 238-242.
[18] KIM H T, KIM Y, VALANT M, et al. Titanium incorporation in Zn2TiO4spinel ceramics [J]. J Am Ceram Soc, 2001, 84(5): 1081-1086.
[19] SUMESH G, THOMAS S M. Synthesis and microwave dielectric properties of novel temperature stable high, Li2ATi3O8(A = Mg, Zn) ceramics [J]. J Am Ceram Soc, 2010, 93(93): 2164-2166.
[20] FANG L, CHU D J, ZHOU H F, et al. Microwave dielectric properties and low temperature sintering behavior of Li2CoTi3O8ceramic [J]. J Alloys Compd, 2011, 509(5): 1880-1884.
[21] FANG L, TANG Y, CHU D J, et al. Effect of B2O3addition on the microstructure and microwave dielectric properties of Li2CoTi3O8ceramics [J]. J Mater Sci Mater, 2011, 23(2): 478-483.
[22] SINGH S K, KIRAN S R, MURTHY V R K. Structural, Raman spectroscopic and microwave dielectric studies on spinel Li2Zn(1?x)NiTi3O8compounds [J]. Mater Chem Phys, 2013, 141(2/3): 822-827.
[23] FANG L, LIU Q W, SU C X, et al. Microwave dielectric properties and compatibility with silver of low-fired Li2Cu0.1Zn0.9Ti3O8ceramic [J]. Mater Lett, 2012, 81(3): 34-36.
[24] TANG Y, FANG L, ZHOU H F, et al. Microwave dielectric properties and chemical compatibility with silver electrode of low-fired Li2Cu0.2Mg0.8Ti3O8ceramic [J]. Ceram Int, 2013, 39(7): 8503-8506.
[25] XIANG H C, FANG L, FANG W S, et al. A novel low-firing microwave dielectric ceramic Li2ZnGe3O8with cubic spinel structure [J]. J Eur Ceram Soc, 2017, 37(2): 625-629.
[26] LUO H, FANG L, XIANG H C, et al. Two novel low-firing germanates Li2MGe3O8(M = Ni, Co) microwave dielectric ceramics with spinel structure [J]. Ceram Int, 2016, 43(1): 1622-1627.
[27] SHANNON R D. Dielectric polarizabilities of ions in oxides and fluorides [J]. J Appl Phys, 1993, 73(1): 348-366.
[28] KAWAI H, TABUCHI M, NAGATA M, et al. Crystal chemistry and physical properties of complex lithium spinels Li2MM'3O8(M = Mg, Co, Ni, Zn; M' = Ti, Ge) [J]. J Mater Chem, 1998, 8(5): 1273-1280.
[29] GRYFFROY D, VANDENBERGHE R E. Cation distribution, cluster structure and ionic ordering of the spinel series LiNi0.5Mn1.5-xTiO4and LiNi0.5-yMgMn1.5O4[J]. J Phys Chem Solids, 1992, 53(6): 777-784.
[30] ZHOU H F, LIU X B, CHEN X L, et al. Preparation, phase structure and microwave dielectric properties of a new low cost MgLi2/3Ti4/3O4compound [J]. Mater Chem Phys, 2012, 137(1): 22-25.
[31] ZHOU H F, LIU X B, CHEN X L, et al. ZnLi2/3Ti4/3O4: a new low loss spinel microwave dielectric ceramic [J]. J Eur Ceram Soc, 2012, 32(2): 261-265.
[32] ZHOU H F, LIU X B, CHEN X L, et al. Preparation, phase structure and microwave dielectric properties of CoLi2/3Ti4/3O4, ceramic [J]. Mater Res Bull, 2012, 47(5): 1278-1280.
[33] ZHOU H F, GONG J Z, WANG N, et al. A novel temperature stable microwave dielectric ceramic with low sintering temperature and high quality factor [J]. Ceram Int, 2016, 42(7): 8822-8825.
[34] HERNANDEZ V S, MARTINEZ L M T, MATHER G C, et al. Stoichiometry, structures and polymorphism of spinel-like phases, Li1.33xZn2–2xTi1+0.67xO4[J]. J Mater Chem, 1996, 6(9): 1533-1536.
[35] YUAN L L, BIAN J J. Microwave dielectric properties of the lithium containing compounds with rock salt structure [J]. Ferroelectrics, 2009, 387(1): 123-129.
[36] CHEN G H, YANG Y. Low-temperature sintering and microwave dielectric properties of Li2TiO3based ceramics [J]. J Mater Sci-Mater Electron, 2012, 24(3): 263-270.
[37] LIANG J, LU W Z, WU J M, et al. Microwave dielectric properties of Li2TiO3ceramics sintered at low temperatures [J]. Mat Sci Eng B, 2011, 176(2): 99-102.
[38] LU X P, ZHENG Y, DONG Z W, et al. Low temperature sintering and microwave dielectric properties of 0.6Li2ZnTi3O8-0.4Li2TiO3ceramics doped with ZnO-B2O3-SiO2glass [J]. Mater Lett, 2014, 131(12): 1-4.
[39] SAYYADI SHAHRAKI A, TAHERI NASSAJ E, HASSANZADEH TABRIZI S A, et al. A new temperature stable microwave dielectric ceramic with low-sintering temperature in Li2TiO3-Li2Zn3Ti4O12[J]. J Alloys Compd, 2014, 597(7): 161-166.
[40] LI W, FANG L, TANG Y, et al. Microwave dielectric properties in the Li4+xTi5O12(0 ≤≤ 1.2) ceramics [J]. J Alloys Compd, 2017, 701: 295-300.
[41] BIAN J J, DONG Y F. Sintering behavior, microstructure and microwave dielectric properties of Li2+xTiO3(0 ≤≤ 0.2) [J]. Mater Sci Eng B, 2011, 76: 147-51.
[42] ZHANG J, ZUO R.Z, WANG Y, et al. Phase evolution and microwave dielectric properties of Li4Ti5(1+x)O12ceramics [J]. Mater Lett, 2015, 164: 353-355.
(編輯:曾革)
Research progress on AB2O4-typespinel microwave dielectric ceramics
FANG Liang1, 2, LI Wei1,2, WEN Wangxi2, SUN Yihua2, LI Chunchun1,3
(1. State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Material Science and Engineering, Guilin University of Technology, Guilin 541000, Guangxi Zhuang Autononmous Region, China; 2. College of Materials and Chemical Engineering, Three Gorges University, Yichang 443000, Hubei Province, China; 3. College of Information Science and Engineering, Guilin University of Technology, Guilin 541000, Guangxi Zhuang Autononmous Region, China)
AB2nO4n(= 1, 2, 3) spinel ceramics are good microwave dielectric materials with high quality factor, tunable permittivity and temperaturecoefficient of resonance frequency, and chemical compatibility with silver, which makes them potential candidates for low temperature co-fired ceramic (LTCC) application. The crystal structure of spinel ceramics is introduced and the microwave dielectric properties of spinel ceramics with differentvalues are summarized. The evolution of cation distributions is discussed as Li element is introduced into the spinel lattice, and it is focused on the sintering temperature (S.T.) and microwave dielectric properties of Li-based spinel ceramics and their properties adjustment by the ion substitution. Furthermore, the components of some candidates are modified to achieve better combination of microwave dielectric properties. The specific methods include formation of solid solution and second phase, and non-stoichiometric adjustment. In the end, the possibility of Li-based spinel ceramics is evaluated for practical application.
microwave dielectric ceramics; AB2nO4n; review; spinel structure; low temperature co-fired ceramic; adjustment
10.14106/j.cnki.1001-2028.2017.05.001
TM28
A
1001-2028(2017)05-0001-05
2017-03-09
李純純
國家自然科學基金資助項目(No. 21261007;21561008; 51502047);廣西自然科學基金資助項目(No. 2015GXNSFBA139234;2015GXNSFFA139003;2016GXNSFAA380018);廣西北部灣經(jīng)濟區(qū)科技園區(qū)創(chuàng)新創(chuàng)業(yè)人才培育建設項目(No. 2015-09)
方亮(1970-),男,湖北宜昌人,教授,博士,研究方向為有色金屬氧化物功能材料與器件,E-mail: fanglianggl001@aliyun.com;李威(1990-),男,湖北宜昌人,研究生,研究方向為微波介質陶瓷,E-mail: 386085783@qq.com;李純純(1987-),男,山東濰坊人,副研究員,博士,研究方向為電介質功能材料與器件,E-mail: lichunchun2003@126.com。
網(wǎng)絡出版時間:2017-05-11 13:24
http://kns.cnki.net/kcms/detail/51.1241.TN.20170511.1324.001.html