亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        秸稈煙塵中正構(gòu)脂肪醇和甾醇的碳同位素組成

        2017-05-23 11:04:18李久海李中平李立武南京信息工程大學江蘇省大氣環(huán)境與裝備技術協(xié)同創(chuàng)新中心江蘇南京210044南京信息工程大學環(huán)境科學與工程學院江蘇南京210044中國科學院地質(zhì)與地球物理研究所蘭州油氣資源研究中心甘肅蘭州70000
        中國環(huán)境科學 2017年5期
        關鍵詞:脂肪醇玉米秸正構(gòu)

        劉 剛,李久海,徐 慧,李中平,李立武(1.南京信息工程大學江蘇省大氣環(huán)境與裝備技術協(xié)同創(chuàng)新中心,江蘇 南京 210044;2.南京信息工程大學環(huán)境科學與工程學院,江蘇 南京 210044;.中國科學院地質(zhì)與地球物理研究所蘭州油氣資源研究中心,甘肅 蘭州 70000)

        秸稈煙塵中正構(gòu)脂肪醇和甾醇的碳同位素組成

        劉 剛1,2*,李久海1,2,徐 慧1,2,李中平3,李立武3(1.南京信息工程大學江蘇省大氣環(huán)境與裝備技術協(xié)同創(chuàng)新中心,江蘇 南京 210044;2.南京信息工程大學環(huán)境科學與工程學院,江蘇 南京 210044;3.中國科學院地質(zhì)與地球物理研究所蘭州油氣資源研究中心,甘肅 蘭州 730000)

        選取稻草、麥秸和玉米秸進行室內(nèi)模擬燃燒試驗,用氣相色譜/穩(wěn)定同位素在線分析系統(tǒng)(GC/C/IRMS)測定了煙塵中正構(gòu)脂肪醇和甾醇的單體碳同位素比值.結(jié)果顯示:在稻草明火煙塵中,正構(gòu)脂肪醇(C20~C30)和甾醇(膽固醇、菜油甾醇、豆甾醇、β-谷甾醇)與稻草 δ13C值之差(Δ13C)的平均值分別為-1.3‰、+0.7‰.在稻草悶燒煙塵中,兩類化合物的Δ13C平均值分別為-1.4‰、+1.1‰.在麥秸明火煙塵中,正構(gòu)脂肪醇和甾醇單體的Δ13C平均值分別為+2.4‰、+0.5‰.在麥秸的悶燒煙塵中,兩類化合物的Δ13C平均值分別為+3.0‰、+1.7‰.在玉米秸的明火煙塵中,兩類化合物的Δ13C平均值分別為-2.5‰和+0.7‰.在玉米秸悶燒煙塵中,兩類有機物的Δ13C平均值分別為-3.8‰、+1.8‰. 3類秸稈煙塵中的正構(gòu)脂肪醇和甾醇均發(fā)生了明顯的碳同位素分餾.秸稈悶燒比明火燃燒更有利于煙塵中此兩類有機物發(fā)生碳同位素分餾.這對識別氣溶膠中以秸稈燃燒為來源的這兩類有機物有參考意義.

        秸稈;煙塵;正構(gòu)脂肪醇;甾醇;碳同位素

        正構(gòu)脂肪醇和甾醇是大氣顆粒物中常見的有機物[1-3].植物生長過程、植物葉片風化、低成熟度煤的燃燒等均排放正構(gòu)脂肪醇[4-7].生物質(zhì)燃燒和烹飪過程也排放正構(gòu)脂肪醇和甾醇[8-12].通常用分布模式、碳優(yōu)勢指數(shù)、最大碳數(shù)等指標識別大氣中正構(gòu)脂肪醇的來源[1-2,13-14]. C3植物中 C24~C34正構(gòu)脂肪醇 δ13C值的分布區(qū)間為–27.9‰~ –40.3‰; C4植物中C22~C32正構(gòu)脂肪醇δ13C值的分布區(qū)間為–16.7‰~ –27.8‰[15-16].C3和C4植物中甾醇 δ13C 值的變化范圍分別是–39.2‰~–31.4‰、–18.6‰~–14.1‰[17].作物秸稈露天焚燒已成為收獲季節(jié)大氣中正構(gòu)脂肪醇和甾醇的重要來源.雖然對秸稈煙塵中此 2類有機物的化學組成已有較多的研究[18-19],但對其碳同位素組成的研究工作還開展得比較少.筆者在模擬的明火燃燒和悶燒條件下,對稻草、麥秸和玉米秸等秸稈進行了燃燒試驗,對煙塵中正構(gòu)脂肪醇和甾醇的單體碳同位素組成開展了研究,以探討不同燃燒條件對碳同位素分餾的影響,以期為識別大氣氣溶膠中此 3類秸稈燃燒為來源的 2類有機物提供支持.

        1 材料與方法

        1.1 樣品采集與處理

        2010~2012年共隨機采集了6種稻草、6種麥秸、5種玉米秸. 稻草分別采自浙江(內(nèi)2優(yōu)6、揚兩優(yōu)6)、安徽(II優(yōu)279、寧粳1)、江蘇(紅糧166、II優(yōu)728).麥秸分別采自河南(矮抗58、溫六、西農(nóng) 979)、江蘇(揚麥 16、揚麥 10、煙農(nóng)10).玉米秸分別采自河南(豫豐 3358、掖單 4)、江蘇(中甜9、中科11、東單60).秸稈樣品的制備方法詳見文獻[20].

        1.2 燃燒試驗與煙塵采集

        秸稈燃燒和煙塵采集的步驟詳見文獻[20].在一間房子內(nèi)進行燃燒試驗.明火燃燒時,取每種秸稈 1.0~1.5kg,自然堆放在一張鐵盤上點燃.悶燒時取每種秸稈0.2kg,放入悶燃裝置內(nèi)點燃.用2臺大氣顆粒物采樣器(Andersen, AH-200型)同時采集排放到室內(nèi)的煙塵.采樣所用的玻璃纖維濾膜預先在 500℃烘烤 2h.煙塵樣品用鋁箔(500℃烘烤2h)包裹, 在低溫下保存.

        1.3 有機物提取與同位素測定

        樣品中正構(gòu)脂肪醇和甾醇的提取和分離方法是在參考前人工作的基礎上改進而成的[21-23].具體步驟:稱取秸稈粉末樣4g或者取采集了煙塵的玻璃纖維濾膜0.5~1張,每次加入二氯甲烷/甲醇混合試劑(2:1,體積比)10mL,于室溫下超聲振蕩 15min,共重復提取 3次.合并提取液,以3000r/min的轉(zhuǎn)速離心 2min,用旋轉(zhuǎn)蒸發(fā)器在40℃濃縮上清液至3mL,以氮吹儀在40℃吹至近干.加入2mL 1mol/L的KOH甲醇/水溶液(4:1,體積比)和 1mL去離子水,在 60℃皂化 2h.先后用3mL二氯甲烷提取皂化溶液內(nèi)的中性組分各 3次.將提取液合并后用氮吹儀在40℃濃縮至1mL.用氧化鋁/硅膠柱分離中性組分.把濃縮液滴加到層析柱上,依次用20mL正已烷、20mL正己烷/乙酸乙酯混合液(9:1,體積比)、20mL正己烷/乙酸乙酯混合液(8:2,體積比)洗脫烴、酮和醇.將醇餾分濃縮至近干,加入150μL雙(三甲基硅烷基)-三氟乙酰胺(BSTFA),在70℃衍生2h.之后在室溫下吹至近干,用正己烷定容.

        用氣相色譜/穩(wěn)定同位素在線分析系統(tǒng)(GC/C/IRMS,Delta plus XP型)測定衍生物的單體碳同位素比值.色譜柱為DB-5(60m×0.32mm× 0.25μm)非極性石英毛細管色譜柱.載氣流量1mL/min,氣化溫度300℃,進樣量2μL.升溫程序:初始溫度 60 ,℃保持 2min,以 4 /min℃ 升溫至300 ,℃保持35min.有機物經(jīng)分離后在900℃燃燒爐中在線氧化,依次轉(zhuǎn)化為CO2,經(jīng)質(zhì)譜計測定同位素比值. BSTFA的碳同位素比值用離線質(zhì)譜儀(FinniganMAT-252型)測量.測量前在800℃氧化 BSTFA,生成的 CO2經(jīng)凈化后進行測定.根據(jù)衍生物中加入碳原子的多少,以同位素質(zhì)量平衡方程計算每種醇的碳同位素比值. BSTFA衍生化對單體碳同位素組成無顯著影響[24].每個煙塵樣品只測定1次(無平行樣), BSTFA測定2次.離線測量儀器的標準偏差<0.3‰,在線測量的標準偏差<0.5‰.

        2 結(jié)果與討論

        2.1 正構(gòu)脂肪醇

        在稻草的明火煙塵和悶燒煙塵中, C20~C30正構(gòu)脂肪醇的 δ13C 平均值分別為–38.1‰~–33.5‰、–38.8‰~ –35.8‰.煙塵中正構(gòu)脂肪醇單體碳同位素組成的變化趨勢雖然總體上與稻草相似,但二者不完全一致(圖 1).這說明除了秸稈,燃燒條件也影響稻草煙塵中正構(gòu)脂肪醇的碳同位素組成.與稻草相比,其煙塵中的正構(gòu)脂肪醇虧損13C(圖2).對于明火煙塵,二者之差(Δ13C)處于–2.1‰~+0.4‰之間,其平均值為–1.1‰.悶燃煙塵中 Δ13C值的波動范圍為–2.5‰~–0.1‰,其平均值–1.4‰.明燃煙塵中C20的Δ13C值為正,可能與相對較少的δ13C值統(tǒng)計數(shù)有關.悶燃煙塵中的正構(gòu)脂肪醇比明火煙塵稍微虧損13C.隨著碳數(shù)的增加,兩種煙塵中正構(gòu)脂肪醇單體的 Δ13C均趨于變小.

        圖1 秸稈煙塵中正構(gòu)脂肪醇和甾醇的δ13C值變化趨勢Fig.1 Variability of average δ13C values for n-alkanols and sterols in smoke from crop residues

        在麥秸的明燃和悶燃煙塵中, C20~C28正構(gòu)脂肪醇的δ13C平均值分別為–35.0‰~–34.1‰、–37.4‰~–33.5‰.其變化趨勢與麥秸差別較大(圖1).說明燃料或燃燒條件對煙塵中此類有機物碳同位素組成的影響可能比稻草復雜.在煙塵和麥秸之間,正構(gòu)脂肪醇單體的碳同位素組成存在系統(tǒng)性的差別.煙塵中的正構(gòu)脂肪醇總體上比麥秸富集13C(圖 2).在明燃煙塵中,其 Δ13C值為+0.1‰~+4.7‰, 平均為+2.4‰.在悶燃煙塵中,其Δ13C值為+1.1‰~+5.1‰,平均為+3.0‰.顯然,麥秸煙塵中正構(gòu)脂肪醇發(fā)生碳同位素分餾的方向與稻草煙塵完全相反.說明在同樣的燃燒條件下,麥秸對同位素分餾的影響與稻草相反.此外,麥秸悶燃煙塵中的正構(gòu)脂肪醇比明燃煙塵更加富集13C.表明悶燒條件更有利于13C的富集.

        圖2 秸稈煙塵中正構(gòu)脂肪醇和甾醇的Δ13C值變化趨勢Fig.2 Variability of Δ13C values for n-alkanols and sterols in smoke from straw combustion

        玉米秸屬于C4植物.在其燃燒排放的煙塵中,正構(gòu)脂肪醇的碳同位素組成與麥秸(C3植物)煙塵和稻草(C3植物)煙塵均有明顯的差別.在玉米秸明燃和悶燃煙塵中,其 δ13C平均值分別為–23.5‰~–21.5‰、–25.5‰~–19.5‰.兩種煙塵間C20~C30正構(gòu)脂肪醇單體的δ13C值變化趨勢不同(圖1).與玉米秸相比較也是如此.除了C24和C26,煙塵中的其他正構(gòu)脂肪醇單體普遍比玉米秸虧損13C(圖2).這種趨勢大體上與稻草煙塵的類似.玉米秸煙塵中 C24的碳同位素組成比秸稈重.其原因尚不明了,有待進一步研究.在玉米秸的明燃煙塵中,正構(gòu)脂肪醇的 Δ13C值為–9.1‰~+2.5‰,平均為-2.5‰.其悶燃煙塵中的Δ13C值為–9.0‰~+2.1‰,平均為-3.8‰.悶燃產(chǎn)生的正構(gòu)脂肪醇似乎比明燃更加虧損13C.不過2種煙塵的Δ13C值基本上都隨著正構(gòu)脂肪醇單體碳數(shù)的增加而趨于減小.

        2.2 甾醇

        在稻草的明燃和悶燃煙塵中,四種甾醇(膽固醇(CH)、菜油甾醇(CA)、豆甾醇(ST)、β-谷甾醇(SI))的 δ13C 平均值變化區(qū)間分別為–32.7‰~–31.8‰、–32.3‰~–31.2‰.從膽固醇到β-谷甾醇,明燃和悶燃煙塵中甾醇δ13C值的變化趨勢均與稻草極為相似(圖1).說明煙塵中甾醇的碳同位素組成在很大程度上也繼承了稻草.煙塵中的甾醇均比稻草富集13C.其中明火煙塵的Δ13C值變化于+0.4‰~+1.0‰之間,平均值為+0.7‰.悶燃煙塵的 Δ13C值變化于+0.6‰~+1.6‰之間,平均值為+1.1‰.由此可見,悶燃比明燃更有利于13C在甾醇中富集(圖2).

        在麥秸的明燃和悶燃煙塵中,甾醇的δ13C平均值變化區(qū)間分別為–34.8‰~–31.7‰、–32.0‰~–29.1‰.

        從膽固醇到 β-谷甾醇, δ13C平均值的變化趨勢大致上類似于麥秸(圖1).此趨勢在一定程度上也類似于稻草煙塵.煙塵中的甾醇比麥秸總體上要富集13C.其中明燃煙塵的Δ13C值為+0.1‰~+1.2‰,平均為+0.5‰.悶燃煙塵的 Δ13C 值為–0.1‰~+4.7‰,平均為+1.7‰.顯然,悶燃所生成甾醇的碳同位素組成比明燃更重(圖2).這與稻草煙塵的情形是類似的.

        玉米秸煙塵中甾醇的碳同位素組成與麥秸煙塵和稻草煙塵均有明顯的差別.在玉米秸的明燃和悶燃煙塵中,甾醇的δ13C值變化范圍分別是–19.2‰~–13.6‰、–15.4‰~–14.7‰.與稻草煙和麥秸煙一樣,玉米秸煙塵中不同甾醇之間δ13C值的變化趨勢均與秸稈相似(圖1).除了明燃煙塵中的膽固醇,玉米秸煙塵中的其他甾醇通常均比秸稈富集δ13C(圖2).明燃煙塵中甾醇的Δ13C值變化于–2.6‰~+3.0‰之間,其平均值為+0.7‰.悶燃煙塵的 Δ13C值變化于+1.3‰~+2.3‰之間,其平均值為+1.8‰.相較于悶燃煙塵,明燃煙塵中的膽固醇和菜油甾醇是虧損13C的,而豆甾醇和β-谷甾醇則富集13C.這與稻草煙塵和麥秸煙塵的變化趨勢不一致.由于只有 3套玉米秸明燃煙塵中甾醇的同位素數(shù)據(jù),其統(tǒng)計誤差可能比悶燃煙塵更大.因此,相對較少的測定數(shù)據(jù)可能是造成這一現(xiàn)象的原因.

        2.3 同位素分餾機理初探

        在陸生C3、C4植物中,正構(gòu)脂肪醇通過乙酸途徑合成,甾醇通過甲羥戊酸途徑合成[25-27].植物中的脂類通常劃分為游離態(tài)和結(jié)合態(tài)兩類.以二氯甲烷/甲醇從植物中提取的是游離態(tài)脂,從氫氧化鉀甲醇/水溶液皂化過的殘余植物樣中提取的是結(jié)合態(tài)脂[28].結(jié)合態(tài)脂在植物燃燒過程中會發(fā)生熱解而釋放到煙氣中.以前述方法從秸稈中提取的正構(gòu)脂肪醇屬于游離態(tài).從秸稈煙塵中提取的正構(gòu)脂肪醇應該是兩種形態(tài)的混合物.結(jié)合態(tài)正構(gòu)脂肪醇的碳同位素組成比游離態(tài)重 0.4‰~0.5‰[28].在稻草、麥秸和玉米秸的排放煙塵中,正構(gòu)脂肪醇的 Δ13C 平均值分別為–1.4‰、+3.0‰、–3.8‰.顯而易見,這不能用秸稈中結(jié)合態(tài)和游離態(tài)正構(gòu)脂肪醇之間的碳同位素組成差別來合理地解釋.植物中結(jié)合態(tài)甾醇比游離態(tài)虧損13C達-0.5‰[28].以上述方法從秸稈中提取的4種甾醇是游離態(tài)有機物.在稻草、麥秸和玉米秸燃燒產(chǎn)生的煙塵中,甾醇的Δ13C平均值分別高達+1.1‰、+1.7‰、+1.8‰.表明在煙塵和秸稈的甾醇之間發(fā)生了更大的碳同位素分餾.這同樣不能用秸稈中結(jié)合態(tài)和游離態(tài)甾醇之間同位素組成的差別來解釋.

        生物質(zhì)的燃燒過程一般分為早燃、有焰燃燒和白熱燃燒等 3個階段.上述秸稈的明火燃燒過程包括了所有3個階段.其燃燒溫度高于600℃,持續(xù)時間短于5min.而秸稈的悶燃過程則僅包含了早燃和白熱燃燒 2個階段.其燃燒溫度低于400℃,持續(xù)時間長于20min.秸稈在350℃就發(fā)生分解,并生成 80%的揮發(fā)份[29].在早燃階段,秸稈中的游離態(tài)和結(jié)合態(tài)正構(gòu)脂肪醇會發(fā)生氣化,部分還會發(fā)生化學變化.正構(gòu)脂肪醇受熱脫水后主要轉(zhuǎn)化為同碳數(shù)的烯烴和烷烴,以及其他短鏈的正構(gòu)烯烴[30-32].這些轉(zhuǎn)變過程可能伴隨有碳同位素動力學分餾.這也許是稻草煙塵和玉米秸煙塵中正構(gòu)脂肪醇比秸稈虧損13C的原因.此外,悶燃更有利于正構(gòu)脂肪醇的揮發(fā)和分解,從而導致了在稻草和玉米秸的悶燃煙塵中正構(gòu)脂肪醇的碳同位素組成均比明燃煙塵稍輕.然而,麥秸煙塵中正構(gòu)脂肪醇的碳同位素分餾現(xiàn)象卻不能用此機理解釋.與其他2種秸稈相比,麥秸中含有更多的空氣.因此,在其燃燒過程中就能提供較充足的氧氣.結(jié)果使一部分揮發(fā)的正構(gòu)脂肪醇被優(yōu)先氧化,從而使煙塵中剩余的正構(gòu)脂肪醇因同位素動力學效應而比麥秸富集13C.簡言之,脫水過程和秸稈結(jié)構(gòu)均有可能影響煙塵中正構(gòu)脂肪醇的碳同位素分餾.此外,植物在燃燒過程中部分甾醇會轉(zhuǎn)化成多種烯類和酮類有機物[18,32-33].在此過程中也會發(fā)生碳同位素動力學分餾,因而使殘留于煙塵中的甾醇相對富集13C.悶燃條件下較低的燃燒溫度和較長的燃燒時間更有利于甾醇轉(zhuǎn)化為烯和酮.于是,悶燃煙塵中甾醇的碳同位素組成比明燃煙塵趨于偏重.不過這些推斷均需要進一步的實驗研究來驗證.

        3 結(jié)論

        在稻草、麥秸、玉米秸等每種秸稈的明燃與悶燃煙塵之間,正構(gòu)脂肪醇或甾醇的碳同位素組成存在明顯的差別.甾醇比正構(gòu)脂肪醇更加富集13C.與秸稈相比,煙塵中的這 2類有機物均發(fā)生了顯著的碳同位素分餾.在稻草和玉米秸燃燒排放的煙塵中,正構(gòu)脂肪醇總體上比秸稈虧損13C,而甾醇總體上富集13C.在麥秸煙塵中,正構(gòu)脂肪醇和甾醇總體上均比麥秸富集13C.秸稈悶燃比明燃更有利于煙塵中 2類有機物發(fā)生碳同位素分餾.與正構(gòu)脂肪醇相比,甾醇的碳同位素比值是更為可靠的源識別指標.

        [1] Alves C, Vicente A, Pio C, et al. Organic compounds in aerosols from selected European sites - Biogenic versus anthropogenic sources [J]. Atmospheric Environment, 2012,59:243-255.

        [2] Oliveira C, Pio C, Alves C, et al. Seasonal distribution of polar organic compounds in the urban atmosphere of two large cities from the North and South of Europe [J]. Atmospheric Environment, 2007,41(27):5555–5570.

        [3] Wang G, Kawamura K, Lee M. Comparison of organic compositions in dust storm and normal aerosol samples collected at Gosan, Jeju Island, during spring 2005 [J]. Atmospheric Environment, 2009,43(2):219–227.

        [4] Kavouras I G, Mihalopoulos N, Stephanou E G. Secondary Organic Aerosol Formation vs Primary Organic Aerosol Emission:In Situ Evidence for the Chemical Coupling between Monoterpene Acidic Photooxidation Products and New Particle Formation over Forests [J]. Environmental Science and Technology, 1999,33(7):1028–1037.

        [5] Rogge W F, Hidlemann L M, Mazurek M A, et al. Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surface of urban plants [J]. Environmental Science and Technology, 1993,27(13):2700–2711.

        [6] Bi X, Simoneit B R T, Sheng G, et al. Characterization of molecular markers in smoke from residential coal combustion in China [J]. Fuel, 2008,87(1):112–119.

        [7] Oros D R, Simoneit B R T. Identification and emission rates of molecular tracers in coal smoke particulate matter [J]. Fuel, 2000, 79(5):515–536.

        [8] Hays M D, Geron C D, Linna K J, et al. Speciation of Gas-Phase and Fine Particle Emissions from Burning of Foliar Fuels [J]. Environmental Science and Technology, 2002,36(11):2281–2295.

        [9] Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations [J]. Environmental Science and Technology, 1991,25(6):1112–1125.

        [10] Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources. 1. C1through C29organic compounds from meat charbroiling [J]. Environmental Science and Technology, 1999,33(10):1566–1577.

        [11] He L Y, Hu M, Huang X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking [J]. Atmospheric Environment, 2004,38(38):6557–6564.

        [12] Zhao Y, Hu M, Slanina S, et al. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking [J]. Atmospheric Environment, 2007,41(37):8163–8171.

        [13] Zhou J, Wang T, Zhang Y, et al. Composition and sources of organic matter in atmospheric PM10over a two year period in Beijing, China [J]. Atmospheric Research, 2009,93(4):849–861.

        [14] Giri B, Patel K S, Jaiswal N K, et al. Composition and sources of organic tracers in aerosol particles of industrial central India [J]. Atmospheric Research, 2013,120–121:312–324.

        [15] Rommerskirchen F, Plader A, Eglinton G, et al. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4grass waxes [J]. Organic Geochemistry, 2006,37(10):1303–1332.

        [16] Vogts A, Moossen H, Rommerskirchen F, et al. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3species [J]. Organic Geochemistry, 2009,40(10):1037–1054.

        [17] Chikaraishi Y, Naraoka H, Poulson S R. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4and CAM) and aquatic plants [J]. Phytochemistry, 2004, 65(10):1369-1381.

        [18] Gon?alves C, Alves C, Fernandes A P, et al. Organic compounds in PM2.5emitted from fireplace and woodstove combustion of typical Portuguese wood species [J]. Atmospheric Environment, 2011,45(27):4533-4545.

        [19] Zhang Y, Shao M, Zhang Y, et al. Source profiles of particulate organic matters emitted from cereal straw burnings [J]. Journal of Environmental Sciences, 2007,19(2):167-175.

        [20] Liu G, Li J, Xu H, et al. Isotopic compositions of elemental carbon in smoke and ash derived from crop straw combustion [J]. Atmospheric Environment, 2014,92:303-308.

        [21] Ballentine D C, Macko S A, Turekian V C. Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4and C3plants: implications for biomass burning [J]. Chemical Geology, 1998,152(1/2):151-161.

        [22] Yang H H, Tsai C H, Chao M R, et al. Source identification and size distribution of atmospheric polycyclic aromatic hydrocarbons during rice straw burning period [J]. Atmospheric Environment, 2006,40(7):1266-1274.

        [23] Tolosa I, Blond N L, Copin-Montégut C, et al. Distribution of sterol and fatty alcohol biomarkers in particulate matter from the frontal structure of the Alboran Sea (S.W. Mediterranean Sea) [J]. Marine Chemistry, 2003,82(3/4):161-183.

        [24] Ballentine D C, Macko S A, Turekian V C. Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4and C3plants: implications for biomass burning [J]. Chemical Geology, 1998,152(1/2):151-161.

        [25] Chikaraishi Y, Naraoka H. δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants [J]. Organic Geochemistry, 2007,38(2):198–215.

        [26] Hartmann M A, Perret A M, Carde J P, et al. Inhibition of the sterol pathway in leek seedlings impairs phosphatidylserine and glucosylceramide synthesis but triggers an accumulation of triacylglycerols [J]. Biochimica et Biophysica Acta, 2002, 1583(3):285– 296.

        [27] Rahier A. Dissecting the sterol C-4 demethylation process in higher plants. From structures and genes to catalytic mechanism [J]. Steroids, 2011,76(4):340–352.

        [28] Chikaraishi Y, Naraoka H. Carbon and hydrogen isotope variation of plant biomarkers in a plant–soil system [J]. Chemical Geology, 2006,231(3):190-202.

        [29] 劉圣勇,張百良,楊群發(fā),等.雙層爐排生物質(zhì)成型燃料鍋爐設計與研究 [J]. 農(nóng)業(yè)工程學報, 2003,19(6):268-271.

        [30] Macho V, Králik M, Jurecekova E, et al. Dehydration of C4alkanols conjugated with a positional and skeletal isomerisation of the formed C4alkenes [J]. Applied Catalysis A: General, 2001, 214(2):251–257.

        [31] Nierop K G J, van Bergen P F. Clay and ammonium catalyzed reactions of alkanols, alkanoic acids and esters under flash pyrolytic conditions [J]. Journal of Analytical and Applied Pyrolysis, 2002,63(1):197–208.

        [32] Oros D R, Abas M R, Omar N Y M J, et al. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: Part 3. Grasses [J]. Applied Geochemistry, 2006, 21(6):919–940.

        [33] Alves C A, Gon?alves C, Evtyugina M, et al. Particulate organic compounds emitted from experimental wild land fires in a Mediterranean ecosystem [J]. Atmospheric Environment, 2010, 44(23):2750-2759.

        致謝:袁靜、孫麗娜、姚祁芳、張文杰、姚法來等同志參與了秸稈的采集工作,在此表示感謝.

        The compound-specific carbon isotope compositions of n-alkanols and sterols in smoke from crop residue combustion.

        LIU Gang1,2*, LI Jiu-hai1,2, XU Hui1,2, LI Zhong-ping3, LI Li-wu3(1.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China;2.School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China;3.Lanzhou Center for Oil and Gas Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China). China Environmental Science, 2017,37(5):1735~1740

        Crop residues of rice, wheat and maize were burned under conditions simulating open combustion. Compound specific carbon isotopic ratios (δ13C) of n-alkanols (C20-C30) and sterols (cholesterol, campesterol, stigmasterol, and β-sitosterol) in smoke from biomass burning were determined. The results showed that the mean distinction (Δ13C) values of δ13C ratios for n-alkanols and sterols between flaming smoke from rice straw and the fuel were –1.3‰ and +0.7‰, respectively. The mean Δ13C values in smoldering smoke from the fuel were –1.4‰ and +1.1‰, respectively. Moreover, the mean Δ13C values for the two groups of compounds in flaming and smoldering smoke from wheat straw were +2.4‰, +0.5‰, and +3.0‰, +1.7‰, respectively. The mean Δ13C values for the two types of compounds in flaming and smoldering smoke from maize stover additionally were –2.5‰, +0.7‰, and –3.8‰, +1.8‰, respectively. Significant isotopic fractionations occurred in both n-alkanols and sterols in smoke from all three sorts of crop residues. Smolder was propitious to isotopic fractionation in the compounds from smoke relative to flame burning. This may have significance for identifying n-alkanol and/or sterol derived from crop residue burning in atmospheric particles.

        crop residue;smoke;n-alkanol;sterol;carbon isotope

        X131.1,X511

        A

        1000-6923(2017)05-1735-06

        劉 剛(1965-),男,甘肅定西人,教授,博士,主要研究方向為大氣污染物組成與源識別.發(fā)表論文40余篇.

        2016-10-21

        國家自然科學基金項目(41073019)

        * 責任作者, 教授, liugang650104@sina.com

        猜你喜歡
        脂肪醇玉米秸正構(gòu)
        利用正構(gòu)烷烴建立快速篩查禁用偶氮染料定性分析方法探究
        脂肪醇的催化取代及在碳-雜鍵綠色構(gòu)建中的應用
        氣相色譜六通閥在正構(gòu)烷烴及碳數(shù)分布測定中的應用
        云南化工(2021年11期)2022-01-12 06:06:30
        柱色譜分離-分子篩絡合洗脫過程中正構(gòu)烷烴單體碳同位素分餾研究
        巖礦測試(2021年3期)2021-07-06 06:04:00
        多角度分析P.ostreatus改性對玉米秸厭氧消化產(chǎn)氣性能的影響
        可再生能源(2021年5期)2021-05-27 08:11:32
        提升傳統(tǒng)醇醚生產(chǎn)工藝技術的路徑探索
        天然脂肪醇抑芽劑對烤煙抑芽效果研究
        武夷科學(2019年1期)2019-12-20 09:14:26
        一種編織袋用塑料脫墨劑
        塑料包裝(2019年3期)2019-07-16 01:10:08
        應用康奈爾凈碳水化合物/蛋白質(zhì)體系評價甜高粱、玉米秸稈的營養(yǎng)價值
        高寒草甸植物正構(gòu)烷烴特征分析
        亚洲AV永久无码精品一区二国| 开心五月婷婷激情综合网| 成人自拍小视频在线看| 偷拍激情视频一区二区三区| 国产午夜精品一区二区| 风间由美性色一区二区三区| 亚洲爆乳无码专区| 无码中文字幕专区一二三| 国产精品女同久久久久久| 一区二区免费中文字幕| 亚洲乱码av一区二区蜜桃av | 白白在线视频免费观看嘛| 日本久久久久亚洲中字幕| 成av人片一区二区三区久久| 日本口爆吞精在线视频| 国产成人精品一区二三区在线观看 | 精品国产福利一区二区三区| 日韩中文字幕不卡在线| 国产精品黑丝美女啪啪啪| 色综合视频一区中文字幕| 国产内射性高湖| 妺妺窝人体色www在线直播| 色偷偷亚洲第一综合网| 男生自撸视频在线观看 | 日本女优禁断视频中文字幕| 男人的天堂中文字幕熟女人妻| 欧美中日韩免费观看网站| 天堂在线www中文| 2021国内精品久久久久精免费| 一区二区三区在线蜜桃| 亚洲国产性夜夜综合另类| 又长又大又粗又硬3p免费视频| 久久无码精品精品古装毛片| 免费高清视频在线观看视频| 亚洲av本道一本二本三区| 久久亚洲精品中文字幕 | 亚洲无码夜夜操| 久久精品国产亚洲av网站| 18禁止进入1000部高潮网站| 日韩欧美人妻一区二区三区| 亚洲熟妇网|