亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Degree of the Symmetry of Fuzzy Relations①

        2017-05-18 13:21:12DanYexing
        關(guān)鍵詞:四川大學(xué)國家自然科學(xué)基金資助

        Dan Ye-xing

        (Department of Mathematics, Sichuan University, Chengdu 610064, China)

        The Degree of the Symmetry of Fuzzy Relations①

        Dan Ye-xing

        (Department of Mathematics, Sichuan University, Chengdu 610064, China)

        In this paper, the degree of the symmetry of fuzzy relations is investigated based on the fuzzy equality of fuzzy relations.

        fuzzy relation, degree of the symmetry, symmetric fuzzy relation, fuzzy equality

        1 Introduction

        Let & be a left continuous t-norm. There is a natural fuzzy equality on the fuzzy powerset [0,1]Xgivenby

        GivenafuzzyrelationRonasetX,itissymmetricif,andonlyifR=Rop,whereRopisthedualityofR.However,whenRisnotsymmetric,wecantalkaboutthedegreeofthatRandRopareequal.ThedegreecanberegardedasthedegreeofthesymmetryofR[3, 4].

        NoticethatafuzzyrelationRonasetXissymmetricifandonlyifthereisasymmetricfuzzyrelation,sayS,suchthatR=S.Ifwehavethefuzzyequalityonfuzzyrelationsinsteadofthecrispequality,wegetanotherapproachtodefinethedegreeofthesymmetryoffuzzyrelations(seeDefinition1).

        In this paper, we will study the degree of the symmetry of fuzzy relations defined by the second approach. The contents are arranged as follows. In Section 2, we recall some basic notions of left continuous t-norms and fuzzy equalities. In Section 3, the main results are proved.

        2 Preliminaries

        First, we recall some basic notions of triangular norms and fuzzy equivalences[1,2]. A left continuous triangular norm (t-norm for short) is a binary operation & on the interval [0,1] such that ([0,1], &) is a commutitative monoid with 1 being the unit, and for eachxin [0,1],x&(-):[0,1][0,1]hasarightadjointx→(-):[0,1][0,1]inthesensethatforally,zin [0,1]

        x&y≤z?y≤x→z.

        Aleftcontinuoust-norm&iscontinuousif&isacontinuousfunction.

        Example 1 (Klement, Mesiar and Pap[1]) Some basic left continuous t-norms on [0,1] are listed here. The first three are continuous but the fourth not.

        (1)The G?del t-norm &M:x&My=x∧y.Thecorrespondingresiduationandbiresiduationisgivenby

        (2)Theproductt-norm&P:x&Py=x·y.Thecorrespondingresiduationandbiresiduationisgivenby

        (3)TheLukasiewicat-norm&L:x&Ly=(x+y-1)∨0.Thecorrespondingresiduationandbiresiduationisgivenby

        AfuzzyrelationEonXiscalledafuzzyequalityifitsatisfiesthat(1)E(x,y)=1 iffx=y, (2)E(x,y)=E(y,x),(3)E(x,y)&E(y,z)≤E(x,z) for allx,y,zinX.ThevalueofE(x,y) is often interpreted as the degree of the thatxequals toyin the setX.

        Example 2 (1)Given a t-norm &, the operationx?yontheunitintervalgivesanaturalfuzzyequality

        E(x,y)=x?y=(x→y)∧(y→x)

        foreveryxandyin [0,1].

        (2)For a setX,thefuzzyequalityEXon FRel(X)isgivenby

        forallfuzzyrelationsSandR.

        3 The degree of the symmetry of fuzzy relations

        AfuzzyrelationRissymmetricifandonlyifthereissomesymmetricfuzzyrelationSsuchthatR=S.Replacethecrispequalitybythefuzzyequality,weobtainthefollowing:

        Definition 1 Given a fuzzy relationRonasetX,thedegreeofthesymmetryofRisgivenby

        Proposition 1 A fuzzy relationRonasetXissymmetricifandonlyifD(R)=1.

        Proof By Definition 1, ifRissymmetric,oneobtainsthatD(R)=1 clearly. Conversely, ifD(R)=1, butRis not symmetric, then there existx,yinX, such thatR(x,y)≠R(y,x). LetR(x,y)

        h(α)=(α?R(x,y))∧(α?R(y,x)),

        First,itholdsthath(α)≤R(y,x)→R(x,y)<1if0≤α≤R(x,y)orR(y,x)≤α≤1.

        Second,ifR(x,y)<α

        Letε0=(1-c)/4, then there exist δ0>0, for anytin (R(y,x)-δ0,R(y,x)), it holds that

        R(y,x)→t>t→R(x,y)

        Now,wetakesomet0in (R(y,x)-δ0,R(y,x)), thenh(α)≤R(y,x)→t0<1.

        Lemma 1 Let & be one of the t-norms in Example 1 The function

        h(x)=(x?a)∧(x?b)

        iscontinuousforalla,bin [0,1] witha

        Proof To proveh(x) is continuous, we need calculate (x?a)∧(x?b)foreachofthefourt-norms.

        So,ineachcase,wecanseethath(x) is continuous.

        Theorem 1 Let & be one of the t-norms in Example 1 andRbe a fuzzy relation on a setX, then there exists a symmetric fuzzy relationSsuch thatEX(S,R) is maximal.

        Proof IfR(x,y)=R(y,x), let S(x,y)=S(y,x)=R(x,y). IfR(x,y)≠R(y,x), by Lemma 1, the function

        h(α)=(α?R(x,y))∧(α?R(y,x))

        iscontinuous.Thus,thereissomeelement,sayS(x,y), such thath(S(x,y)) is maximal. Clearly, the fuzzy relationSgiven in this way is a symmetric fuzzy relation as desired.

        Theorem 2 Let & be one of the t-norms in Example 1 andRbe a fuzzy relation on a setX, then there is some symmetric fuzzy relation S onXsuch thatD(R)=EX(S,R).

        [1] Klement E P, Mesiar R, Pap E. Triangular Norms[M]. Kluwer Academic Publisher, Dordrecht, 2000.

        [2] Alsina C, Frank M J, Schweizer B. Associative Functions: Triangular Norms and Copulas[M]. World Scientific Press, Singapore, 2006.

        [3] D Boixader, J Recasens. Approximate Fuzzy Preorders and Equivalences Proc[C]. ∥Fuzzy IEEE 2009. Korea,2 000.

        [4] D Boixader, J Recasens. Approximate Fuzzy Preorders and Equivalences: A similarity based approach[C]. Proc Fuzzy IEEE 2010, Spain,2 000.

        2016-08-20

        國家自然科學(xué)基金項目(11tp1297)資助

        但業(yè)星,E-mail:danyexing09@163.com.

        模糊關(guān)系的對稱度

        但業(yè)星

        (四川大學(xué)數(shù)學(xué)學(xué)院,四川成都610064)

        本文基于集合X上的模糊關(guān)系的模糊相等關(guān)系,討論了模糊關(guān)系的對稱度問題.

        模糊關(guān)系,對稱度,對稱的模糊關(guān)系,模糊相等

        O175.2

        A

        1672-6634(2017)01-0001-04

        O175.2 Document Dode A Article ID 1672-6634(2017)01-0001-04

        猜你喜歡
        四川大學(xué)國家自然科學(xué)基金資助
        常見基金項目的英文名稱(一)
        四川大學(xué)西航港實驗小學(xué)
        高校資助育人成效的提升路徑分析
        大學(xué)(2021年2期)2021-06-11 01:13:28
        “隱形資助”低調(diào)又暖心
        我校喜獲五項2018年度國家自然科學(xué)基金項目立項
        2017 年新項目
        百年精誠 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
        美國防部資助研發(fā)能垂直起降的無人機(jī)
        國家自然科學(xué)基金項目簡介
        四川大學(xué)華西醫(yī)院
        国产av一区二区三区天堂综合网| 最新永久免费AV网站| 亚洲中文字幕熟女五十| 偷拍一区二区三区高清视频| 亚洲av成人精品日韩在线播放| 免费无码av片在线观看| 精品三级久久久久久久| 日韩中文字幕在线丰满| 国产精品久久久亚洲| 亚洲精品久久国产高清情趣图文| 无码一区东京热| 少妇人妻一区二区三飞| 美女网站免费观看视频| 越猛烈欧美xx00动态图| 亚洲av人妖一区二区三区| 亚洲国产av高清一区二区三区| 国内精品久久久久影院优| 国产午夜福利小视频合集| 亚洲欧美成人在线免费| 国产一区二区三区 在线观看| 久久国产加勒比精品无码| 五十路熟妇亲子交尾| 国产精品一区二区三区色| 少妇人妻中文久久综合| 国产成人涩涩涩视频在线观看| 伊人久久亚洲综合影院首页| 我的极品小姨在线观看| 亚洲精品成人无限看| 国产自国产在线观看免费观看| 亚洲中文字幕女同一区二区三区| 人妻夜夜爽天天爽三区麻豆av| 人妻aⅴ中文字幕| 精品人妻VA出轨中文字幕| 亚洲av大片在线免费观看| 日本顶级metart裸体全部| 欧美日韩中文国产一区| 天堂av在线免费播放| 综合国产婷婷精品久久99之一| 亚洲av永久无码精品一区二区| 青春草在线视频精品| 国产精品老熟女乱一区二区|