亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Degree of the Symmetry of Fuzzy Relations①

        2017-05-18 13:21:12DanYexing
        關(guān)鍵詞:四川大學(xué)國家自然科學(xué)基金資助

        Dan Ye-xing

        (Department of Mathematics, Sichuan University, Chengdu 610064, China)

        The Degree of the Symmetry of Fuzzy Relations①

        Dan Ye-xing

        (Department of Mathematics, Sichuan University, Chengdu 610064, China)

        In this paper, the degree of the symmetry of fuzzy relations is investigated based on the fuzzy equality of fuzzy relations.

        fuzzy relation, degree of the symmetry, symmetric fuzzy relation, fuzzy equality

        1 Introduction

        Let & be a left continuous t-norm. There is a natural fuzzy equality on the fuzzy powerset [0,1]Xgivenby

        GivenafuzzyrelationRonasetX,itissymmetricif,andonlyifR=Rop,whereRopisthedualityofR.However,whenRisnotsymmetric,wecantalkaboutthedegreeofthatRandRopareequal.ThedegreecanberegardedasthedegreeofthesymmetryofR[3, 4].

        NoticethatafuzzyrelationRonasetXissymmetricifandonlyifthereisasymmetricfuzzyrelation,sayS,suchthatR=S.Ifwehavethefuzzyequalityonfuzzyrelationsinsteadofthecrispequality,wegetanotherapproachtodefinethedegreeofthesymmetryoffuzzyrelations(seeDefinition1).

        In this paper, we will study the degree of the symmetry of fuzzy relations defined by the second approach. The contents are arranged as follows. In Section 2, we recall some basic notions of left continuous t-norms and fuzzy equalities. In Section 3, the main results are proved.

        2 Preliminaries

        First, we recall some basic notions of triangular norms and fuzzy equivalences[1,2]. A left continuous triangular norm (t-norm for short) is a binary operation & on the interval [0,1] such that ([0,1], &) is a commutitative monoid with 1 being the unit, and for eachxin [0,1],x&(-):[0,1][0,1]hasarightadjointx→(-):[0,1][0,1]inthesensethatforally,zin [0,1]

        x&y≤z?y≤x→z.

        Aleftcontinuoust-norm&iscontinuousif&isacontinuousfunction.

        Example 1 (Klement, Mesiar and Pap[1]) Some basic left continuous t-norms on [0,1] are listed here. The first three are continuous but the fourth not.

        (1)The G?del t-norm &M:x&My=x∧y.Thecorrespondingresiduationandbiresiduationisgivenby

        (2)Theproductt-norm&P:x&Py=x·y.Thecorrespondingresiduationandbiresiduationisgivenby

        (3)TheLukasiewicat-norm&L:x&Ly=(x+y-1)∨0.Thecorrespondingresiduationandbiresiduationisgivenby

        AfuzzyrelationEonXiscalledafuzzyequalityifitsatisfiesthat(1)E(x,y)=1 iffx=y, (2)E(x,y)=E(y,x),(3)E(x,y)&E(y,z)≤E(x,z) for allx,y,zinX.ThevalueofE(x,y) is often interpreted as the degree of the thatxequals toyin the setX.

        Example 2 (1)Given a t-norm &, the operationx?yontheunitintervalgivesanaturalfuzzyequality

        E(x,y)=x?y=(x→y)∧(y→x)

        foreveryxandyin [0,1].

        (2)For a setX,thefuzzyequalityEXon FRel(X)isgivenby

        forallfuzzyrelationsSandR.

        3 The degree of the symmetry of fuzzy relations

        AfuzzyrelationRissymmetricifandonlyifthereissomesymmetricfuzzyrelationSsuchthatR=S.Replacethecrispequalitybythefuzzyequality,weobtainthefollowing:

        Definition 1 Given a fuzzy relationRonasetX,thedegreeofthesymmetryofRisgivenby

        Proposition 1 A fuzzy relationRonasetXissymmetricifandonlyifD(R)=1.

        Proof By Definition 1, ifRissymmetric,oneobtainsthatD(R)=1 clearly. Conversely, ifD(R)=1, butRis not symmetric, then there existx,yinX, such thatR(x,y)≠R(y,x). LetR(x,y)

        h(α)=(α?R(x,y))∧(α?R(y,x)),

        First,itholdsthath(α)≤R(y,x)→R(x,y)<1if0≤α≤R(x,y)orR(y,x)≤α≤1.

        Second,ifR(x,y)<α

        Letε0=(1-c)/4, then there exist δ0>0, for anytin (R(y,x)-δ0,R(y,x)), it holds that

        R(y,x)→t>t→R(x,y)

        Now,wetakesomet0in (R(y,x)-δ0,R(y,x)), thenh(α)≤R(y,x)→t0<1.

        Lemma 1 Let & be one of the t-norms in Example 1 The function

        h(x)=(x?a)∧(x?b)

        iscontinuousforalla,bin [0,1] witha

        Proof To proveh(x) is continuous, we need calculate (x?a)∧(x?b)foreachofthefourt-norms.

        So,ineachcase,wecanseethath(x) is continuous.

        Theorem 1 Let & be one of the t-norms in Example 1 andRbe a fuzzy relation on a setX, then there exists a symmetric fuzzy relationSsuch thatEX(S,R) is maximal.

        Proof IfR(x,y)=R(y,x), let S(x,y)=S(y,x)=R(x,y). IfR(x,y)≠R(y,x), by Lemma 1, the function

        h(α)=(α?R(x,y))∧(α?R(y,x))

        iscontinuous.Thus,thereissomeelement,sayS(x,y), such thath(S(x,y)) is maximal. Clearly, the fuzzy relationSgiven in this way is a symmetric fuzzy relation as desired.

        Theorem 2 Let & be one of the t-norms in Example 1 andRbe a fuzzy relation on a setX, then there is some symmetric fuzzy relation S onXsuch thatD(R)=EX(S,R).

        [1] Klement E P, Mesiar R, Pap E. Triangular Norms[M]. Kluwer Academic Publisher, Dordrecht, 2000.

        [2] Alsina C, Frank M J, Schweizer B. Associative Functions: Triangular Norms and Copulas[M]. World Scientific Press, Singapore, 2006.

        [3] D Boixader, J Recasens. Approximate Fuzzy Preorders and Equivalences Proc[C]. ∥Fuzzy IEEE 2009. Korea,2 000.

        [4] D Boixader, J Recasens. Approximate Fuzzy Preorders and Equivalences: A similarity based approach[C]. Proc Fuzzy IEEE 2010, Spain,2 000.

        2016-08-20

        國家自然科學(xué)基金項目(11tp1297)資助

        但業(yè)星,E-mail:danyexing09@163.com.

        模糊關(guān)系的對稱度

        但業(yè)星

        (四川大學(xué)數(shù)學(xué)學(xué)院,四川成都610064)

        本文基于集合X上的模糊關(guān)系的模糊相等關(guān)系,討論了模糊關(guān)系的對稱度問題.

        模糊關(guān)系,對稱度,對稱的模糊關(guān)系,模糊相等

        O175.2

        A

        1672-6634(2017)01-0001-04

        O175.2 Document Dode A Article ID 1672-6634(2017)01-0001-04

        猜你喜歡
        四川大學(xué)國家自然科學(xué)基金資助
        常見基金項目的英文名稱(一)
        四川大學(xué)西航港實驗小學(xué)
        高校資助育人成效的提升路徑分析
        大學(xué)(2021年2期)2021-06-11 01:13:28
        “隱形資助”低調(diào)又暖心
        我校喜獲五項2018年度國家自然科學(xué)基金項目立項
        2017 年新項目
        百年精誠 譽(yù)從信來——走進(jìn)四川大學(xué)華西眼視光之一
        美國防部資助研發(fā)能垂直起降的無人機(jī)
        國家自然科學(xué)基金項目簡介
        四川大學(xué)華西醫(yī)院
        二区久久国产乱子伦免费精品| 久久99国产综合精品| 欧美丰满熟妇xxxx性| 久久久噜噜噜久久中文字幕色伊伊| 国产成人亚洲综合小说区| 国产亚洲一区二区精品| 亚洲自偷自拍另类第1页| 久久久久久伊人高潮影院| 欧洲一区在线观看| 国产精品区一区二区三在线播放 | 日产精品久久久久久久性色| 国内成人精品亚洲日本语音| 高清国产精品一区二区| 日本边添边摸边做边爱| 人妻丰满熟妇av无码片| 98精品国产综合久久| 亚洲国产精品嫩草影院久久av| 免费a级毛片无码免费视频首页| 欧美国产精品久久久乱码| 性做久久久久久久| 亚洲av色香蕉一区二区三区av | 亚洲av无码乱码在线观看牲色| 久久久亚洲精品一区二区三区 | 免费的毛片视频| 婷婷开心五月综合基地| 97cp在线视频免费观看| 欧美另类高清zo欧美| 久久久久亚洲AV成人网毛片| 日本免费三片在线视频| 久久人妻少妇嫩草av| 免费无码av片在线观看| 人妻少妇av中文字幕乱码免费| 中文字幕av长濑麻美| 帮老师解开蕾丝奶罩吸乳视频| 国产高潮国产高潮久久久| 国产一区二区欧美丝袜| 你懂的视频在线看播放| 久久无码专区国产精品| 精品国产自产久久久| 最新国产一区二区三区 | 九九99久久精品在免费线18|