梁偉章,趙國(guó)彥
(中南大學(xué)資源與安全工程學(xué)院,湖南 長(zhǎng)沙 410083)
礦山泥石流險(xiǎn)情的變權(quán)云模型綜合預(yù)測(cè)
梁偉章,趙國(guó)彥
(中南大學(xué)資源與安全工程學(xué)院,湖南 長(zhǎng)沙 410083)
為更合理預(yù)測(cè)礦山泥石流危險(xiǎn)性,將云模型、變權(quán)理論和模糊熵理論三者融合,提出一種礦山泥石流危險(xiǎn)性的變權(quán)云模型綜合預(yù)測(cè)方法。選取山坡坡度、溝床縱比降、主溝長(zhǎng)度、匯水面積、棄渣量、單位面積松散物源量、雨季降雨量、植被覆蓋率為指標(biāo),計(jì)算各指標(biāo)隸屬于不同等級(jí)的云模型參數(shù);結(jié)合變權(quán)理論與指標(biāo)值動(dòng)態(tài)確定不同樣本的指標(biāo)權(quán)重;應(yīng)用正向高斯云發(fā)生器計(jì)算綜合確定度;依據(jù)最大綜合確定度隸屬等級(jí)判定危險(xiǎn)性級(jí)別,且應(yīng)用模糊熵表示預(yù)測(cè)等級(jí)的模糊性,為礦山泥石流預(yù)警提供更詳細(xì)的參考依據(jù)。最后,選取秦嶺34個(gè)礦山泥石流實(shí)例對(duì)所建立模型進(jìn)行驗(yàn)證,結(jié)果表明,該方法預(yù)測(cè)結(jié)果與實(shí)際吻合,能滿足工程需要。
礦山泥石流;云模型;變權(quán)理論;模糊熵;危險(xiǎn)性預(yù)測(cè)
礦山泥石流是礦產(chǎn)資源開發(fā)中一種常見的突發(fā)性地質(zhì)災(zāi)害[1]。由于礦山地表生態(tài)環(huán)境破壞與大量廢棄物堆置不合理,在強(qiáng)降雨、冰雪消融等水動(dòng)力誘發(fā)下形成礦山泥石流[2]。它的產(chǎn)生、演化主要受人為因素影響,除具有自然泥石流危害特征外,還帶有污染性與頻發(fā)性[3]。由于礦山工業(yè)場(chǎng)地多分布于泥石流流經(jīng)的溝谷地區(qū),若發(fā)生泥石流,往往會(huì)造成重大災(zāi)害事故[2-8]。因此,在災(zāi)前預(yù)測(cè)礦山泥石流危險(xiǎn)程度,為礦區(qū)泥石流預(yù)警提供依據(jù),對(duì)于減少礦山生命財(cái)產(chǎn)損失具有重要意義。
國(guó)內(nèi)外對(duì)于自然泥石流研究成果較為豐富,而對(duì)礦山泥石流研究較少。徐友寧等[4]選取9個(gè)定性、定量指標(biāo),應(yīng)用信息熵理論建立礦山泥石流危險(xiǎn)度的熵權(quán)預(yù)測(cè)模型;陳華清等[5]在實(shí)地調(diào)查基礎(chǔ)上, 應(yīng)用AHP法進(jìn)行礦山泥石流危險(xiǎn)度評(píng)判;薛喜成等[6]提出礦山泥石流危險(xiǎn)度預(yù)測(cè)的IGA-BP模型;莫時(shí)雄[7]應(yīng)用AHP法確定指標(biāo)權(quán)重,提出礦山泥石流危險(xiǎn)度的模糊層次綜合評(píng)判法;郭付三等[8]基于災(zāi)害鏈效應(yīng)進(jìn)行礦山泥石流危險(xiǎn)性預(yù)測(cè)研究。以上方法取得了一定成效,但仍存在一些問題:①礦山泥石流發(fā)生受多種因素影響,包含多種不確定與隨機(jī)性因素,需考慮預(yù)測(cè)過程的模糊性和隨機(jī)性;②常權(quán)法在礦山泥石流險(xiǎn)情評(píng)判的靈敏性相對(duì)較差。當(dāng)某指標(biāo)處于極端危險(xiǎn)時(shí),若仍按常權(quán)法處理,由于評(píng)價(jià)指標(biāo)較多,且各指標(biāo)權(quán)重相對(duì)較低,其危險(xiǎn)狀態(tài)在很大程度上會(huì)被忽略,從而不能及時(shí)、準(zhǔn)確反映險(xiǎn)情,導(dǎo)致不科學(xué)評(píng)判結(jié)果;③僅采用單一等級(jí)評(píng)判,無法判別同一危險(xiǎn)性等級(jí)礦山泥石流的差異性,不能反映各指標(biāo)隸屬等級(jí)的不一致性,從而影響礦山泥石流險(xiǎn)情控制的合理性。
針對(duì)上述問題,筆者將變權(quán)理論與云模型理論相結(jié)合,并引用模糊熵理論對(duì)其優(yōu)化,提出一種礦山泥石流危險(xiǎn)性的綜合預(yù)測(cè)方法。該方法針對(duì)問題①,引入云模型理論,綜合考慮預(yù)測(cè)中的模糊性與隨機(jī)性,實(shí)現(xiàn)定性語言與定量數(shù)值的轉(zhuǎn)換;針對(duì)問題②,采用組合賦權(quán)法和變權(quán)理論綜合確定指標(biāo)權(quán)重,根據(jù)各指標(biāo)取值動(dòng)態(tài)調(diào)整權(quán)值,以更好反映礦山泥石流真實(shí)險(xiǎn)情;針對(duì)問題③,應(yīng)用模糊熵作為第二維評(píng)判參量,用以表示礦山泥石流險(xiǎn)情復(fù)雜性,為解決各指標(biāo)隸屬等級(jí)不一致問題提供一個(gè)新思路。最后以秦嶺34個(gè)典型礦山泥石流為實(shí)例,驗(yàn)證該模型的有效性。
1.1 云模型
云模型是李德毅等[9]提出的一種定性概念與其定量表示的不確定性轉(zhuǎn)換模型,可用于處理定性概念中普遍存在的模糊性與隨機(jī)性?,F(xiàn)已應(yīng)用于智能控制[10]、巖爆預(yù)測(cè)[11]、采空區(qū)穩(wěn)定性評(píng)價(jià)[12]等多個(gè)領(lǐng)域。
設(shè)U表示一個(gè)定量論域,A是U上的定性概念,若U中定量值x對(duì)A的確定度UA(x)∈[0,1]是有穩(wěn)定傾向的隨機(jī)數(shù),則x在U上的分布稱為云模型[13]。在礦山泥石流危險(xiǎn)性預(yù)測(cè)中,U即某一危險(xiǎn)性等級(jí)對(duì)應(yīng)的限值;A代表與這一等級(jí)對(duì)應(yīng)的危險(xiǎn)性概念(如等級(jí)I對(duì)應(yīng)“輕度危險(xiǎn)”);x為礦山泥石流各指標(biāo)實(shí)測(cè)值。
云模型用期望Ex、熵En和超熵He等3個(gè)參數(shù)表示危險(xiǎn)性概念的數(shù)字特征。其中,Ex是危險(xiǎn)性論域中最能反映某一概念的典型樣本點(diǎn);En是代表危險(xiǎn)性概念的可度量粒度,同時(shí)反映該概念在論域中可被接受的取值范圍;He是En的熵,可理解為不同專家對(duì)于x隸屬于某危險(xiǎn)性概念的不確定性度量。礦山泥石流危險(xiǎn)性評(píng)價(jià)指標(biāo)i對(duì)某等級(jí)標(biāo)準(zhǔn)j參數(shù)的選取,文獻(xiàn)[10-11]給出了如下公式。
(1)
(2)
Heij=k
(3)
k——常數(shù)。
式(2)中Enij的計(jì)算是基于高斯云的“3En”規(guī)則,云滴約有99.7%的概率落在區(qū)間范圍內(nèi),而當(dāng)指標(biāo)值在區(qū)間邊界附近時(shí),確定度幾乎為0,此時(shí)結(jié)果難以區(qū)分。因此,為提高模型區(qū)分度,相鄰等級(jí)邊界數(shù)值應(yīng)同時(shí)隸屬于兩等級(jí)[14],且確定度相等,即:
(4)
礦山泥石流危險(xiǎn)性預(yù)測(cè)中的云模型生成應(yīng)用正向高斯云發(fā)生器算法實(shí)現(xiàn),具體步驟為:
(1) 依據(jù)分級(jí)標(biāo)準(zhǔn),由式(1)、(3)、(4)計(jì)算云模型3個(gè)參數(shù);
(4) 計(jì)算確定度:
(5)
(5) 重復(fù)步驟(2)~ (4),直至生成N個(gè)云滴為止。
1.2 變權(quán)理論確定權(quán)重
變權(quán)思想最先由汪培莊[15]提出,強(qiáng)調(diào)指標(biāo)權(quán)重應(yīng)隨其狀態(tài)值變化而變化,以克服常權(quán)評(píng)價(jià)帶來的偏差。如:某工程設(shè)計(jì)需考慮可行性d1與必要性d2兩個(gè)指標(biāo),常權(quán)下假設(shè)其權(quán)重均為0.5,決策函數(shù)為f=0.5d1+0.5d2。若對(duì)方案1,d1=0.1,d2=0.9;對(duì)方案2,d1=d2=0.5;則有f1=f2=0.5,顯然結(jié)果不合實(shí)際。
變權(quán)模型可分為懲罰型、激勵(lì)型和混合型三種類型。由于礦山泥石流影響因素較為復(fù)雜,筆者選擇混合型變權(quán)法進(jìn)行研究,具體步驟為:
(1) 確定常權(quán)系數(shù)
常權(quán)的確定有多種方式。筆者應(yīng)用組合賦權(quán)法,將主、客觀權(quán)重結(jié)合得到組合權(quán)重。主、客觀賦權(quán)法分別采用AHP法[5]和熵權(quán)法[4],則組合權(quán)重為:
Wc=t1Ws+t2Wo
(6)式中:Ws、Wo——分別為主觀權(quán)重向量和客觀權(quán)重量;t1、t2——分別表示主、客觀權(quán)重重要程度,且0≤t1,t2≤1,t1+t2=1。
(2) 構(gòu)建狀態(tài)變權(quán)向量
狀態(tài)變權(quán)向量選取是變權(quán)的核心,可分為線性、指數(shù)型、對(duì)數(shù)型等。因指數(shù)型狀態(tài)變權(quán)向量具有參數(shù)確定靈活、擴(kuò)展性強(qiáng)等優(yōu)點(diǎn)[16],筆者選用指數(shù)型狀態(tài)變權(quán)向量進(jìn)行分析。
對(duì)于效益型指標(biāo),選擇激勵(lì)型變權(quán)模型。當(dāng)指標(biāo)值高于警戒上限值時(shí),指標(biāo)權(quán)重隨狀態(tài)值增大而增大,激勵(lì)高水平指標(biāo)。
(7)
式中:α1——激勵(lì)水平,α1>0且α1越大,激勵(lì)效果越明顯;
β1——警戒上限值。γimax、γimin分別為指標(biāo)i最大值和最小值。
對(duì)于成本型指標(biāo),選擇懲罰型變權(quán)模型。當(dāng)指標(biāo)值低于警戒下限值時(shí),指標(biāo)權(quán)重隨狀態(tài)值減小而增大,懲罰低水平指標(biāo)。
(8)
式中:α2——懲罰水平,α2>0且α2越大,懲罰效果越明顯;
β2——警戒下限值。
(3) 計(jì)算變權(quán)向量
結(jié)合常權(quán)向量Wc與狀態(tài)變權(quán)向量S(X),計(jì)算樣本各指標(biāo)變權(quán)向量W(X):
(9)
式中:Wc·S(X)——Hardarmard乘積;wci——指標(biāo)i的常權(quán)重;m——指標(biāo)數(shù)。
1.3 綜合確定度計(jì)算
依據(jù)正向高斯云發(fā)生器算法,計(jì)算各指標(biāo)值隸屬于各等級(jí)的確定度。為提高結(jié)果可靠性,需多次運(yùn)行正向高斯云發(fā)生器求平均值,即為指標(biāo)i隸屬于等級(jí)j的確定度μij:
(10)
L——正向高斯云發(fā)生器運(yùn)行次數(shù)。
結(jié)合變權(quán)法確定的指標(biāo)權(quán)重,計(jì)算礦山泥石流各危險(xiǎn)性等級(jí)綜合確定度Uj:
(11)
1.4 等級(jí)綜合判定
由最大綜合確定度隸屬級(jí)別,即可確定礦山泥石流危險(xiǎn)性等級(jí)。由于各等級(jí)綜合確定度大小并不一致,僅由等級(jí)一個(gè)維度難以完全反映礦山泥石流危險(xiǎn)度特征。因此,筆者在云模型基礎(chǔ)上引入De Luca與Trimini[17]以模糊集形式定義的模糊熵,進(jìn)一步表示危險(xiǎn)性等級(jí)模糊程度,計(jì)算公式為:
(12)
式中:Uj——礦山泥石流樣本各等級(jí)綜合確定度;n——等級(jí)數(shù);k——標(biāo)準(zhǔn)化系數(shù),一般取nln2。
當(dāng)Uj越接近0.5時(shí),H值越大,表明礦山泥石流危險(xiǎn)性不確定性越大,各指標(biāo)間隸屬等級(jí)相差較大,結(jié)果越難評(píng)定。當(dāng)Uj越接近0或1時(shí),規(guī)定0ln0=0,H值接近于0,此時(shí)結(jié)果越易評(píng)定。
評(píng)價(jià)指標(biāo)體系的建立是礦山泥石流危險(xiǎn)性預(yù)測(cè)的基礎(chǔ)。依據(jù)礦山泥石流形成機(jī)理,結(jié)合礦區(qū)工程實(shí)際,建立礦山泥石流危險(xiǎn)性評(píng)價(jià)指標(biāo)體系[3-7]。該指標(biāo)體系包含3個(gè)準(zhǔn)則層:地形地貌特征I1,以山坡坡度X1(°)、溝床縱比降X2(%)、主溝長(zhǎng)度X3(km)、匯水面積X4(km2) 4個(gè)指標(biāo)分析;物源特征I2,以棄渣量X5(104m3)、單位面積松散物源量X6(104m3/km2)2個(gè)指標(biāo)分析;水文植被特征I3,以雨季降雨量X7(mm)、植被覆蓋率X8(%) 2個(gè)指標(biāo)分析。各指標(biāo)的選取依據(jù)描述如下:
(1) 山坡坡度X1:指溝谷兩岸山坡平均坡度。礦山排出的廢棄物增大了山坡坡度,坡度越大,坡體穩(wěn)定性越差。
(2) 溝床縱比降X2:指相對(duì)高差與主溝長(zhǎng)度比值,反映了泥石流勢(shì)能。溝床縱比降越大,泥石流水動(dòng)力越大,破壞性越強(qiáng)。
(3) 主溝長(zhǎng)度X3:指泥石流主要溝道長(zhǎng)度,反映泥石流流程與規(guī)模。主溝長(zhǎng)度越長(zhǎng),沿途接納物質(zhì)越多,破壞性越強(qiáng)。
(4) 流域面積X4:指溝谷流域分水嶺所圍面積。流域面積越大,坡面疏松物質(zhì)越易被帶入溝谷,直接影響泥石流規(guī)模。
(5) 棄渣量X5:指礦山采、選礦等排放廢棄物總量,為泥石流形成提供大量物質(zhì)來源。礦區(qū)棄渣量越多,越易形成泥石流。
(6) 單位面積松散物源量X6:指物源總量與匯水面積比值,反映松散物質(zhì)集中程度。單位面積松散物質(zhì)越多,泥石流發(fā)生概率和危險(xiǎn)性越大。
(7) 雨季降雨量X7:由于誘發(fā)泥石流雨水多發(fā)生于雨季,故選擇雨季平均降雨量為指標(biāo)。大氣降水是泥石流組成部分,也是泥石流誘發(fā)條件。降雨量越大,泥石流發(fā)生概率越高。
(8) 植被覆蓋率X8:指植被占地總面積比值。植被可影響坡體結(jié)構(gòu)與物質(zhì)組成,能夠減少水土流失,直接決定坡體穩(wěn)定性。植被覆蓋率越高,越難形成泥石流。
依據(jù)前人研究[3-8],將泥石流危險(xiǎn)性分為 4 個(gè)等級(jí),評(píng)價(jià)等級(jí)集R={C1,C2,C3,C4},分別表示I級(jí)、II級(jí)、III級(jí)、IV級(jí),即輕度、中度、重度和極度危險(xiǎn)性。每個(gè)評(píng)價(jià)指標(biāo)等級(jí)標(biāo)準(zhǔn)均按單因素分類法確定。指標(biāo)X1、X2、X4、X5分級(jí)標(biāo)準(zhǔn)參考文獻(xiàn)[4]選取。由于礦山泥石流評(píng)價(jià)研究文獻(xiàn)較少,故對(duì)于其他指標(biāo),筆者參照相關(guān)自然泥石流研究成果進(jìn)行分級(jí)。X3、X6分級(jí)標(biāo)準(zhǔn)參考文獻(xiàn)[18]選取,X7、X8分級(jí)標(biāo)準(zhǔn)參考文獻(xiàn)[19]選取。各指標(biāo)分級(jí)標(biāo)準(zhǔn)見表1。
表1 礦山泥石流危險(xiǎn)性分級(jí)標(biāo)準(zhǔn)
為驗(yàn)證所建立模型的可行性,筆者以文獻(xiàn)[20]秦嶺34個(gè)典型礦山泥石流為例進(jìn)行分析,各指標(biāo)實(shí)測(cè)數(shù)據(jù)見表2。由于礦區(qū)資源開發(fā)強(qiáng)度高,且礦石品位低,產(chǎn)生了大量廢石、尾礦等固體廢棄物。不但為泥石流形成提供了豐富物質(zhì)來源,而且加大了溝谷兩側(cè)邊坡坡度。曾多次發(fā)生泥石流事故,給礦山造成了嚴(yán)重經(jīng)濟(jì)損失與環(huán)境污染。因此,很有必要對(duì)礦山泥石流危險(xiǎn)度進(jìn)行預(yù)測(cè),為礦山及時(shí)預(yù)警提供建議與對(duì)策。
(1) 計(jì)算各指標(biāo)確定度
依據(jù)分級(jí)標(biāo)準(zhǔn),由式(1)、(3)、(4)計(jì)算云模型參數(shù)。對(duì)于只知上、下邊界的等級(jí)I和IV,取Eni1=Eni2,Eni3=Eni4,然后由式(1)求出Exi1和Exi4,超熵He取0.01。通過正向高斯云發(fā)生器生成相應(yīng)云模型,且由于等級(jí)I和IV分別處于等級(jí)左右邊界,故分別采用半降高斯云模型和半升高斯云模型。為使預(yù)測(cè)結(jié)果更合理,對(duì)于小于Exi1和大于Exi4的云滴,確定度取為1。然后將礦山泥石流實(shí)測(cè)值代入各指標(biāo)云模型,并運(yùn)行1 000次,由式(10)得出樣本各指標(biāo)不同危險(xiǎn)等級(jí)確定度。以指標(biāo)X1為例進(jìn)行分析,云模型參數(shù)計(jì)算為:
生成的云模型見圖1,圖中橫坐標(biāo)表示指標(biāo)X1取值,縱坐標(biāo)表示確定度,從左至右依次表示指標(biāo)X1危險(xiǎn)性I級(jí)至IV級(jí)對(duì)應(yīng)的云。將樣本1的指標(biāo)X1取值(x=40)帶入云模型中,得到該指標(biāo)值隸屬各等級(jí)確定度分別為:μI=0.499,μII=0.499,μIII=0.023,μIV=0。由于x=40位于等級(jí)I、II的邊界,難以判斷屬于哪一等級(jí),而確定度計(jì)算結(jié)果μI=μII>μIII>μIV,與實(shí)際相符。同理可計(jì)算出樣本其它指標(biāo)值隸屬各等級(jí)的確定度。
圖1 指標(biāo)X1隸屬于危險(xiǎn)性等級(jí)的云模型Fig.1 Cloud model for X1
(2) 計(jì)算指標(biāo)變權(quán)重
根據(jù)AHP法和熵權(quán)法計(jì)算的主、客觀權(quán)重分別為:Ws=[0.124 6 0.127 5 0.091 3 0.102 5 0.138 7 0.148 2 0.147 0 0.120 2]、Wo=[0.128 7 0.117 2 0.151 0 0.127 8 0.128 6 0.108 8 0.157 00.081 0],由式(6)計(jì)算組合權(quán)重,設(shè)主、客觀權(quán)重重要度相同,即t1=t2=0.5,則Wc=[0.126 7 0.122 4 0.121 2 0.115 2 0.133 6 0.128 5 0.152 0 0.100 6]。
由式(7)~(9)計(jì)算各樣本變權(quán)向量,取α1=α2=1,且對(duì)于效益型指標(biāo),警戒上限值β1取為等級(jí)IV下邊界值;對(duì)于成本型指標(biāo),警戒下限值β1取為等級(jí)I上邊界值。以樣本4為例說明計(jì)算過程,由式(7)、(8)計(jì)算變權(quán)向量:S(X)=[1.153 6 1.285 7 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0 1.000 0],則由式(9)計(jì)算變權(quán)向量為:W(X)=[0.138 6 0.149 2 0.114 9 0.109 2 0.126 7 0.121 80.144 10.095 4]。X1、X2指標(biāo)值高于警戒上限值,因此其權(quán)重得到了激勵(lì)。
(3) 綜合預(yù)測(cè)結(jié)果
結(jié)合求得的指標(biāo)確定度與權(quán)重,由式(11)計(jì)算樣本各等級(jí)綜合確定度(表2)。依據(jù)最大綜合確定度隸屬等級(jí),即可判定樣本危險(xiǎn)度級(jí)別。然后由式(12)、式(13)計(jì)算樣本綜合確定度的模糊熵,進(jìn)一步表示泥石流危險(xiǎn)度復(fù)雜性,最終預(yù)測(cè)結(jié)果見表2,表中同時(shí)列出了模糊綜合評(píng)判法預(yù)測(cè)結(jié)果。
表2 指標(biāo)統(tǒng)計(jì)值與預(yù)測(cè)結(jié)果[20]
由于文獻(xiàn)[20]將礦山泥石流危險(xiǎn)性分為3個(gè)等級(jí),即危險(xiǎn)、次危險(xiǎn)、不危險(xiǎn),筆者在此基礎(chǔ)上將其分為4個(gè)等級(jí),即在危險(xiǎn)的基礎(chǔ)上又分為重度危險(xiǎn)和極度危險(xiǎn),以提高泥石流險(xiǎn)情的靈敏性。由表2可知,19個(gè)樣本評(píng)判結(jié)果與文獻(xiàn)[20]相符;11個(gè)樣本評(píng)判結(jié)果與文獻(xiàn)[20]稍微偏大,由于文中應(yīng)用變權(quán)思想確定權(quán)重,險(xiǎn)情越高的指標(biāo)權(quán)重得到了激勵(lì),導(dǎo)致評(píng)判結(jié)果偏大。這有利于礦山提高警惕,及時(shí)采取措施處理險(xiǎn)情更高的指標(biāo);4個(gè)樣本評(píng)判結(jié)果與文獻(xiàn)[20]不符,對(duì)樣本5、14、29、31應(yīng)用模糊綜合評(píng)判法[7]進(jìn)行判別,得到綜合評(píng)判式分別為:B5=(0.199 7, 0.535 4, 0.138 4, 0.126 7)、B14=(0.341 9, 0.225 1, 0.275 9, 0.157 3)、B29=(0.330 9, 0.375 3, 0.152 0, 0.126 7)、B31=(0.389 7, 0.449 9, 0.160 6, 0)。由最大隸屬度原則,樣本14應(yīng)為I級(jí),樣本5、29、31都應(yīng)為II級(jí),與文中方法相同。因此,將變權(quán)云模型應(yīng)用于礦山泥石流危險(xiǎn)性預(yù)測(cè)是可行的。同時(shí),文中計(jì)算了各綜合確定度的模糊熵,進(jìn)一步表示礦山泥石流復(fù)雜程度。不同方法都是基于不同角度對(duì)礦山泥石流危險(xiǎn)性進(jìn)行判別,但評(píng)判結(jié)果仍會(huì)有些差異,由結(jié)果分析可知,其產(chǎn)生原因主要有兩個(gè),一是各指標(biāo)權(quán)重的確定具有較大不同;二是樣本各指標(biāo)的隸屬等級(jí)相差較大,即各等級(jí)綜合確定度的模糊熵較大,模糊熵越大,表明該樣本各指標(biāo)間隸屬等級(jí)相差較大,評(píng)判結(jié)果越難確定。建議礦山在采取預(yù)防措施時(shí),先處理高等級(jí)樣本,再處理低等級(jí)、高模糊熵樣本,最后處理低等級(jí)、低模糊熵樣本;重點(diǎn)關(guān)注高險(xiǎn)情指標(biāo),及時(shí)預(yù)警。
針對(duì)礦山泥石流危險(xiǎn)性預(yù)測(cè)存在的問題,提出了一種變權(quán)云模型綜合預(yù)測(cè)方法,實(shí)例證明該方法有效,得出如下結(jié)論:
(1) 綜合考慮地形地貌特征、物源特征、水文植被特征等影響因素,應(yīng)用云模型對(duì)礦山泥石流危險(xiǎn)性進(jìn)行預(yù)測(cè),實(shí)現(xiàn)了各指標(biāo)與泥石流危險(xiǎn)性等級(jí)的不確定性映射,綜合考慮了預(yù)測(cè)中的模糊性與隨機(jī)性。
(2) 在常權(quán)基礎(chǔ)上引入混合變權(quán)思想確定指標(biāo)權(quán)重,結(jié)合指標(biāo)取值動(dòng)態(tài)調(diào)整權(quán)值,更能反映不同礦山泥石流真實(shí)危險(xiǎn)狀況。
(3) 引入模糊熵表征礦山泥石流危險(xiǎn)性的不確定程度,從等級(jí)和復(fù)雜度兩個(gè)角度進(jìn)行綜合預(yù)測(cè),為礦山泥石流采取預(yù)防措施提供了更詳細(xì)參考依據(jù)。
(4) 礦山泥石流危險(xiǎn)性評(píng)判指標(biāo)體系和分級(jí)標(biāo)準(zhǔn)值得進(jìn)一步完善,此方法也可應(yīng)用于自然泥石流等預(yù)測(cè)工作。
[1] 文光菊, 楊樂, 鄧文杰. 重慶山區(qū)礦山泥石流溝形態(tài)特征——以奉節(jié)縣汾河礦區(qū)為例[J]. 中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào), 2015, 26(3): 46-50. WEN Guangju, YANG Le, DENG Wenjie. Morphological characteristics of mine debris flow gullies in mountain area of Chongqing’ s mountain area ——taking Fenhe mining area in Fengjie county as an example[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(3): 46-50.
[2] 張麗萍, 唐克麗. 礦山泥石流[M]. 北京: 地質(zhì)出版社, 2001. ZHANG Liping, TANG Keli. Mine debris flow[M]. Beijing: Geological Publishing House, 2001.
[3] 劉麗, 陳洪凱. 礦山泥石流災(zāi)害成因與防治對(duì)策[J]. 重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 28(5): 915-920. LIU Li, CHEN Hongkai. Causes of mine debris flow disaster and its countermeasures[J]. Journal of Chongqing Jiaotong University(Natural Science), 2009, 28(5): 915-920.
[4] 徐友寧, 陳社斌, 袁漢春,等. 潼關(guān)金礦區(qū)礦渣型泥石流熵權(quán)評(píng)價(jià)[J]. 地質(zhì)科技情報(bào), 2006, 25(5): 101-104. XU Youning, CHEN Shebing, YUAN Hanchun, et al. Entropy weight assessment on slag mudslide potentiality parameter in Tongguan gold mine area[J]. Geological Science and Technology Information, 2006, 25(5): 101-104.
[5] 陳華清, 徐友寧, 張江華, 等. 小秦嶺大湖峪礦渣型泥石流的物源特征及其危險(xiǎn)度評(píng)價(jià)[J]. 地質(zhì)通報(bào), 2008(8): 1292-1298. CHEN Huaqing, XU Youning, ZHANG Jianghua, et al. Source characters and risk assessments of mine slag-type debris flows in the Dahu valley, Xiaoqinling, China[J]. Geological Bulletin of China, 2008(8): 1292-1298.
[6] XUE Xicheng, BI Jisong, CHEN Lingling, et al. Dangerous degree evaluation system of mine debris flow based on IGA-BP[J]. International Journal of Modern Education & Computer Science, 2011, 3(3): 15-24.
[7] 莫時(shí)雄, 程峰, 王杰光, 等. 典型金屬礦山泥石流潛勢(shì)度的模糊層次綜合評(píng)判[J]. 中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào), 2009, 20(2): 41-45. MO Shixiong, CHENG Feng, WANG Jieguang, et al. Fuzzy hierarchic evaluation for debrits flow potential of typical metal mine [J]. The Chinese Journal of Geological Hazard and Control, 2009, 20(2): 41-45.
[8] 郭付三, 周春梅, 杜娟. 基于災(zāi)害鏈效應(yīng)的小秦嶺亂石溝礦山泥石流風(fēng)險(xiǎn)評(píng)價(jià)[J]. 安全與環(huán)境工程, 2015, 22(2): 25-31. GUO Fusan, ZHOU Chunmei, DU Juan. Risk assessment of mine debris flow in xiaoqinling luanshi valley based on disaster chain effect[J]. Safety and Environment Engineering, 2015, 22(2): 25-31.
[9] 李德毅,孟海軍,史雪梅. 隸屬云和隸屬云發(fā)生器[J]. 計(jì)算機(jī)研究與發(fā)展,1995,32(6): 16-21. LI Deyi, MENG Haijun, SHI Xuemei. Membership clouds and membership cloud generators[J]. Computer R & D, 1995, 32(6): 16-21.
[10] 張秀玲, 趙文保, 徐 騰, 等. 基于 T-S 云推理網(wǎng)絡(luò)的板形智能控制對(duì)比研究[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 44(11): 4461-4467. ZHANG Xiuling, ZHAO Wenbao, XU Teng, et al. Contrastive on flatness intelligent control via T-S cloud inference network [J]. Journal of Central South University (Science and Technology), 2013, 44(11): 4461-4467.
[11] 王迎超,靖洪文,張強(qiáng),等. 基于正態(tài)云模型的深埋地下工程巖爆烈度分級(jí)預(yù)測(cè)研究[J]. 巖土力學(xué),2015,36(4): 1189-1194. WANG Yingchao, JING Hongwen, ZHANG Qiang, et al. A normal cloud model-based study of grading prediction of rockburst intensity in deep underground engineering[J]. Rock and Soil Mechanics, 2015, 36(4): 1189-1194.
[12] 趙國(guó)彥, 梁偉章, 洪昌壽. 采空區(qū)穩(wěn)定性的改進(jìn)云模型二維評(píng)判[J]. 中國(guó)安全科學(xué)學(xué)報(bào), 2015, 25(10): 102-108. ZHAO Guoyan, LIANG Weizhang, HONG Chang shou. Improved cloud model for two dimensional stability evaluation of goaf[J]. China Safety Science Journal, 2015, 25(10): 102-108.
[13] 劉常昱, 李德毅, 杜鹢, 等. 正態(tài)云模型的統(tǒng)計(jì)分析[J]. 信息與控制, 2005, 34(2): 236-239. LIU Changyu, LI Deyi, DU Yi, et al. Some statistical analysis of the normal cloud model[J]. Information and Control, 2005, 34(2): 236-239.
[14] 周啟剛,張曉媛,王兆林. 基于正態(tài)云模型的三峽庫區(qū)土地利用生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(23): 289-297. ZHOU Qigang, ZHANG Xiaoyuan, WANG Zhaolin. Land use ecological risk evaluation in Three Gorges reservoir area based on normal cloud model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 289-297.
[15] 汪培莊. 模糊集與隨機(jī)集落影[M]. 北京: 北京師范大學(xué)出版社, 1985. Wang Peizhuang. Fuzzy sets and stochastic sets projection[M]. Beijing: Beijing Normal University Press, 1985.
[16] 李德清, 李洪興. 變權(quán)決策中變權(quán)效果分析與狀態(tài)變權(quán)向量的確定[J]. 控制與決策, 2004, 19(11): 1241-1245. LI Deqing, LI Hongxing. Analysis of variable weights effect and selection of appropriate state variable weights vector in decision making[J]. Control and Decision, 2004, 19(11): 1241-1245.
[17] LUCA A. De, TERMINI S. A definition of a non-probabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control, 1972, 20(4): 301-312.
[18] 單博, 陳劍平, 王清. 基于最小熵理論和未確知測(cè)度理論的泥石流敏感性分析[J]. 巖土力學(xué), 2014(5): 1445-1454. SHAN Bo, CHEN Jianping, WANG Qing. Debris flow susceptibility analysis based on theories of minimum entropy and uncertainty measurement[J]. Rock and Soil Mechanics, 2014(5): 1445-1454.
[19] 王念秦, 薛瑤瓊, 李少兵, 等. 基于粗糙集理論的泥石流易發(fā)性綜合評(píng)判模型[J]. 水土保持研究, 2014, 21(3): 246-250. WANG Nianqin, XUE Yaoqiong, LI Shaobing, et al. Debris flow lability comprehensive evaluation model on rough set theory[J]. Research of Soil and Water Conservation, 2014, 21(3): 246-250.
[20] 薛喜成. 秦嶺典型礦山泥石流發(fā)育規(guī)律及環(huán)境效應(yīng)研究[D]. 西安科技大學(xué), 2008. XUE Xicheng. Research on the development law and environmental effect of typical mine debris flow in Qinling mountains[D]. Xi’an University of Science and Technology, 2008.
Comprehensive prediction of mine debris flow’ risk based on weight-varying cloud model
LIANG Weizhang, ZHAO Guoyan
(SchoolofResourcesandSafetyEngineering,CentralSouthUniversity,Changsha,Hunan410083,China)
In order to predict the risk of mine debris flow more reasonably, a weight-varying cloud model was proposed by integrating the cloud model, variable weight theory and fuzzy entropy theory. Factors including slope of hill, longitudinal shrinking slope, length of main ditches, catchment area, amount of slag, reserve of solid loose mass of unit area, rainfall of rainy season, and vegetation cover were selected. And the cloud characteristics of each classification index at different levels were calculated. The weight of each index in different samples was determined by combining the variable weight theory and the index value. The comprehensive certainty degrees were calculated by the generation algorithm of Gaussian cloud, and we choose the maximum comprehensive certainty degree to estimate the level of the risk. The fuzzy entropy of comprehensive certainty degrees was also used to indicate the fuzziness of this level, which provided more detail reference for early-warning of mine debris flow. Finally, the effectiveness of this prediction model were verified by 34 examples of mine debris flow from Qinling mountains, The results show that the results satisfyingly agree with reality, which can be of interest from a practical viewpoint.
mine debris flow; cloud model; variable weight theory; fuzzy entropy; risk prediction
10.16031/j.cnki.issn.1003-8035.2017.01.13
2016-07-21;
2016-09-01
中南大學(xué)中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助(2016zzts446);國(guó)家自然科學(xué)基金面上項(xiàng)目(51374244)
梁偉章(1992-),男,碩士研究生,主要從事礦山安全與巖石力學(xué)等領(lǐng)域研究。E-mail: 1246585711@qq.com
P642.23
A
1003-8035(2017)01-0082-07
中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào)2017年1期