亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Measure Functional Differential Equations with Infinite Delay: Differentiability of Solutions with Respect to Initial Conditions

        2017-05-15 11:09:30LIBaolinWANGBaodi
        關(guān)鍵詞:西北師范大學(xué)初值國家自然科學(xué)基金

        LI Baolin, WANG Baodi

        (College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu)

        Measure Functional Differential Equations with Infinite Delay: Differentiability of Solutions with Respect to Initial Conditions

        LI Baolin, WANG Baodi

        (CollegeofMathematicsandStatistics,NorthwestNormalUniversity,Lanzhou730070,Gansu)

        In this paper, we consider a measure functional differential equation with infinite delay,which can be changed into a generalized ordinary differential equation. By differentiability of solutions with respect to initial condition for the generalized ODE, we obtain the differentiability for the measure functional differential equation.

        measure functional differential equation; differentiability of solutions; Kurzweil integral; generalized ordinary differential equation

        1 Introduction

        There are many sources that describe the differentiability of solutions with respect to initial conditions for ordinary differential equations, such as [1-2]. From [3], we can see the description of a similar type for ordinary differential equations, and for dynamic equations on time scales. Similar work as [3] was also carried out in [4]. In this paper, we consider the measure differential equations.

        When a system described by ordinary differential equation

        (1)

        is acted upon by perturbation, the resultant perturbed system is generally given by ordinary differential equation of the form dx/dt=f(t,x)+G(t,x), where we assume the perturbation termG(t,x) is well-behaved, i.e.,G(t,x) is continuous or integrable and as such the state of the system changes continuously with respect to time. However, in some system, the perturbations are impulsive, so we cannot expect the perturbation is always well-behaved. Therefore, the following equation

        (2)

        was defined in [5], whereDudenotes the distributional derivative of functionu. Ifuis a function of bounded variation,Ducan be identified with a Stieltjes measure, it will suddenly change the state of the system at a discontinuity ofu. In [5], equations of the form (2) are called measure differential equations, also a special case of the equation (2). Inspired by [5], the authors of [6] have generalized a very useful functional differential equation as following

        (3)

        wherextrepresents the restriction of the functionx(·) (x(·) denotes a solution of equation (2)) means a function of bounded variation whose distributional derivativeDxsatisfies the equation (2) on the interval [m(t),n(t)],mandnbeing functions with the propertym(t)≤n(t)≤t.

        Moreover, in [7], an important theorem was proved. The main contents are as following:

        x(·) is a solution of (2) through (t0,x0) on an intervalI, with left end pointt0, if and only ifx(·) satisfies the following equations

        Authors of [8] especially proved the following measure functional differential equation with infinite delay

        (4)

        is equivalent to the generalized ordinary differential equation under some conditions. Also, equations (4) is the integral form of the following measure equation

        Dx=G(s,xs)dg(s),

        whereg(s) is a nondecreasing function, and the integral on the right-hand side of (4) is the Kurzweil-Stieltjes integral.

        In this paper, we shall consider differentiability of initial value problem for measure differential equations

        (5)

        wherexis an unknown function with values inRnandthesymbolxsdenotesthefunctionxs(τ)=x(s+τ)definedon(-∞,0],whichcorrespondingtothelengthofthedelay, f:P×[t0,t0+σ]→Rnis a function satisfies the following conditions (A)-(C):

        (B)ThereexistsafunctionM:[t0,t0+σ] →R+,whichisKurzweil-Stieltjiesintegrablewithrespecttog,suchthat

        wheneverx∈Oand[a,b]?[t0,to+σ].

        (C)ThereexistsafunctionL :[t0,to+σ] →R+,which is Kurzweil-Stieltjies integrable with respect tog, such that

        wheneverx,y∈Oand [a,b]?[t0,to+σ].(we assume that the integral on the right-hand side exists).

        Andg:[t0,t0+σ]→Risanondecreasingfunction, P={xt:x∈O,t∈[t0, t0+σ]}? H0,H0? G((-∞,0],Rn) is a Banach space equipped with a norm denoted by ‖·‖. We assumeH0satisfies the following conditions (H1)-(H6):

        (H1)H0is complete.

        (H2) Ifx∈H0andt<0, thenxt∈H0.

        (H3) There exists a locally bounded functionk1:(-∞,0]→R+suchthatifx∈H0andt≤0,then‖x(t)‖≤k1(t)‖x‖.

        (H4)Thereexistsafunctionk2: (0,∞) →[1,∞)suchthatifσ > 0andx∈H0isafunctionwhosesupportiscontainedin[-σ,0],then

        (H5) There exists a locally bounded functionk3:(-∞,0]→R+suchthatifx∈H0andt≤0,then

        (H6)Ifx∈H0,thenthefunctiont |→‖xt‖isregulatedon(-∞,0].

        t0∈R,σ>0,O?Ht0+σis a space satisfying conditions 1)-6) of Lemma 2.7.G((-∞,0],Rn)denotesthesetofallregulatedfunctionsf:(-∞,0]→Rn.

        Our main result is to derive the differentiability of solutions with respect to initial conditions for measure function differential equations with infinite delay.

        2 Preliminaries

        We start this section with a short summary of Kurzweil integral.

        Letδ:[a,b]→R+beafunction,andτbeapartitionofinterval[a,b]withdivisionpointsa=α0≤α1≤…≤αk=b.Thetagsτi∈[αi-1,αi]iscalledδ-fineif[αi-1,αi]?[τi-δ(τi),τi+δ(τi)],i=1,2,…,k.

        Definition2.1[2]Amatrix-valuedfunctionF:[a,b]×[a,b]→Rn×mis called Kurzweil integrable on [a,b], if there is a matrixI∈Rn×msuchthatforeveryε>0,thereisagaugeδon[a,b]suchthat

        AnimportantspecialcaseistheKurzweil-Stieltjesintegralofafunctionf:[a,b]→Rnwith respect to a functiong:[a,b]→R, which corresponds to the choice

        Definition 2.2[1]G?Rn× R,(x,t)∈G, a functionx:[a,b]→Bis called a solution of the generalized ordinary differential equation

        (7)

        whenever

        Definition 2.3[8]LetXbe a Banach space. Consider a setO?X. A functionF:O×[t0,t0+σ] →Xbelongs to the classF(O × [t0,t0+σ] ,h,k),ifthefollowingconditionsaresatisfied:

        (F1)Thereexistsanondecreasingfunctionh:[t0,t0+σ]→R such thatF:O×[t0,t0+σ] →Xsatisfies

        for everyx∈Oands1,s2∈[t0,t0+σ],

        (F2) There exists a nondecreasing functionk:[t0,t0+σ]→RsuchthatF:O×[t0,t0+σ] →Xsatisfies

        (9)

        foreveryx,y∈Oands1,s2∈[t0,t0+σ],

        Lemma 2.2[2]LetU:[a,b]×[a,b]→Rn×nbeaKurzweilintegrablefunction,assumethereexistsapairoffunctionsf:[a,b]→Rnandg:[a,b]→Rsuchthatfisregulated, gisnondecreasing,and

        (10)

        Then

        Lemma2.3[9]AssumethatU:[a,b]×[a,b]→Rn×mis Kurzweil integrable andu:[a,b]→Rn×misitsprimitive,i.e.,

        IfUisregulatedinthesecondvariable,thenuisregulatedandsatisfies

        Moreover,ifthereexistsanondecreasingfunctionh:[a,b]→R such that

        then

        Lemma 2.4[9]Leth:[a,b]→[0,+∞) be a nondecreasing left-continuous function,k>0,l≥0. If thatψ:[a,b]→[0,+∞) is bounded and satisfies

        thenψ(ξ)≤kel(h(ξ)-h(a))for everyξ∈[a,b].

        Lemma 2.5[2]Assume thatF:[a,b]×[a,b]→Rn×nsatisfies(8).Lety,z :[a,b]→Rnbe a pair of functions such that

        Then,zis regulated on [a,b].

        Lemma 2.6[2]Assume thatF:[a,b]×[a,b]→Rn×nisKurzweilintegrableandsatisfies(8)withaleft-continuousfunctionh.Thenforeveryz0∈Rn, the initial value problem

        (12)

        has a unique solutionz:[a,b]→Rn.

        Toestablishthecorrespondencebetweenmeasurefunctionaldifferentialequationsandgeneralizedordinarydifferentialequations,wealsoneedasuitablespaceHaofregulatedfunctionsdefinedon(-∞,a],wherea∈R, the next lemma shows that the spacesHainherit all important properties ofH0.

        Lemma 2.7[8]IfH0?G((-∞,0],Rn)isaspacesatisfyingconditions1)-6),thenthefollowingstatementsaretrueforeverya∈R:

        1)Hais complete; 2) Ifx∈Haandt≤a, thenxt∈H0; 3) Ift≤aandx∈Ha, then ‖x(t)‖≤k1(t-a)‖x‖; 4) Ifσ> 0 andx∈Ha+σis a function whose support is contained in [a,a+σ], then

        5) Ifx∈Ha+σandt≤a+σ, then ‖xt‖≤k3(t-a-σ)‖x‖; 6) Ifx∈Ha+σ, then the functiont|→‖xt‖is regulated on (-∞,a+σ].

        Theorem 2.8[8]Assume thatOis a subset ofHt0+σhaving the prolongation property fort≥t0,P={xt:x∈O,t∈[t0,t0+σ]},?∈P,g:[t0,t0+σ]→Risanondecreasingfunction, f:P×[t0,t0+σ]→Rnsatisfies conditions (A), (B), (C), andF:O×[t0,t0+σ]→G((-∞,t0+σ],Rn)givenby(13)hasvaluesinHa+σ.Ify∈Oisasolutionofthemeasurefunctionaldifferentialequation

        then the functionx:[t0,t0+σ]→Ogiven by

        is a solution of the generalized ordinary differential equation

        Wherextakes values inO, andF:O×[t0,t0+σ]→G((-∞,t0+σ],Rn)isgivenby

        (13)

        for everyx∈Oandt∈[t0,t0+σ].

        Proof The statement follows easily from Theorem 3.6 in [8]

        3 Main result

        Now, we discuss the differentiability theorem of solutions with respect to initial conditions for equation (5).

        Theorem 3.1 Letf:P×[t0,t0+σ]→RnbeacontinuousfunctionwhosederivativefxexistsandiscontinuousonP×[t0,t0+σ],andsatisfiestheaforementionedconditions(A)-(C),whereP={xt:x∈O, t∈[t0, t0+σ]}? H0,andH0? G((-∞,0],Rn) be a Banach space satisfying the aforementioned conditions (H1)-(H6),t0∈{R},σ>0, O? Ht0+σ.Ifg : [t0,t0+σ]→R is a nondecreasing function andλ0∈Rl,σ>0,Λ={λ∈Rl; ‖λ-λ0‖<σ},x0:Λ→O× [t0,t0+σ] for everyλ∈Λ, the initial value problem of the measure functional differential equations with infinite delay (5) is equivalent to the initial value problem

        (14)

        then (14) has a solution defined on [t0,t0+σ]. Letx(t,λ) be the value of that solution att∈[t0,t0+σ].

        Moreover, let the following conditions be satisfied:

        1) For every fixedt∈[t0,t0+σ], the functionx|→F(x,t) is continuously differentiable onO× [t0,t0+σ].

        2) The functionx0is differentiable atλ0.

        Then the functionλ|→x(t,λ) is differentiable atλ0, uniformly for allt∈[t0,t0+σ]. Moreover, its derivativeZ(t)=xλ(t,λ0),t∈[t0,t0+σ] is the unique solution of the generalized differential equation

        (15)

        Proof Our proof is based on the idea from [2].

        According to the assumptions, there exist positive constantsA1,A2such that

        for everyx,y∈O,t∈[t0,t0+σ], andt0≤t1

        for everyx∈O, the fourth statement of Lemma 2.7 implies

        where

        by the fifth statement of Lemma 2.7. The last expression is smaller than or equal to

        where

        i.e.,Fx∈F(O × [t0,t0+σ],h,k).

        BecauseofO × [t0,t0+σ]isclosed,accordingtothemean-valuetheoremforvectorvaluedfunctionandFx∈F(O× [t0,t0+σ],h,k)

        (16)

        By the assumptions, we have

        According to the Lemma 2.3, every solutionxis a regulated and left-continuous function on [t0,t0+σ]. If Δλ∈Rlissuchthat‖Δλ‖<σ,then

        where

        By(16),weobtain

        andbyusingLemma2.2,foreverys∈[t0,t0+σ],weobtain

        Consequently,byusingLemma2.4,wehave

        SowecanseethatwhenΔλ→0, x(s,λ0+Δλ)→x(s,λ0)uniformlyforalls∈[t0,t0+σ].

        LetW(τ,t)=Fx(x(τ,λ0),t).BecauseFx∈F(O× [t0,t0+σ] ,h,k),W(τ,t) satisfies (16), by Lemma 2.6, (15) has a unique solutionZ:[t0,t0+σ]→Rn× n.ByusingLemma2.5,thesolutionisregulated.SothereexistsaconstantN>0suchthat‖Z(t)‖≤N,t∈[t0,t0+σ].ForeveryΔλ∈Rlsuch that ‖Δλ‖<σ, let

        Next, we will prove that if Δλ→0, thenφ(r,Δλ)→0 uniformly forr∈[t0,t0+σ].

        Letε>0 be given, there exists aδ>0 such that if Δλ∈Rland‖Δλ‖<σ,then

        and

        It is obvious that

        where

        Thus,

        Because of the functionx|→F(x,t) is continuously differentiable onO×[t0,t0+σ] and the definition of theφ(r,Δλ), so for any givenε>0,t,s∈[t0,t0+σ], we have

        and thus (usingFx∈F(O × [t0,t0+σ] ,h,k) )

        Consequently

        Finally,Gronwall’sinequalityleadstotheestimate

        Sinceε→0+,wehavethatifΔλ→0,thenφ(r,Δλ)→0uniformlyforanyr∈[t0,t0+σ].

        [1] KEllEY W G, PETERSON A C. The Theory of Differential Equations[M]. 2nd ed. New York:Springer-Verlag,2010.

        [3] LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,1989.

        [4] HILSHCER R, ZEIDAN V, KRATZ W. Differentiation of solutions of dynamic equations on time scales with respect to parameters[J]. Adv Dyn Syst Appl,2009,4(1):35-54.

        [5] SCHMAEDEKE W W. Optimal control theory for nonlinear vector differential equations containing measures[J]. SIAM Control,1965,3(2):231-280.

        [6] DAS P C, SHARMA R R. On optimal comtrols for measure delay-differential equations[J]. SIAM Control,1971,9(1):43-61.

        [7] PURNA C D, RISHI R S. Existence and stability of measure differential equations[J]. Czechoslovak Math J,1972,22(97):145-158.

        [12] VERHUST F. Nonlinear Differential Equations and Dynamical Systems[M]. 2nd ed. New York:Springer-Verlag,2000.

        [13] KURZWEIL J. Generalized ordinary differential equations and continuous dependence on a parameter[J]. Czechoslovak Math,1957,82(7):418-449.

        [14] 朱雯雯,徐有基. 帶非線性邊界條件的一階微分方程多個(gè)正解的存在性[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,39(2):226-230.

        [15] KURZWEIL J. Generalized ordinary differential equations[J]. Czechoslovak Math J,1958,83(8):360-389.

        無限滯后測(cè)度泛函微分方程的解關(guān)于初值條件的可微性

        李寶麟, 王保弟

        (西北師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 甘肅 蘭州 730070)

        利用廣義常微分方程的解關(guān)于初值條件的可微性,考慮可以轉(zhuǎn)化為廣義常微分方程的無限時(shí)滯測(cè)度泛函微分方程,得到這類方程的解關(guān)于初值條件的可微性.

        測(cè)度泛函微分方程; 解的可微性; Kurzweil 積分; 廣義常微分方程

        O175.12

        A

        1001-8395(2017)01-0061-07

        2016-07-01

        國家自然科學(xué)基金(11061031)

        李寶麟(1963—)男,教授,主要從事常微分方程和拓?fù)鋭?dòng)力系統(tǒng)的研究,E-mail:libl@nwnu.edu.cn

        Foundation Items:This work is supported by National Natural Science Foundation of China (No.11061031)

        10.3969/j.issn.1001-8395.2017.01.010

        (編輯 陶志寧)

        Received date:2016-07-01

        2010 MSC:26A39; 30G30; 34A20; 34G10

        猜你喜歡
        西北師范大學(xué)初值國家自然科學(xué)基金
        西北師范大學(xué)作品
        大眾文藝(2023年9期)2023-05-17 23:55:52
        西北師范大學(xué)美術(shù)學(xué)院作品選登
        具非定常數(shù)初值的全變差方程解的漸近性
        常見基金項(xiàng)目的英文名稱(一)
        西北師范大學(xué)美術(shù)學(xué)院作品選登
        西北師范大學(xué)美術(shù)學(xué)院作品選登
        一種適用于平動(dòng)點(diǎn)周期軌道初值計(jì)算的簡(jiǎn)化路徑搜索修正法
        三維擬線性波方程的小初值光滑解
        我校喜獲五項(xiàng)2018年度國家自然科學(xué)基金項(xiàng)目立項(xiàng)
        2017 年新項(xiàng)目
        亚洲天堂av路线一免费观看| 亚洲爆乳无码专区| 久久这里只精品国产2| 激情视频在线播放一区二区三区| 人妻少妇精品视频专区vr| 欧美中日韩免费观看网站| 人妻无码一区二区| 青青草手机成人自拍视频| 中文字幕乱码在线人妻| 亚洲国产av精品一区二区蜜芽| 精品中文字幕久久久人妻| 久久精品国产亚洲av热九| 国产乱理伦在线观看美腿丝袜| 久久99精品九九九久久婷婷| av中文字幕不卡无码| 国语对白三级在线观看| 包皮上有一点一点白色的| 在线精品一区二区三区 | 国产亚洲精品hd网站| 日本一区二区三区爱爱视频| 日本少妇春药特殊按摩3| 亚洲成在人线av| 国产亚洲av手机在线观看 | 欧美村妇激情内射| 国产免费一区二区三区在线观看 | 99久久久69精品一区二区三区| 免费观看成人欧美www色| 国产午夜三级一区二区三| 亚洲欧美国产成人综合不卡| 亚洲激情综合中文字幕| 99久久久国产精品免费蜜臀| 一级呦女专区毛片| 美女被躁到高潮嗷嗷免费观看| 性猛交ⅹxxx富婆视频| 76少妇精品导航| 99久久国产一区二区三区| 不卡一区二区黄色av| 黑人玩弄漂亮少妇高潮大叫| 99在线国产视频| 在线视频色系中文字幕| 亚洲av无码国产精品色午夜洪|