劉冉冉,時(shí)偉偉,張曉東,宋 杰
山東師范大學(xué)生命科學(xué)學(xué)院,山東省逆境植物重點(diǎn)實(shí)驗(yàn)室, 濟(jì)南 250014
不同生境鹽地堿蓬對(duì)氮饑餓的響應(yīng)
劉冉冉,時(shí)偉偉,張曉東,宋 杰*
山東師范大學(xué)生命科學(xué)學(xué)院,山東省逆境植物重點(diǎn)實(shí)驗(yàn)室, 濟(jì)南 250014
1.1 試驗(yàn)材料
內(nèi)陸生境和潮間帶生境鹽地堿蓬棕色種子分別采集于山東省黃河三角洲內(nèi)陸鹽堿地(37°20′N;118°36′E)及潮間帶(37°25′N;118°58′E),兩種生境中Na+、Cl-含量分別是1.6、2.1、3.9、6.1 g/kg干土。曬干的種子存于冰箱(< 4℃)中待用。
1.2 試驗(yàn)設(shè)計(jì)
1.3 測(cè)定方法
1.3.1 植株葉綠素含量的測(cè)定
將相同葉位的葉片用去離子水洗凈、擦干、均勻剪碎后,取樣稱取0.3 g,放入試管中,加入5 mL 80%的丙酮,5 mL二甲基亞砜,封口搖勻,于65℃浴鍋內(nèi)恒溫提取直至葉片變白為止。冷卻、過濾后用80%的丙酮定容至25 mL,以80%的丙酮為空白對(duì)照分別測(cè)663 nm和645 nm處的吸光度,每個(gè)處理3個(gè)重復(fù)。用下列公式計(jì)算葉綠素a、葉綠素b、以及總?cè)~綠素的含量:
Chla = 12.7A663- 2.69A645
Chlb = 22.9A645-5.68A663
Chl(a+b) = 8.02A663+ 20.21A645
1.3.3 植株葉片光合放氧速率的測(cè)定
采用英國(guó)Hansatech公司生產(chǎn)的Oxy-lab系統(tǒng)(Chlorolab 2型液相氧電極)測(cè)定[13]。光照由冷光源提供,反應(yīng)杯內(nèi)光照強(qiáng)度為1000 μmol/m2s,反應(yīng)杯溫度用恒溫水浴控制,溫度為(22 ± 0.2)℃。每個(gè)處理3個(gè)重復(fù)。
1.3.4 植株地上部及根部鮮、干重的測(cè)定
試驗(yàn)結(jié)束時(shí),將植株地上部分與根分別收獲,快速?zèng)_洗干凈后吸干表面水分,放入105 ℃的烘箱中殺青15 min,再以80℃烘至恒重,稱干重并計(jì)算根冠比。每種處理3個(gè)重復(fù)。
1.4 數(shù)據(jù)分析
試驗(yàn)數(shù)據(jù)均為3個(gè)重復(fù)的平均值。釆用Excel進(jìn)行原始數(shù)據(jù)的統(tǒng)計(jì)和計(jì)算, 數(shù)據(jù)均采用SAS統(tǒng)計(jì)軟件進(jìn)行三因素分析。
2.1 葉片葉綠素含量
圖1 氮饑餓對(duì)兩種生境鹽地堿蓬葉片葉綠素含量的影響Fig.1 Effect of nitrogen starvation on the contents of chlorophyll in the leaves of two S. salsa populations平均值+SD;同一列中平均值上的字母不同表示在P<0.05水平上差異顯著
2.2 葉片硝酸根含量
2.3 葉片硝酸還原酶活性
圖2 氮饑餓對(duì)兩種生境鹽地堿蓬葉片含量的影響Fig.2 Effect of nitrogen starvation on content in the leaves of two S. salsa populations
圖3 氮饑餓對(duì)兩種生境鹽地堿蓬葉片NR活性的影響Fig.3 Effect of nitrogen starvation on NR activity in the leaves of two S. salsa populations
圖4 氮饑餓對(duì)兩種生境鹽地堿蓬葉片光合放氧速率的影響 Fig.4 Effect of nitrogen starvation on photosynthetic oxygen evolution rate in the leaves of two S. salsa populations
2.4 葉片光合放氧速率
2.5 地上和根系干重及根冠比
圖5 氮饑餓對(duì)兩種生境鹽地堿蓬地上部分、根系干重及根冠比的影響Fig.5 Effect of nitrogen starvation on shoot and root dry weight and root/shoot ratio of two S. salsa populations
Table 1 Results of three-wayANOVAof physiological characteristics in twoS.salsapopulations after nitrogen starvation in relation to populations, concentrations of nitrate nitrogen and time course of nitrogen starvation
性狀TraitsA生境PopulationsB硝態(tài)氮濃度ConcentrationsofnitratenitrogenC氮饑餓時(shí)間TimecourseofnitrogenstarvationA×BA×CB×CA×B×C葉綠素a含量Chlorophyllacontent116.84***306.39***554.35***0.02NS14.5***25.2***3.52*葉綠素b含量Chlorophyllbcontent16.12***47.1***61.72***0.91NS4.41*0.79NS0.68NS葉綠素(a+b)含量Chlorophyll(a+b)content6.22***179.11***296.46***0.21NS10.49**10.14**2.19NS硝酸根含量NO3-content113.38***312.99***371.8***14.61**14.06***153.43***3.95*硝酸還原酶活性NRactivity2.16NS563.11***1099.67***20.80**21.21***470.21***32.41***光合放氧速率Photosyntheticoxygenevolutionrate253.36***3974.61***1569.69***1.62NS57.77***180.41***0.46***
*在P<0.05 水平上差異顯著;** 在P<0.01 水平上差異顯著;***在P<0.001 水平上差異顯著;NS 沒有顯著性差異;數(shù)值代表F值
[1] Albassam B A. Effect of nitrate nutrition on growth and nitrogen assimilation of pearl millet exposed to sodium chloride stress. Journal of Plant Nutrition, 2001, 24(9): 1325- 1335.
[2] Botella M A, Martinez V, Nieves M, CerdáA. Effect of salinity on the growth and nitrogen uptake by wheat seedlings. Journal of Plant Nutrition, 1997, 20(6): 793- 804.
[3] Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press, 1986.
[4] Song J, Ding X D, Feng G, Zhang F S. Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions. New Phytologist, 2006, 171(2): 357- 366.
[6] Russell E W. Soil Conditions and Plant Growth. London: Longman, 1973: 849.
[7] Song J, Fan H, Zhao Y Y, Jia Y H, Du X H, Wang B S. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyteSuaedasalsain an intertidal zone and on saline inland. Aquatic Botany, 2008, 88(4): 331- 337.
[8] 黃瑋, 李志剛, 喬海龍, 李存楨, 劉小京. 旱鹽互作對(duì)鹽地堿蓬生長(zhǎng)及其滲透調(diào)節(jié)物質(zhì)的影響. 中國(guó)農(nóng)業(yè)生態(tài)學(xué)報(bào), 2008, 16(1): 173- 178.
[9] Wang B S, Lüttge U, Ratajczak R. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3halophyteSuaedasalsaL. Journal of Plant Physiology, 2004, 161(3): 285- 293.
[10] 阮圓, 劉彧, 王寶山. 不同自然鹽漬生境下鹽地堿蓬葉片色素積累及光合特性的研究. 山東師范大學(xué)學(xué)報(bào): 自然科學(xué)版, 2008, 23(1): 115- 117.
[11] Song J, Shi G W, Xing S, Yin C H, Fan H, Wang B S. Ecophysiological responses of the euhalophyteSuaedasalsato the interactive effects of salinity and nitrate availability. Aquatic Botany, 2009, 91(4): 311- 317.
[12] 李合生. 植物生理生化實(shí)驗(yàn)原理和技術(shù). 北京: 高等教育出版社, 2001: 125- 128.
[13] Hall D O, Scurlock J M O, Bolhar-Nordenkampf H R, Leegood R C, Long S P. Photosynthesis and Production in a Changing Environment: A Field and Laboratory Manual. Netherlands: Springer, 1993: 268- 282.
[14] Zhang F S, Chen X P, Vitousek P. Chinese agriculture: an experiment for the world. Nature, 2013, 497(7447): 33- 35.
[15] Martinoia E, Heck U, Wiemken A. Vacuoles as storage compartments for nitrate in barley leaves. Nature, 1981, 289(5795): 292- 294.
[16] Liu X J, Yang Y M, Li W Q, Li C Z, Duan D Y, Tadano T. Interactive effects of sodium chloride and nitrogen on growth and ion accumulation of a halophyte. Communications in Soil Science and Plant Analysis, 2004, 35(15): 2111- 2123.
[17] Taji T, Seki M, Satou M, Sakumi T, Kobayashi M, Ishiyama K, Narusaka Y, Namsaka M, Zhu J K, Shinozaki K. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiology, 2004, 135(3): 1697- 1709.
[18] Blom-Zandstra G, Lampe J E M. The effect of chloride and sulphate salts on the nitrate content in lettuce plants (LactucasativaL.). Journal of Plant Nutrition, 1983, 6(7): 611- 628.
[19] Campbell W H. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annual Review of Plant Biology, 1999, 50(4): 277- 303.
[20] 龔明, 趙方杰, 吳頌如, 汪良駒, 劉友亮. NaCl脅迫對(duì)大麥硝酸鹽吸收和有關(guān)的酶活的影響. 植物生理學(xué)通訊, 1990, (2): 13- 16.
[21] Flores P, Botella M, Cerdá A, Martínez V. Influence of nitrate level on nitrate assimilation in tomato (Lycopersiconesculentum) plants under saline stress. Canadian Journal of Botany, 2004, 82(2): 207- 213.
[22] 陳新平, 鄒春琴, 劉亞萍, 張福鎖. 菠菜不同品種累積硝酸鹽能力的差異及其原因. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2000, 6(1): 30- 34.
[23] Wang M, Shen Q R, Xu G H, Guo S W. New insight into the strategy for nitrogen metabolism in plant cells. International Review of Cell and Molecular Biology, 2014, 310: 1- 37.
[24] 杜永成, 王玉波, 范文婷, 蓋志佳, 于敦爽, 谷維, 張俐俐, 馬鳳鳴. 不同氮素水平對(duì)甜菜硝酸還原酶和亞硝酸還原酶活性的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2012, 18(3): 717- 723.
[25] 高奔, 宋杰, 劉金萍, 隋娜, 范海, 王寶山. 鹽脅迫對(duì)不同生境鹽地堿蓬光合及離子積累的影響. 植物生態(tài)學(xué)報(bào), 2010, 34(6): 671- 677.
[26] 米國(guó)華, 陳范駿, 春亮, 郭亞芬, 田秋英, 張福鎖. 玉米氮高效品種的生物學(xué)特征. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2007, 13(1): 155- 159.
Effects of nitrogen starvation onSuaedasalsafrom different habitats
LIU Ranran, SHI Weiwei, ZHANG Xiaodong, SONG Jie*
ShandongProvincialKeyLaboratoryofPlantStress,CollegeofLifeScience,ShandongNormalUniversity,Ji′nan250014,China
國(guó)家自然科學(xué)基金資助項(xiàng)目(31570392); 山東省自然科學(xué)基金資助項(xiàng)目(ZR2010CM005)
2015- 11- 05;
日期:2016- 08- 02
10.5846/stxb201511052251
*通訊作者Corresponding author.E-mail: songjieever@163.com
劉冉冉,時(shí)偉偉,張曉東,宋杰.不同生境鹽地堿蓬對(duì)氮饑餓的響應(yīng).生態(tài)學(xué)報(bào),2017,37(6):1881- 1887.
Liu R R, Shi W W, Zhang X D, Song J.Effects of nitrogen starvation onSuaedasalsafrom different habitats.Acta Ecologica Sinica,2017,37(6):1881- 1887.