亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        沉水植物莖葉微界面特性研究進(jìn)展

        2017-05-15 12:35:58韓睿明王國祥
        生態(tài)學(xué)報 2017年6期
        關(guān)鍵詞:界面生物環(huán)境

        董 彬,韓睿明,王國祥

        1 臨沂大學(xué)資源環(huán)境學(xué)院, 臨沂 276000 2 南京師范大學(xué)環(huán)境學(xué)院, 南京 210023 3 江蘇省地理信息資源開發(fā)與利用協(xié)同創(chuàng)新中心, 南京 210023

        沉水植物莖葉微界面特性研究進(jìn)展

        董 彬1,*,韓睿明2,3,王國祥2,3

        1 臨沂大學(xué)資源環(huán)境學(xué)院, 臨沂 276000 2 南京師范大學(xué)環(huán)境學(xué)院, 南京 210023 3 江蘇省地理信息資源開發(fā)與利用協(xié)同創(chuàng)新中心, 南京 210023

        沉水植物莖葉-水界面是淺水湖泊的重要界面之一,對湖泊生物地球化學(xué)循環(huán)和水環(huán)境質(zhì)量具有重要影響。富營養(yǎng)化水體中,大量的附著物常富集在沉水植物莖葉表面,形成了特殊的生物-水微界面。對該微界面特性進(jìn)行深入研究,有助于揭示沉水植物在微環(huán)境層面對富營養(yǎng)化水體中物質(zhì)循環(huán)的調(diào)控過程和機(jī)制。沉水植物莖葉微界面具有促進(jìn)水體養(yǎng)分轉(zhuǎn)化、改變環(huán)境因子及可溶性物質(zhì)的空間分布,增加物質(zhì)運(yùn)輸?shù)淖枇途嚯x、降低植物光合作用、調(diào)控重金屬等生態(tài)功能;微界面結(jié)構(gòu)及環(huán)境因子受水體營養(yǎng)鹽濃度、沉水植物種類及生長階段等因素的影響。對微界面結(jié)構(gòu)功能的主要研究方法進(jìn)行了分析總結(jié),并對沉水植物莖葉微界面的研究前沿進(jìn)行了展望。

        沉水植物;微界面;功能;富營養(yǎng)化

        富營養(yǎng)化水體中,大量的藻類、微生物、顆粒物、碎屑等附著在沉水植物莖葉表面,形成了特殊的生物-水微界面[1- 3]。沉水植物莖葉微界面是淺水湖泊的重要界面之一,對湖泊生物地球化學(xué)循環(huán)和水環(huán)境質(zhì)量具有重要影響[4]。由于莖葉微界面內(nèi)附著物復(fù)雜的物質(zhì)組成,光合作用和異養(yǎng)過程都有可能在微界面內(nèi)發(fā)生,可能會出現(xiàn)因這些生物通過代謝消耗或生產(chǎn)而造成的陡化學(xué)梯度分布。因此,微界面內(nèi)環(huán)境因子及溶解性物質(zhì)的分布可能與在上覆水中的分布存在很大差異[1,5-6]。微界面附著物及其內(nèi)氧化還原異質(zhì)微環(huán)境對植物生長發(fā)育和生態(tài)系統(tǒng)的養(yǎng)分遷移轉(zhuǎn)化可能具有重要的影響[7- 9]。沉水植物莖葉微界面作為一種特殊的微界面,關(guān)于其特性的知識可以豐富人們對莖葉微界面結(jié)構(gòu)和生態(tài)功能的認(rèn)識,加深對沉水植物對水環(huán)境生態(tài)調(diào)控功能的理解,促進(jìn)沉水植物莖葉微界面對富營養(yǎng)化水體物質(zhì)遷移轉(zhuǎn)化的調(diào)控過程和機(jī)制的研究。本文在總結(jié)分析當(dāng)前國內(nèi)外文獻(xiàn)的基礎(chǔ)上,對沉水植物莖葉微界面生態(tài)功能、影響因素和研究方法進(jìn)行了綜述和分析,并對沉水植物莖葉微界面的研究前沿進(jìn)行了展望。

        1 沉水植物莖葉微界面生態(tài)功能

        1.1 調(diào)控水體中營養(yǎng)物質(zhì)的遷移轉(zhuǎn)化

        環(huán)境微界面是在相對微觀的環(huán)境中,對物質(zhì)交換、轉(zhuǎn)移、轉(zhuǎn)化、反應(yīng)等具有影響的非均相介質(zhì)間的微觀界面[10]。沉水植物莖葉微界面由于植物的代謝作用和附著層內(nèi)好氧有機(jī)質(zhì)的分解作用而存在相互分異的氧化-還原微環(huán)境,是有機(jī)物降解、物質(zhì)循環(huán)及生命活動最強(qiáng)烈的場所,為物質(zhì)的交換、降解、轉(zhuǎn)化和沉積等提供了環(huán)境條件[11- 13]。沉水植物莖葉微界面附著物還為營養(yǎng)物質(zhì)的遷移轉(zhuǎn)化提供了物質(zhì)和能源條件[14]。沉水植物由于具有比較大的比表面積,為附著物提供了巨大的附著表面。微界面附著物可大量富集水體中的氮磷和有機(jī)質(zhì),植物-附著物亦可釋放大量的可溶性有機(jī)碳(DOC),平均釋放速率可達(dá)4.57 mgC m-2h-1[15],為養(yǎng)分的轉(zhuǎn)化提供物質(zhì)基礎(chǔ)。附著藻類可通過吸附顆粒物、自身生長吸收營養(yǎng)鹽、光合作用和代謝活動改變水體中的溶解氧(DO)、pH值等理化條件促進(jìn)水體中營養(yǎng)物質(zhì)的遷移轉(zhuǎn)化[16-17]。沉水植物莖葉表面還為附著細(xì)菌提供了巨大的生態(tài)位[18-19],克隆測序的研究表明沉水植物附著細(xì)菌的OTU 在幾十到上百的范圍內(nèi)[20]。在群落結(jié)構(gòu)上,Betaproteobacteria、Bacteroidetes、Alphaproteobacteria、Actinobacteria、Planctomycetes、Cyanobacteria等門類的細(xì)菌較為常見[21],其中包括大量的參與物質(zhì)循環(huán)過程的功能菌,大量碳、氮、磷等相關(guān)功能菌促進(jìn)了營養(yǎng)物質(zhì)的轉(zhuǎn)化[22]。目前的研究僅初步揭示了附著細(xì)菌在元素循環(huán)過程中的功能及作用,但鮮有文獻(xiàn)涉及其機(jī)理方面的信息。

        沉水植物莖葉微界面附著物主要是通過P吸收和促進(jìn)磷的沉淀、過濾水體中顆粒態(tài)的磷,通過光合作用升高水體的pH,加速Ca-P和碳酸鹽-磷酸鹽復(fù)合體的沉淀[16],促進(jìn)磷的遷移轉(zhuǎn)化。同時,沉水植物莖葉微界面是水中氨化、反硝化及厭氧氨氧化等脫氮行為機(jī)制的重要載體。沉水植物微界面附著物能通過水體理化條件、流速、自身吸收和硝化反硝化等途徑對水體氮循環(huán)產(chǎn)生影響[7,23-24]。Eriksson等經(jīng)多年對富營養(yǎng)化水體中篦齒眼子菜(Potamogetonpectinatus)附著生物反硝化作用進(jìn)行研究,發(fā)現(xiàn)附著生物反硝化作用比較重要,可與沉積物的相當(dāng)[7, 25]。Toet等發(fā)現(xiàn)污水處理廠出水的濕地中伊樂藻(Elodeanuttallii)附著生物的反硝化作用速率(14.8—33.1 mg N m-2d-1)顯著高于(0.5—25.5 mg N m-2d-1)和水體的(0.4—3.9 mg N m-2d-1)[8]。現(xiàn)有研究在一定程度上顯示了微界面對氮磷的遷移轉(zhuǎn)化具有明顯促進(jìn)作用,可能進(jìn)而將影響水生態(tài)系統(tǒng)的功能。與對海洋、湖泊沉積物-水界面物質(zhì)遷移轉(zhuǎn)化的深入研究相比[26-27],對淡水植物-水界面的物質(zhì)遷移轉(zhuǎn)化的研究相對較少[7, 28],難以揭示微界面物質(zhì)遷移轉(zhuǎn)化的過程和機(jī)制。

        1.2 改變環(huán)境因子及可溶性物質(zhì)的空間分布,增加物質(zhì)運(yùn)輸?shù)淖枇途嚯x

        一般來說,微界面厚度越大,環(huán)境因子及可溶性物質(zhì)的分布梯度越陡,物質(zhì)擴(kuò)散的阻力和距離越大[1,3,6]。微界面的厚度一般通過氧氣(O2)產(chǎn)生的波動結(jié)合鏡下觀測表征,厚度從幾十微米至幾個毫米不等[1,3,6]。微界面厚度主要受附著層厚度、水體流速[29]、養(yǎng)分濃度、光照、溫度等因素的影響。運(yùn)用微電極技術(shù)測定水生植物菹草(Potamogetoncrispus)[3, 6]馬來眼子菜(Potamogetonmalaianus)[1]、大葉藻(Zosteramarina)和宣藻(Scytosiphonlomentaria)[5]葉微界面O2和pH,發(fā)現(xiàn)空間上(2 mm范圍內(nèi)),在垂直葉片表面方向由外向內(nèi),越接近植物葉表面O2濃度和pH越高,空間分布梯度越明顯,而氧化還原電位(ORP)則越接近葉表面越低[1]。初步的研究表明:在附著層較厚的沉水植物微界面內(nèi),環(huán)境因子O2濃度和pH分布梯度較陡,空間差異較大,去除附著物這一屏障后,波動幅度明顯減小[1, 3, 6],氧化還原電位亦存在類似的變化[1]。目前對其他溶解物質(zhì)空間分布的研究尚比較少見。

        沉水植物葉表附著物的存在可增加微界面厚度,使游離態(tài)O2、二氧化碳(CO2)、可溶性無機(jī)碳(DIC)、DOC、氮、磷等可溶物質(zhì)運(yùn)輸和擴(kuò)散的距離和阻力增加[2, 15, 30]。葉表面游離態(tài)O2通量可通過菲克第一定律(Fick′s first law)計算,董彬等發(fā)現(xiàn)去除附著層之后,馬來眼子菜成熟莖葉微界面O2通量明顯增加了[1],表明微界面附著層阻礙了O2從莖葉表面向水體的遷移和擴(kuò)散。微界面內(nèi)其他溶解物質(zhì)的運(yùn)輸過程在沉積物-水界面、根-沉積物界面以及廢水生物膜中已得到深入研究[31- 33],但由于對沉水植物具有生理代謝活性,給莖葉微界面物質(zhì)運(yùn)輸研究帶來了一定的困難,致使微界面其他可溶性物質(zhì)分布的研究尚未得到開展。

        1.3 降低植物光合作用

        沉水植物莖葉微界面附著物可通過遮蔭和資源競爭減緩植物光合作用和生長。光通過附著層到達(dá)植物葉表面時會發(fā)生衰減,附著層厚度越大光衰減越多;光衰減在一定條件下會降低沉水植物的光合作用速率,最終對植物生長產(chǎn)生重要影響[34]。Jones等發(fā)現(xiàn)由于附著生物對水中CO2的利用,使沉水植物葉微界面CO2濃度降低至 2 μmol/L,無機(jī)碳濃度成為沉水植物光合作用的關(guān)鍵限制因子,對沉水植物光合作用產(chǎn)生了不利影響[35]。微界面附著物可使沉水植物葉綠素含量發(fā)生改變、葉片枯死量增加和光合作用產(chǎn)量下降[1, 36]。Laugaste等認(rèn)為:在富營養(yǎng)化湖泊藻類暴發(fā)過程中,首先發(fā)生附著生物的大量增殖,而后才發(fā)生浮游藻類暴發(fā),并指出附著生物的大量繁殖可能是藻類暴發(fā)和沉水植物消亡的重要誘因[37]。附著生物的大量增殖可能是富營養(yǎng)化水體中沉水植物消亡的一個重要原因,但在附著生物大量增殖是否是沉水植物消亡的最直接原因這一問題上,目前的觀點并不一致[38-39]。一部分學(xué)者認(rèn)為,由于浮游藻類大量繁殖所導(dǎo)致的水體透明度降低以及遮光作用所引起的水下光照缺乏是沉水植物消亡的直接原因;但還有人認(rèn)為是附著生物與水生植物對營養(yǎng)鹽和光等生態(tài)資源的競爭以及其產(chǎn)生的代謝產(chǎn)物對沉水植物光合作用的抑制,可能是造成沉水植物在富營養(yǎng)化水體中退化的關(guān)鍵[40]。研究證實,附著生物對沉水植物的抑制作用比營養(yǎng)鹽更加直接,對沉水植物產(chǎn)生遮蔭和資源競爭作用,降低了沉水植物的光合作用,影響了沉水植物的生長發(fā)育,加速沉水植物退化甚至消失[6, 9, 41]。

        1.4 對重金屬的調(diào)控作用

        與挺水植物和浮葉植物相比,沉水植物對水體中的重金屬有較強(qiáng)的吸收作用,主要通過吸附-解吸、沉積-溶解、離子交換、螯合-分解和氧化-還原反應(yīng)等過程進(jìn)行[42-43],重金屬進(jìn)入沉水植物體內(nèi)后,主要以螯合態(tài)和毒性較大的可溶態(tài)的形式存在。重金屬離子在進(jìn)入植物前首先接觸微界面附著物這一高度異質(zhì)性環(huán)境,其中的附著藻類可吸收重金屬[44];其中的非生物有機(jī)成分可與重金屬離子結(jié)合,降低重金屬離子活度,調(diào)節(jié)重金屬吸收速率;其中的氧化還原微環(huán)境可能改變重金屬離子理化反應(yīng)活性,影響重金屬吸收速率。因此,理論上沉水植物莖葉微界面附著物在水體重金屬離子進(jìn)入植物莖葉過程中發(fā)揮一定的調(diào)控作用。雖然對沉水植物吸收重金屬的研究已相當(dāng)深入細(xì)致,但沉水植物莖葉微界面對重金屬的調(diào)控作用的研究尚比較欠缺,但具體的調(diào)控過程和機(jī)制還有待進(jìn)一步探究。

        2 沉水植物莖葉微界面的影響因素

        沉水植物莖葉微界面的影響因素比較多,如植物種類、生長階段、光照、水體營養(yǎng)狀態(tài)、流速、生境等均可對微界面結(jié)構(gòu)和功能產(chǎn)生影響。不同種類的植物葉片由于其獨特的化學(xué)組成、物理結(jié)構(gòu)、葉片分泌或滲出的物質(zhì),如糖類、脂蛋白、有機(jī)酸、酚類等,它們作為微生物和藻類細(xì)菌生長的營養(yǎng)物質(zhì)、干擾物質(zhì)或者信號轉(zhuǎn)導(dǎo)物質(zhì),都會對微界面附著物的結(jié)構(gòu)、數(shù)量和多樣性造成影響[19]。隨著植物進(jìn)入生長期,附著物持續(xù)增加,附著層和擴(kuò)散邊界層厚度逐漸增大,植物生理活性逐漸增強(qiáng),微界面環(huán)境因子如DO、pH和ORP波動幅度和空間差異逐漸增大;進(jìn)入衰亡期,則出現(xiàn)相反的變化趨勢。在生長期,由于附著物比較稀疏,微界面主要受植物的影響。在衰亡期,由于植物生理活性的降低和附著物的持續(xù)積累增厚,微界面主要受附著物的影響[3]。

        光照對植物莖葉微界面的影響主要體現(xiàn)在兩個空間等級。光照隨著水體深度的增加而減弱,也會隨著進(jìn)入附著生物內(nèi)部的深度而削弱。光照隨著深度的增加而減弱主要是受懸浮固體的影響,進(jìn)而影響植物生長和附著生物的群落組成[45]。附著生物隨著深度梯度受光照調(diào)節(jié)而形成群落結(jié)構(gòu)、外形、密度和功能上的差異。附著生物群落自身也可以強(qiáng)烈地減弱光照,能夠極大的改變到達(dá)宿主植物的光照質(zhì)量[46]。水體營養(yǎng)狀態(tài)可影響微界面厚度和結(jié)構(gòu)。微界面附著物是水生態(tài)系統(tǒng)中的重要化學(xué)調(diào)節(jié)器,在其生長過程中能大量吸收水體和宿主中的養(yǎng)分。隨著營養(yǎng)鹽負(fù)荷的增加,沉水植物莖葉微界面附著物增加[9, 47]。在超富營養(yǎng)化水體中,透明度較低,但附著生物比浮游藻類更能適應(yīng)低光強(qiáng)環(huán)境;在較高濃度的氮、磷和光照充足的情況下,附著生物的生物量能達(dá)到最大,對氮、磷的吸收和轉(zhuǎn)化率也較高。水體流速對微界面的影響研究主要集中在沉積物-水微界面[48]和生物膜[49]上,對沉水植物-水微界面的研究較少[50-51]。一般來說,隨著流速的增大,微界面厚度降低,附著物厚度降低,促進(jìn)微界面物質(zhì)遷移轉(zhuǎn)化[48, 51]。

        3 研究方法

        3.1 對微界面結(jié)構(gòu)的研究

        對沉水植物莖葉微界面結(jié)構(gòu)研究方法進(jìn)行了分析總結(jié)(表1)。光學(xué)顯微鏡只能大體觀測到微界面的表面結(jié)構(gòu),協(xié)助檢測微界面附著物的全貌。聲學(xué)和光學(xué)速度計可用來描述附著生物群落附近和內(nèi)部的水力條件、去向和來自附著生物的邊界層運(yùn)輸。后來發(fā)展起來的掃描電鏡技術(shù)大大促進(jìn)了人們對微界面結(jié)構(gòu)的了解[52- 54]。其中環(huán)境掃描電子顯微鏡,沉水植物樣品可不經(jīng)任何前處理,在環(huán)境真空條件下直接分析的微界面結(jié)構(gòu),可更直觀地呈現(xiàn)微界面的真實結(jié)構(gòu),是研究沉水植物莖葉微界面結(jié)構(gòu)的理想工具。

        表1 沉水植物莖葉微界面結(jié)構(gòu)研究方法比較

        3.2 對微界面環(huán)境因子和可溶性物質(zhì)分布的研究

        4 研究展望

        近幾十年來,淡水沉水植物莖葉微界面的研究得到了快速發(fā)展,對沉水植物莖葉微界面附著微生物、藻類、微界面理化指標(biāo)、硝化作用、反硝化作用過程以及氮循環(huán)主要功能細(xì)菌已展開研究,并逐漸受到越來越多的關(guān)注。但是,由于沉水植物莖葉微界面的研究涉及植物生理生態(tài)學(xué)、環(huán)境化學(xué)、生物地球化學(xué)和微生物學(xué)等多種學(xué)科,同時還有賴于先進(jìn)的分析測試手段和微觀觀測手段的融合,因此對沉水植物莖葉微界面特性的研究亟需加強(qiáng)。今后的研究重點應(yīng)集中在如下幾方面:

        (1)建立沉水植物微界面各指標(biāo)的測定方法。綜合利用掃描電鏡技術(shù)、高分辨率微電極測定技術(shù)、微量化學(xué)分析技術(shù)、分子生物學(xué)技術(shù)和同位素示蹤技術(shù),對沉水植物莖葉微界面結(jié)構(gòu)組成、環(huán)境特征及影響因素等進(jìn)行深入研究,揭示微界面的時空變化規(guī)律,闡明微界面在富營養(yǎng)化水體中的生態(tài)功能。

        (2)加強(qiáng)沉水植物莖葉微界面養(yǎng)分物質(zhì)遷移轉(zhuǎn)化主要過程的研究,探明微界面結(jié)構(gòu)組成與養(yǎng)分轉(zhuǎn)化功能的耦合關(guān)系,揭示微界面結(jié)構(gòu)組成、微環(huán)境變化對養(yǎng)分循環(huán)的驅(qū)動和調(diào)控機(jī)制。

        (3)在野外調(diào)查研究的基礎(chǔ)上,開展受控條件下的實驗室長期研究,探討不同影響因素下沉水植物微界面的結(jié)構(gòu)特征及功能變化,進(jìn)一步建立可溶物質(zhì)的分布和運(yùn)輸模型,提出沉水植物莖葉微界面理論。

        [1] Dong B, Han R M, Wang G X, Cao X. O2, pH, and redox potential microprofiles aroundPotamogetonmalaianusmeasured using microsensors. PLoS One, 2014, 9(7): e101825.

        [2] Sand-Jensen K. Environmental variables and their effect on photosynthesis of aquatic plant communities. Aquatic Botany, 1989, 34(1/3): 5- 25.

        [3] 董彬, 韓睿明, 王國祥, 毛麗娜, 冀峰, 馬杰. 菹草莖葉微界面O2時空動態(tài). 生態(tài)學(xué)報, 2015, 35(24): 8202- 8210.

        [4] Mei X Y, Zhang X F. Periphyton biomass response to Phosphorus additions in an aquatic ecosystem dominated by submersed plants. Journal of Environmental Protection, 2013, 4(1): 83- 90.

        [5] Sand-Jensen K, Revsbech N P. Photosynthesis and light adaptation in epiphyte-macrophyte associations measured by oxygen microelectrodes. Limnology and Oceanography, 1987, 32(2): 452- 557.

        [6] Sand-Jensen K, Revsbech N P, J?rgensen B B. Microprofiles of oxygen in epiphyte communities on submerged macrophytes. Marine Biology, 1985, 89(1): 55- 62.

        [7] Eriksson P G. Interaction effects of flow velocity and oxygen metabolism on nitrification and denitrification in biofilms on submersed macrophytes. Biogeochemistry, 2001, 55(1): 29- 54.

        [8] Toet S, Huibers L H F A, Van Logtestijn R S P, Verhoeven J T A. Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia, 2003, 501(1/3): 29- 54.

        [9] 董彬, 陸全平, 王國祥, 毛麗娜, 林海, 周鋒, 魏宏農(nóng). 菹草(Potamogetoncrispus)附著物對水體氮、磷負(fù)荷的響應(yīng). 湖泊科學(xué), 2013, 25(3): 359- 365.

        [10] 曲久輝, 賀泓, 劉會娟. 典型環(huán)境微界面及其對污染物環(huán)境行為的影響. 環(huán)境科學(xué)學(xué)報, 2009, 29(1): 2- 10.

        [11] Risgaard-Petersen N, Jensen K. Nitrification and denitrification in the rhizosphere of the aquatic macrophyteLobeliadortmannaL. Limnology and Oceanography, 1997, 42(3): 529- 537.

        [12] Saralov A I, Galyamina V V, Belyaeva P G, Mol’kov D V. Nitrogen fixation and denitrification in plankton and periphyton of the Kama River Basin watercourses. Inland Water Biology, 2010, 3(2): 112- 118.

        [13] Coci M, Bodelier P L E, Laanbroek H J. Epiphyton as a niche for ammonia-oxidizing bacteria: detailed comparison with benthic and pelagic compartments in shallow freshwater lakes. Applied and Environmental Microbiology, 2008, 74(7): 1963- 1971.

        [14] Nielsen L P, Christensen P B, Revsbech N P, S?rensen J. Denitrification and oxygen respiration in biofilms studied with a microsensor for nitrous oxide and oxygen. Microbial Ecology, 1990, 19(1): 63- 72.

        [15] Demarty M, Prairie Y T. In situ dissolved organic carbon (DOC) release by submerged macrophyte-epiphyte communities in southern Quebec lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(9): 1522- 1531.

        [16] Dodds W K. The role of periphyton in phosphorus retention in shallow freshwater aquatic systems. Journal of Phycology, 2003, 39(5): 840- 849.

        [17] 秦伯強(qiáng), 宋玉芝, 高光. 附著生物在淺水富營養(yǎng)化湖泊藻-草型生態(tài)系統(tǒng)轉(zhuǎn)化過程中的作用. 中國科學(xué) C輯 生命科學(xué), 2006, 36(3): 283- 288.

        [18] K?rner S. Nitrifying and denitrifying bacteria in epiphytic communities of submerged macrophytes in a treated sewage channel. Acta Hydrochimica et Hydrobiologica, 1999, 27(1): 27- 31.

        [19] 何聃, 任麗娟, 邢鵬, 吳慶龍. 沉水植物附著細(xì)菌群落結(jié)構(gòu)及其多樣性研究進(jìn)展. 生命科學(xué), 2014, 26(2): 161- 168.

        [20] He D, Ren L J, Wu Q L. Epiphytic bacterial communities on two common submerged macrophytes in Taihu Lake: diversity and host-specificity. Chinese Journal of Oceanology and Limnology, 2012, 30(2): 237- 247.

        [21] Hempel M, Grossart H P, Gross E M. Community composition of bacterial biofilms on two submerged macrophytes and an artificial substrate in a pre-alpine lake. Aquatic Microbial Ecology, 2009, 58(1): 79- 94.

        [22] Schramm A. In situ analysis of structure and activity of the nitrifying community in biofilms, aggregates, and sediments. Geomicrobiology Journal, 2003, 20(4): 313- 333.

        [23] Belyayeva P G. Role of phytoperiphyton in organic matter production and Nitrogen cycle in river ecosystems (review). Hydrobiological Journal, 2013, 49(5): 12- 23.

        [24] Zhao D Y, Luo J, Zeng J, Wang M, Yan W M, Huang R, Wu Q L L. Effects of submerged macrophytes on the abundance and community composition of ammonia-oxidizing prokaryotes in a eutrophic lake. Environmental Science and Pollution Research, 2014, 21(1): 389- 398.

        [25] Eriksson P G, Weisner S E B. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems. Limnology and Oceanography, 1999, 44(8): 1993- 1999.

        [26] Trimmer M, Engstr?m P, Thamdrup B. Stark contrast in denitrification and anammox across the deep Norwegian trench in the Skagerrak. Applied and Environmental Microbiology, 2013, 79(23): 7381- 7389.

        [27] Yin G Y, Hou L J, Zong H B, Ding P X, Liu M, Zhang S F, Cheng X L, Zhou J L. Denitrification and anaerobic ammonium oxidization across the sediment-water interface in the hypereutrophic ecosystem, Jinpu Bay, in the Northeastern Coast of China. Estuaries and Coasts, 2015, 38(1): 211- 219.

        [28] Tonkin J D, Death R G, Barquín J. Periphyton control on stream invertebrate diversity: is periphyton architecture more important than biomass?. Marine and Freshwater Research, 2014, 65(9): 818- 829.

        [29] Nishihara G N, Ackerman J D. The effect of hydrodynamics on the mass transfer of dissolved inorganic carbon to the freshwater macrophyteVallisneriaamericana. Limnology and Oceanography, 2006, 51(6): 2734- 2745.

        [30] Rahalkar M, Deutzmann J, Schink B, Bussmann I. Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of lake constance (Germany). Applied and Environmental Microbiology, 2009, 75(1): 119- 126.

        [31] Revsbech N P, Nielsen L P, Christensen P B, S?rensen J. Combined oxygen and nitrous oxide microsensor for denitrification studies. Applied and Environmental Microbiology, 1988, 54(9): 2245- 2249.

        [32] Schreiber F, Polerecky L, de Beer D. Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments. Analytical Chemistry, 2008, 80(4): 1152- 1158.

        [33] Wang Y C, Li Z K, Zhou L, Feng L L, Fan N W, Shen J. Effects of macrophyte-associated nitrogen cycling bacteria on denitrification in the sediments of the eutrophic Gonghu Bay, Taihu Lake. Hydrobiologia, 2013, 700(1): 329- 341.

        [34] 宋玉芝, 黃瑾, 秦伯強(qiáng). 附著生物對太湖常見的兩種沉水植物快速光曲線的影響. 湖泊科學(xué), 2010, 22(6): 935- 940.

        [35] Jones J I, Eaton J W, Hardwick K. The influence of periphyton on boundary layer conditions: a pH microelectrode investigation. Aquatic Botany, 2000, 67(3): 191- 206.

        [36] Asaeda T, Sultana M, Manatunge J, Fujino T. The effect of epiphytic algae on the growth and production ofPotamogetonperfoliatusL. in two light conditions. Environmental and Experimental Botany, 2004, 52(3): 225- 238.

        [37] Laugaste R, Lessok K. Planktonic algae and epiphyton of the littoral in lake Peipsi, estonia. limnologica-ecology and management of inland waters, 2004, 34(1/2): 90- 97.

        [38] Harwell M C, Havens K E. Experimental studies on the recovery potential of submerged aquatic vegetation after flooding and desiccation in a large subtropical lake. Aquatic Botany, 2003, 77(2): 135- 151.

        [39] Roberts E, Kroker J, K?rner S, Nicklisch A. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia, 2003, 506- 509(1/3): 525- 530.

        [40] Liboriussen L, Jeppesen E. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology, 2003, 48(3): 418- 531.

        [41] 秦伯強(qiáng), 高光, 朱廣偉, 張運(yùn)林, 宋玉芝, 湯祥明, 許海, 鄧建明. 湖泊富營養(yǎng)化及其生態(tài)系統(tǒng)響應(yīng). 科學(xué)通報, 2013, 58(10): 855- 864.

        [42] Fritioff ?, Kautsky L, Greger M. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution, 2005, 133(2): 265- 274.

        [44] Pandey L K, Kumar D, Yadav A, Rai J, Gaur J P. Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecological Indicators, 2014, 36(1): 272- 279.

        [45] Marks J C, Lowe R L. Interactive effects of nutrient availability and light levels on the periphyton composition of a large oligotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50(6): 1270- 1278.

        [46] van Dijk G M. Dynamics and attenuation characteristics of periphyton upon artificial substratum under various light conditions and some additional observations on periphyton uponPotamogetonpectinatusL. Hydrobiologia, 1993, 252(2): 143- 161.

        [47] ?zkan K, Jeppesen E, Johansson L S, Beklioglu M. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment. Freshwater Biology, 2010, 55(2): 463- 575.

        [48] Berninger U G, Huettel M. Impact of flow on oxygen dynamics in photosynthetically active sediments. Aquatic Microbial Ecology, 1997, 12(3): 291- 302.

        [49] Hart D D, Biggs B J F, Nikora V I, Flinders C A. Flow effects on periphyton patches and their ecological consequences in a New Zealand river. Freshwater Biology, 2013, 58(8): 1588- 1602.

        [50] Binzer T, Borum J, Pedersen O. Flow velocity affects internal oxygen conditions in the seagrassCymodoceanodosa. Aquatic Botany, 2005, 83(3): 239- 247.

        [51] Nishihara G N, Ackerman J D. Diffusive boundary layers do not limit the photosynthesis of the aquatic macrophyteVallisneriaamericanaat moderate flows and saturating light levels. Limnology and Oceanography, 2009, 54(6): 1874- 1882.

        [52] Allanson B R. The fine structure of the periphyton ofCharasp. andPotamogetonnatansfrom Wytham Pond, Oxford, and its significance to the macrophyte-periphyton metabolic model of R. G. Wetzel and H. L. Allen. Freshwater Biology, 1973, 3(6): 535- 542.

        [53] Rogers K H, Breen C M. Effects of epiphyton onPotamogetoncrispusL. leaves. Microbial Ecology, 1981, 7(4): 351- 363.

        [54] 劉凱輝, 張松賀, 呂小央, 郭川, 韓冰, 周為民. 南京花神湖3種沉水植物表面附著微生物群落特征. 湖泊科學(xué), 2015, 27(1): 103- 112.

        [55] Larson C, Passy S I. Spectral fingerprinting of algal communities: a novel approach to biofilm analysis and biomonitoring. Journal of Phycology, 2005, 41(2): 439- 546.

        [56] Fang F, Yang L Y, Gan L, Guo L Y, Hu Z X, Yuan S J, Chen Q K, Jiang L J. DO, pH, and Eh microprofiles in cyanobacterial granules from Lake Taihu under different environmental conditions. Journal of Applied Phycology, 2014, 26(4): 1689- 1699.

        [57] Kühl M, Polerecky L. Functional and structural imaging of phototrophic microbial communities and symbioses. Aquatic Microbial Ecology, 2008, 53(1): 99- 118.

        [58] Nakamura Y, Satoh H, Okabe S, Watanabe Y. Photosynthesis in sediments determined at high spatial resolution by the use of microelectrodes. Water Research, 2004, 38(9): 2440- 2448.

        [59] Babauta J T, Atci E, Ha P T, Lindemann S R, Ewing T, Call D R, Fredrickson J K, Beyenal H. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat. Frontiers in Microbiology, 2014, 5(11): 11.

        [60] Tan S Y, Yu T, Shi H C. Microsensor determination of multiple microbial processes in an oxygen-based membrane aerated biofilm. Water Science and Technology, 2014, 69(5): 909- 914.

        [61] 王文林, 王國祥, 萬寅婧, 夏勁, 唐曉燕, 陳昕, 梁斌, 莊巍. 光照和生長階段對菖蒲根系泌氧的影響. 生態(tài)學(xué)報, 2013, 33(12): 3688- 3696.

        [62] Tu Q C, Yu H, He Z L, Deng Y, Wu L Y, Van Nostrand J D, Zhou A F, Voordeckers J, Lee Y J, Qin Y J, Hemme C L, Shi Z, Xue K, Yuan T, Wang A J, Zhou J Z. GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Molecular Ecology Resources, 2014, 14(5): 914- 928.

        Research advances in and perspectives on characteristics of the micro-boundary layer around leaves and stems of submerged macrophytes

        DONG Bin1,*, HAN Ruiming2,3, WANG Guoxiang2,3

        1CollegeofResourceandEnvironment,LinyiUniversity,Linyi276000,China2SchoolofEnvironment,NanjingNormalUniversity,Nanjing210023,China3JiangsuCenterforCollaborativeInnovationinGeographicalInformationResourceDevelopmentandApplication,Nanjing210023,China

        Submerged macrophytes constitute an important component of shallow aquatic ecosystems. They provide most of the accessible surface area, constant survival substrates, and available nutrients for periphyton, which remains attached to the stem and leaf surfaces of submerged macrophytes and forms a special bio-water boundary layer. As one of the most important interfaces in shallow lakes, the submerged macrophyte-water boundary layer plays roles in macrophyte growth, biogeochemical cycling, water environment maintenance, and ecological regulation. The present study summarizes the research advancements regarding characteristics of the micro-boundary layer (MBL) around leaves and stems of submerged macrophytes. The ecological functions, biotic and environmental factors, and research methods are identified and reviewed. Perspectives for the focus of future research on MBL around submerged macrophytes are raised.The MBL around submerged macrophytes has important ecological functions. The dense periphyton in MBL exerts negative effects on photosynthesis in submerged macrophytes, creates a barrier hindering the transport of dissolved substances, such as O2, and leads to the degradation and even disappearance of submerged macrophytes in eutrophic waters. The plant stress derived from pollutants may be alleviated because of the periphytic barrier in the MBL. The epiphytic bacteria in the MBL can be of considerable importance for nutrient transformation and cycling in eutrophic ecosystems. Periphyton is an assemblage of algae, bacteria, fungi, protozoan, inorganic matter, and organic detritus that remains attached to submerged macrophyte surfaces where significant spatio-temporal variations exist in the MBL. The heterogeneity of micro-environmental parameters is the key factor shaping the MBL around submerged macrophytes, given the complex constituents, changing spatial structure, and fluctuation of oxidation-reduction status within this microcosm. At the spatial heterogeneity, in the vertical direction of stem and leaf surfaces, O2concentration and pH in the MBL increase markedly with decreasing distance to the surface of leaves and stems and peak at the surface. The trend of the oxidation-reduction potential (ORP) is reverse.Plant species and growing stages are biotic factors that affect the MBL, and nutrients load, light intensity, flow velocity, and habitat are the major environmental factors. The growth stages of macrophytes create large fluctuations and dynamics in O2, pH, ORP, and soluble substrates at the surface of stems and leaves by changing the thickness of the diffusive boundary layer around the macrophyte. O2concentration and pH in the MBL around the leaves and stems of submerged macrophytes increase when macrophytes begin the rapid growing stage, which is accompanied by gradually increasing spatial differentiation. O2concentration and pH in the MBL around the leaves and stems reach peaks at the stable growth stage, and increase slightly or decline when the periphyton layer begins the declining stage. However, the ORP shows the opposite trend to that of O2, and pH. MBL is mainly affected synergistically by plant physiological and periphyton characteristics during the life cycle of macrophytes. Environmental factors affect the MBL via periphyton composition, periphyton mass, and macrophytes growth. Scanning electron microscopy, high spatial resolution of microsensors, microchemical analysis, molecular biology techniques, and isotope tracer techniques are applicable approaches for the study of the characteristics of MBL; however, they have not yet been comprehensively utilization. To further investigate the leaf and stem MBL, we must focus on establishing standard methods and models of the MBL structure and functions to verify the modulation processes and mechanism of the MBL on the biogeochemical cycling in eutrophicated waters. Long-term ecological research under controlled conditions is required.

        submerged macrophytes; micro-boundary layer; functions; eutrophication

        國家自然科學(xué)基金資助項目(41173078,41403064); 江蘇省自然科學(xué)基金青年基金資助項目(BK20140922);江蘇省教育廳高校自然科學(xué)研究面上項目(14KJB610007)

        2015- 11- 11;

        日期:2016- 08- 02

        10.5846/stxb201511112288

        *通訊作者Corresponding author.E-mail: dongbin@lyu.edu.cn

        董彬,韓睿明,王國祥.沉水植物莖葉微界面特性研究進(jìn)展.生態(tài)學(xué)報,2017,37(6):1769- 1776.

        Dong B, Han R M, Wang G X.Research advances in and perspectives on characteristics of the micro-boundary layer around leaves and stems of submerged macrophytes.Acta Ecologica Sinica,2017,37(6):1769- 1776.

        猜你喜歡
        界面生物環(huán)境
        生物多樣性
        生物多樣性
        上上生物
        長期鍛煉創(chuàng)造體內(nèi)抑癌環(huán)境
        一種用于自主學(xué)習(xí)的虛擬仿真環(huán)境
        國企黨委前置研究的“四個界面”
        孕期遠(yuǎn)離容易致畸的環(huán)境
        第12話 完美生物
        航空世界(2020年10期)2020-01-19 14:36:20
        環(huán)境
        基于FANUC PICTURE的虛擬軸坐標(biāo)顯示界面開發(fā)方法研究
        亚洲精品无码久久久久sm| 国产精品亚洲av无人区一区香蕉| 国产av一区二区亚洲精品| 男女视频在线观看一区| 国产爆乳美女娇喘呻吟| 日韩精品无码一本二本三本色| 亚洲国产精品毛片av不卡在线| 福利体验试看120秒| 国产人澡人澡澡澡人碰视频| 日韩在线免费| 国产成人无码a区在线观看视频| 人妻丰满熟妇av无码区免| 漂亮人妻被黑人久久精品| 亚洲精品国产一二三无码AV| 免费视频成人 国产精品网站 | 精品丝袜一区二区三区性色| 亚洲av日韩av天堂久久不卡| 日本成人午夜一区二区三区| 狠狠躁夜夜躁av网站中文字幕| 欧美性猛交xxxx三人| 国产成人无码区免费内射一片色欲| 久久久久久中文字幕有精品| 国产经典免费视频在线观看 | 蜜桃av噜噜噜一区二区三区| 日韩av在线不卡一区二区| 亚洲精品国产第一区二区| 天天色影网| 国产精品 高清 尿 小便 嘘嘘| 国产成人免费一区二区三区| 亚洲国产精品日韩专区av| 亚洲精品国产成人久久av盗摄| 少妇连续高潮爽到抽搐| 胸大美女又黄的网站| 男女啪啪无遮挡免费网站| 女女同性黄网在线观看 | 国产无卡视频在线观看| 日韩精品中文一区二区三区在线| 乱色熟女综合一区二区三区| 欧美在线三级艳情网站| 亚洲综合伦理| 成年男人午夜视频在线看|