綜述審校
復(fù)旦大學(xué)附屬腫瘤醫(yī)院頭頸外科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海 200032
甲狀腺癌的DNA甲基化研究進(jìn)展
曹一鳴綜述,朱永學(xué)審校
復(fù)旦大學(xué)附屬腫瘤醫(yī)院頭頸外科,復(fù)旦大學(xué)上海醫(yī)學(xué)院腫瘤學(xué)系,上海 200032
DNA甲基化是一種重要的表觀遺傳學(xué)改變,在腫瘤的發(fā)病、診斷、預(yù)后評(píng)估及治療中都有重要的臨床意義。甲狀腺癌是臨床最常見的內(nèi)分泌系統(tǒng)惡性腫瘤,目前國(guó)內(nèi)外關(guān)于甲狀腺癌的DNA甲基化的研究相對(duì)較少,該文總結(jié)近年來甲狀腺癌領(lǐng)域相關(guān)的基因甲基化研究,就甲狀腺癌的DNA甲基化研究進(jìn)展進(jìn)行綜述。
甲狀腺癌;表觀遺傳學(xué);DNA甲基化
甲狀腺癌是臨床最常見的內(nèi)分泌系統(tǒng)惡性腫瘤,在全世界范圍內(nèi)約占全部惡性腫瘤的1%,并且近年來發(fā)病率迅速上升[1]。甲狀腺癌的治療以手術(shù)治療和放射性131I治療為主,輔以甲狀腺激素抑制治療,總體預(yù)后相對(duì)較好,其中最常見的甲狀腺乳頭狀癌(papillary thyroid cancer,PTC)術(shù)后10年生存率可達(dá)90%,但臨床上仍有部分病例侵襲性較強(qiáng),容易出現(xiàn)淋巴結(jié)轉(zhuǎn)移和復(fù)發(fā)[2-3]。目前臨床上對(duì)甲狀腺癌手術(shù)的范圍、頸部淋巴結(jié)清掃的選擇及放射性131I治療的適應(yīng)證均存在爭(zhēng)議,表觀遺傳學(xué)研究或許可以為我們提供甲狀腺癌在早期診斷、治療方案選擇和預(yù)后評(píng)估方面的新思路。
近年來關(guān)于甲狀腺癌的遺傳學(xué)和表觀遺傳學(xué)研究逐漸增多,基因突變和甲基化改變?cè)诩谞钕侔┌l(fā)生、發(fā)展過程中發(fā)揮重要作用[4]。BRAF、RAS和RET基因突變?cè)诩谞钕侔┲邪l(fā)揮的作用已得到廣泛認(rèn)可,其中BRAF突變?cè)赑TC中最為常見,約占29%~83%[5-6],具有BRAF突變的腫瘤往往具有較差的臨床表型和不良預(yù)后,BRAF突變致癌的相關(guān)機(jī)制目前還不明確,DNA的甲基化可能在其中發(fā)揮重要作用[7-10]。DNA甲基化是一種重要的表觀遺傳學(xué)的改變,啟動(dòng)子CpG島的甲基化改變具有調(diào)控基因表達(dá)、維持染色體完整性和調(diào)節(jié)DNA重組等作用[11]。抑癌基因啟動(dòng)子的高甲基化可使其表達(dá)降低,而癌基因啟動(dòng)子的低甲基化可使其表達(dá)升高,從而導(dǎo)致腫瘤的發(fā)生。DNA甲基化是惡性腫瘤發(fā)生中的一種常見改變,反映了環(huán)境因素與遺傳因素的相互作用,DNA甲基化具有可逆性,有望通過藥物治療改變基因的甲基化狀態(tài),達(dá)到治療腫瘤的目的,因此,研究DNA甲基化在腫瘤的發(fā)病機(jī)制、早期診斷和預(yù)后評(píng)估方面均具有重要意義[12]。
目前,在甲狀腺腫瘤細(xì)胞中研究較多的主要有絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路、磷脂酰肌醇3激酶/絲/蘇氨酸蛋白激酶(phosphatidylinositol 3 kinase/serine/ threonine protein kinase,PI3K/Akt)通路、促甲狀腺激素受體/環(huán)磷酸腺苷(thyroid stimulating hormone receptor/cyclic adenosine monophosphate,TSHR/cAMP)通路和Wnt/β連環(huán)蛋白(Wnt/ β-catenin)通路,許多基因的遺傳學(xué)改變或表觀遺傳學(xué)改變會(huì)激活或抑制這些通路,進(jìn)而促使腫瘤發(fā)生[13-15]。例如,在PTC中,常常出現(xiàn)RET/PTC重排和RAS、BRAF基因突變,這些改變?cè)贛APK通路激活的患者中約占70%,其在腫瘤發(fā)生過程中起到關(guān)鍵作用[16]。另外,許多抑癌基因的甲基化與BRAF基因突變相關(guān),如ARAS相關(guān)區(qū)域家族基因1A(Ras-association domain family 1A,RASSF1A)、維甲酸受體β2(retinoic acid receptor β2,RARβ2)、組織金屬蛋白酶抑制劑3(tissue inhibitor of metalloproteinase 3,TIMP3)、溶質(zhì)載體蛋白家族5A8(solute carrier family 5 member 8 gene,SLC5A8)和mut-L同源基因1(mut-L homolog 1,MLH1)等,提示其很可能通過MAKP通路發(fā)揮作用。而在濾泡性甲狀腺癌(follicular thyroid cancer,F(xiàn)TC)中則更多出現(xiàn)PI3K/Akt通路的激活,PIK3CA基因的突變和擴(kuò)增在其中發(fā)揮重要作用,RAS、人第10號(hào)染色體缺失的磷酸酶及張力蛋白同源基因(phosphatase and tensin homolog deleted on chromosome ten,PTEN)、甲狀腺轉(zhuǎn)錄因子-過氧化物酶體增殖物激活受體(paired box 8/peroxisome proliferatoractivated receptor,PAX8/PPAR)、金屬硫蛋白1G(metallothionein 1G,MG1T)等基因的突變和甲基化都是PI3K/Akt通路激活和腫瘤發(fā)生的重要因素。TSHR/cAMP信號(hào)通路的相關(guān)研究比前兩者少,TSHR基因突變?cè)诩谞钕侔┲胁怀R姡玊SHR基因的高甲基化和低表達(dá)則常常出現(xiàn),另外其下游叉頭基因E1(forkhead box E1,F(xiàn)OXE1)也常出現(xiàn)基因突變和異常甲基化,可能與腫瘤發(fā)生相關(guān)。Wnt/β-catenin通路的激活被認(rèn)為是甲狀腺未分化癌(undifferentiated thyroid cancer,UTC)發(fā)生中的晚期事件,近年來有研究證實(shí),其在PTC中也發(fā)揮重要作用[17],上皮鈣黏附素(E-cadherin,ECAD)和谷胱甘肽過氧化物酶3(glutathione peroxidase 3,GPX3)等基因的甲基化可能在其中發(fā)揮調(diào)控作用[18]。上述4條通路并不是互相獨(dú)立的,許多基因可以受多條通路調(diào)控,如PAX8基因可以同時(shí)參與PI3K/Akt通路與Wnt/β-catenin通路的激活[19-20]。
該文總結(jié)近年來甲狀腺癌領(lǐng)域甲基化基因的相關(guān)研究,從4條主要信號(hào)通路入手,列舉了目前已知的和潛在的可能在甲狀腺癌中存在異常甲基化的基因,簡(jiǎn)單分析其與BRAF突變的相關(guān)性(表1),探討他們?cè)诩谞钕兕I(lǐng)域可能的應(yīng)用價(jià)值[6,10,21-40]。
1.1 RASSF1A
RASSF1A是Ras超家族的成員,是一種在各種器官中廣泛表達(dá)的抑癌基因,它通過抑制細(xì)胞周期蛋白D1,延緩細(xì)胞周期,并通過活化哺乳動(dòng)物不育系20樣激酶1(mammalian sterile 20-like kinase 1,MST1)、MST2等介導(dǎo)細(xì)胞凋亡。RASSF1A在正常組織中廣泛表達(dá),而在腫瘤組織中經(jīng)常表達(dá)缺失,在多種腫瘤細(xì)胞中都發(fā)現(xiàn)其啟動(dòng)子存在高甲基化狀態(tài)。有文獻(xiàn)報(bào)道,RASSF1A在甲狀腺癌中甲基化率為15%~75%[41-42]。Xing等[21]研究了在正常甲狀腺組織、甲狀腺濾泡性腺瘤(follicular adenoma,F(xiàn)A)、FTC和PTC中RASSF1A的甲基化情況,發(fā)現(xiàn)其甲基化率分別為0%、44%、75%和20%,提示RASSF1A基因的異常甲基化是腫瘤發(fā)生過程中的早期事件。Kunstman等[22]針對(duì)PTC中RASSF1A甲基化的研究表明,相比正常甲狀腺組織,PTC中RASSF1A發(fā)生高甲基化(8.9% vs 2.1%),并且RASSF1A的高甲基化狀態(tài)與腫瘤的多灶性和包膜外侵犯相關(guān)。
1.2 RARβ2
RARβ2在調(diào)節(jié)上皮細(xì)胞的生長(zhǎng)及腫瘤進(jìn)展中發(fā)揮重要作用。在甲狀腺癌轉(zhuǎn)移復(fù)發(fā)治療中,維甲酸治療可以恢復(fù)轉(zhuǎn)移灶的攝碘能力,進(jìn)而提高放射性131I治療的療效。Brait等[43]的研究顯示,RARβ2在甲狀腺癌中的甲基化率為14%,高于正常甲狀腺組織(7%)和甲狀腺良性腫瘤(2%),并且RARβ2基因的甲基化與BRAF基因突變相關(guān)。Vivaldi等[24]研究發(fā)現(xiàn),甲狀腺癌細(xì)胞株中存在RARβ2基因高甲基化,通過5-氮雜胞苷處理后發(fā)現(xiàn),RARβ2表達(dá)明顯提高,且腫瘤的生長(zhǎng)受到抑制,這種抑制在去除5-氮雜胞苷后仍然存在,提示基因甲基化在腫瘤發(fā)生、發(fā)展中起關(guān)鍵作用。
表 1 甲狀腺癌中常見的異常甲基化基因Tab. 1 Aberrant methylated genes in thyroid cancer
1.3 TIMP3
TIMP3能夠與基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)結(jié)合,有效抑制MMPs的活性,進(jìn)而抑制腫瘤的生長(zhǎng)、侵襲、轉(zhuǎn)移和血管生成,發(fā)揮抑癌作用[44]。TIMP3基因啟動(dòng)子的甲基化已在多種惡性腫瘤中得到證實(shí),并常與惡性腫瘤的生長(zhǎng)、侵襲和淋巴結(jié)轉(zhuǎn)移相關(guān)。Hu等[25]的研究指出,TIMP3基因在甲狀腺癌中高甲基化,且與腫瘤的包膜外侵犯、淋巴結(jié)轉(zhuǎn)移和病灶多發(fā)性相關(guān)。
1.4 SLC5A8
SLC5A8是一種位于甲狀腺濾泡細(xì)胞頂膜的被動(dòng)碘轉(zhuǎn)運(yùn)體,具有Na+/短鏈脂肪酸協(xié)同轉(zhuǎn)運(yùn)載體的功能。有研究指出,SLC5A8是結(jié)腸癌的抑癌基因,在其第一外顯子區(qū)常常出現(xiàn)高甲基化并導(dǎo)致基因沉默,恢復(fù)表達(dá)則可抑制腫瘤細(xì)胞生長(zhǎng)。SLC5A8在甲狀腺癌中也常常出現(xiàn)高甲基化,其功能尚不明確,但其高甲基化很可能在甲狀腺癌的發(fā)生中起到關(guān)鍵作用。Porra等[30]的研究提示,SLC5A8基因在典型PTC中高甲基化(90%),而在其他類型的PTC中甲基化率僅為20%,此外SLC5A8的低表達(dá)還與BRAF T1796A基因突變具有相關(guān)性,提示SLC5A8甲基化可能通過MAPK通路發(fā)揮作用。
2.1 PTEN基因
PTEN基因編碼一種特異性的磷酸酶,可以使磷脂酰肌醇三磷酸(phosphatidyl inositol triphosphate 3,PIP3)去磷酸化,從而抑制PI3K/ Akt信號(hào)通路的激活。而PI3K/Akt通路是甲狀腺細(xì)胞中最為重要的信號(hào)通路之一,在細(xì)胞增殖、細(xì)胞功能等方面發(fā)揮基礎(chǔ)性作用,其異常激活在腫瘤發(fā)生過程中起重要作用[45]。有研究表明,甲狀腺癌中PTEN基因低表達(dá),并且與PTEN突變無相關(guān)性,因此表觀遺傳學(xué)改變很可能在其中發(fā)揮關(guān)鍵作用[31]。Alvarez-Nu?ez等[32]的研究發(fā)現(xiàn),PTEN在正常甲狀腺組織、PTC、FA和FTC中的甲基化率分別為0、45.7%、83.3%和85.7%,提示PTEN在甲狀腺癌中高度甲基化,尤其是FA。Hou等[31]研究了FA、FTC和UTC中PTEN的甲基化狀態(tài),結(jié)果提示,PTEN甲基化水平在FA(12%)、FTC(51%)和UTC(69%)中逐漸提高,并且PTEN的甲基化與PI3K/Akt信號(hào)通路中基因(如PIK3CA、RAS)突變相關(guān),提示PTEN甲基化及PI3K/Akt信號(hào)通路的改變?cè)诩谞钕倌[瘤發(fā)生、發(fā)展過程中發(fā)揮重要作用。
2.2 MT1G
MT1G是金屬硫蛋白家族的成員,是一種高度保守的富含半胱氨酸的小分子,主要參與金屬相關(guān)的轉(zhuǎn)運(yùn)工作,如為各種酶和轉(zhuǎn)錄因子提供鋅和銅等。有研究表明,MT1G基因在甲狀腺癌、肝癌、結(jié)腸癌和前列腺癌中均存在異常甲基化。體內(nèi)外實(shí)驗(yàn)均證實(shí),恢復(fù)MT1G基因的表達(dá)可以抑制腫瘤的生長(zhǎng),提示MT1G基因具有抑癌作用。Fu等[33]的研究表明,MT1G基因在甲狀腺癌中存在異常甲基化(在惡性腫瘤中為30.3%,在良性腫瘤中為18.8%),且表達(dá)顯著降低,提示MT1G基因的甲基化與其低表達(dá)相關(guān)。進(jìn)一步研究提示,恢復(fù)MG1T基因的表達(dá)可以抑制PTC的生長(zhǎng)和浸潤(rùn),并誘導(dǎo)細(xì)胞周期抑制和細(xì)胞凋亡,其作用機(jī)制可能是抑制PI3K/AKT通路或Rb/E2F通路。另外,MG1T的高甲基化狀態(tài)還與腫瘤的淋巴結(jié)轉(zhuǎn)移相關(guān)(OR=2.40,95%CI:1.19~4.83)。
2.3 共濟(jì)失調(diào)-毛細(xì)血管擴(kuò)張突變基因(ataxia telangiectasia mutated gene,ATM)
ATM編碼的蛋白屬于PI3/PI4酶家族,ATM及其相關(guān)激酶ATR在細(xì)胞周期調(diào)節(jié)通路中發(fā)揮重要作用,參與DNA雙鏈斷裂的修復(fù)過程,并維護(hù)基因的穩(wěn)定性。Smith等[46]的研究表明,ATM在PTC中高甲基化(50%),正常甲狀腺組織為0,但ATM的甲基化狀態(tài)與腫瘤的T分期、淋巴結(jié)轉(zhuǎn)移情況及術(shù)后復(fù)發(fā)均不存在明顯的相關(guān)性。
3.1 甲狀腺特異性基因
甲狀腺特異性基因主要包括TSHR、鈉-碘同向轉(zhuǎn)運(yùn)體(sodium/iodide symporter,NIS)、甲狀腺球蛋白(thyroglobulin,TG)和甲狀腺過氧化物酶(thyroid peroxidase,TPO)基因,這些基因主要在甲狀腺碘攝取和維持甲狀腺正常功能方面發(fā)揮重要作用。有研究表明,在BRAF突變的甲狀腺癌中,TSHR、NIS、Tg和TPO表達(dá)均降低[35],在PTC中,TSHR和NIS基因均存在異常甲基化且表達(dá)降低,低表達(dá)的TSHR和NIS可能與腫瘤的發(fā)生、發(fā)展相關(guān),而TSHR和NIS的低表達(dá)同時(shí)又減弱了腫瘤細(xì)胞的攝碘能力,從而成為放射性131I治療失敗的重要原因[35,47-48]。
3.2 甲狀腺特異轉(zhuǎn)錄因子1(thyroid transcription factor-1,TTF-1)
TTF-1是一種在甲狀腺、肺和中樞神經(jīng)系統(tǒng)中發(fā)現(xiàn)的含有同源結(jié)構(gòu)域的轉(zhuǎn)錄因子。TTF-1能調(diào)控甲狀腺相關(guān)基因(TG、TPO、TSHR和NIS)的表達(dá),從而在調(diào)控甲狀腺的生長(zhǎng)發(fā)育和功能方面發(fā)揮重要作用。Katoh等[49]研究證實(shí),TTF-1基因在甲狀腺癌中低表達(dá)。Kondo等[50]研究TTF-1在甲狀腺癌中的甲基化狀態(tài)發(fā)現(xiàn),TTF-1基因在細(xì)胞系和UTC中高甲基化且低表達(dá),而在正常甲狀腺和PTC樣本中不出現(xiàn)高甲基化改變。
4.1 ECAD基因
ECAD基因主要介導(dǎo)細(xì)胞間的黏附作用,在結(jié)腸癌、乳腺癌等多種惡性腫瘤中都可以觀測(cè)到其表達(dá)水平的改變,ECAD的低表達(dá)常與惡性腫瘤的生長(zhǎng)、侵襲、淋巴結(jié)轉(zhuǎn)移和不良預(yù)后相關(guān)。Smith等[46]研究發(fā)現(xiàn),甲狀腺癌中ECAD甲基化程度升高,為56%(18/32),正常甲狀腺組織為0(0/27),進(jìn)一步研究發(fā)現(xiàn),ECAD的甲基化與甲狀腺癌的T分期和淋巴結(jié)轉(zhuǎn)移情況均無明顯相關(guān)性,在經(jīng)過2.6年隨訪后,其甲狀腺癌復(fù)發(fā)情況也與ECAD甲基化無相關(guān)性。
4.2 Y染色體相關(guān)HMG-box基因17(SRY-related HMG-box 17,SOX17)
SOX17編碼特異性的轉(zhuǎn)錄因子,在胚胎發(fā)育過程中起重要作用,它可以抑制腫瘤細(xì)胞中Wnt/β-catenin通路的激活,從而在多種惡性腫瘤中發(fā)揮抑癌基因的作用。Li等[37]研究指出,SOX17在PTC中甲基化程度升高,為60.3%(38/63),正常甲狀腺組織為0(0/10),SOX17的甲基化狀態(tài)與β-catenin的表達(dá)成負(fù)相關(guān)。
5.1 P16
P16是多種腫瘤的抑癌基因,其編碼產(chǎn)物為細(xì)胞周期蛋白依賴的蛋白激酶抑制劑,是一種細(xì)胞周期的負(fù)性調(diào)控因子,能夠通過抑制細(xì)胞周期蛋白依賴的蛋白激酶4的活性,進(jìn)而阻止Rb蛋白磷酸化,阻止細(xì)胞進(jìn)入S期,從而調(diào)控細(xì)胞周期。P16基因的異常表達(dá),會(huì)使細(xì)胞周期蛋白依賴的蛋白激酶4過度活化,刺激細(xì)胞的異常增殖進(jìn)而導(dǎo)致腫瘤的發(fā)生[39]。Ishida等[51]研究報(bào)道,P16基因高甲基化(35.9%)。國(guó)內(nèi)研究報(bào)道的P16基因甲基化率為15.6%~54.0%[52-54]。
5.2 MLH1
MLH1是重要的錯(cuò)配修復(fù)基因,在DNA的損傷修復(fù)和維持基因組穩(wěn)定方面發(fā)揮重要作用。在結(jié)腸癌中發(fā)現(xiàn)MLH1基因啟動(dòng)子存在高甲基化,MLH1基因的低表達(dá)與BRAF V600E突變、RET/PTC重排及微衛(wèi)星不穩(wěn)定表型(microsatellite instability,MSI)相關(guān)。Brait等[43]研究了甲狀腺中MLH1的甲基化狀態(tài),結(jié)果顯示,在正常甲狀腺細(xì)胞中MLH1甲基化率為7%,在FA中為19%,而在甲狀腺癌中為27%,提示MLH1基因甲基化可能為腫瘤發(fā)生過程中的早期事件。Santos等[6]的研究提示,甲狀腺癌中存在MLH1的異常甲基化和低表達(dá),并且MLH1的低表達(dá)狀態(tài)與BRAF、IDH1和NRAS基因突變及MSI相關(guān)。Guan等[38]研究指出,MLH1的異常甲基化狀態(tài)與PTC的淋巴結(jié)轉(zhuǎn)移情況顯著相關(guān),提示MLH1有望作為PTC淋巴結(jié)轉(zhuǎn)移的分子標(biāo)志物。
5.3 死亡相關(guān)蛋白激酶(death associated protein,DAPK)
DAPK是一種鈣調(diào)蛋白調(diào)節(jié)的Akt,主要在細(xì)胞凋亡過程中發(fā)揮重要作用,DAPK的異常表達(dá)可以阻礙正常的細(xì)胞凋亡進(jìn)程,從而導(dǎo)致腫瘤的發(fā)生。有研究表明,多種腫瘤細(xì)胞中存在DAPK基因的異常甲基化和基因沉默,包括甲狀腺癌。Hu[25]等的研究指出,DAPK基因的高甲基化水平與腫瘤的大小和病灶多發(fā)性相關(guān)。
近年來,DNA甲基化是一個(gè)新的研究熱點(diǎn),許多基因作為潛在的異常甲基化位點(diǎn)得到研究,包括MGMT、FOXE1、CITED1、RUNX3、RASSF2、RASSF10、FGFR2、GPX3、DACT2、RIZ1、Maspin和14-3-3σ等[26,55-65],其他信號(hào)通路如JAK-STAT、NF-κB、HIF1α和Notch等在甲狀腺癌中的作用也逐漸得到認(rèn)識(shí)[14,66],但目前這些基因和通路在甲狀腺癌中研究報(bào)道相對(duì)較少,多數(shù)作用機(jī)制目前并不明確,有待進(jìn)一步的研究。
隨著過去十幾年來遺傳學(xué)和表觀遺傳學(xué)的不斷發(fā)展,越來越多的研究者認(rèn)識(shí)到腫瘤的發(fā)生并不完全由遺傳基因決定,表觀遺傳學(xué)的后天影響同樣發(fā)揮重要作用。甲狀腺癌中的表觀遺傳學(xué)改變主要體現(xiàn)為抑癌基因和甲狀腺相關(guān)基因的異常甲基化。研究甲狀腺癌的DNA甲基化可以為我們提供新的分子標(biāo)志物,為早期診斷、治療方案選擇和預(yù)后評(píng)估提供可靠依據(jù)。另外,設(shè)計(jì)針對(duì)特異性靶點(diǎn)的去甲基化藥物,重新激活抑癌基因功能,有望成為治療腫瘤的新方案。
[1] TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
[2] HUNDAHL S A, CADY B, CUNNINGHAM M P, et al. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the United States during 1996. U.S. and German Thyroid Cancer Study Group. An American College of Surgeons Commission on Cancer Patient Care Evaluation study[J]. Cancer, 2000, 89(1): 202-217.
[3] CHO B Y, CHOI H S, PARK Y J, et al. Changes in the clinicopathological characteristics and outcomes of thyroid cancer in Korea over the past four decades[J]. Thyroid, 2013, 23(7): 797-804.
[4] VU-PHAN D, KOENIG R J. Genetics and epigenetics of sporadic thyroid cancer[J]. Mol Cell Endocrinol, 2014, 386(1-2): 55-66.
[5] XING M. BRAF mutation in thyroid cancer[J]. Endocr Relat Cancer, 2005, 12(2): 245-262.
[6] SANTOS J C, BASTOS A U, CERUTTI J M, et al. Correlation of MLH1 and MGMT expression and promoter methylation with genomic instability in patients with thyroid carcinoma[J]. BMC Cancer, 2013, 13: 79.
[7] DA S R, DE PAULA H S, LEAL C B, et al. BRAF overexpression is associated with BRAF V600E mutation in papillary thyroid carcinomas[J]. Genet Mol Res, 2015, 14(2): 5065-5075.
[8] SCHULTEN H J, ALOTIBI R, AL-AHMADI A, et al. Effect of BRAF mutational status on expression profiles in conventional papillary thyroid carcinomas[J]. BMC Genomics, 2015, 16 Suppl 1: S6.
[9] XING M, ALZAHRANI A S, CARSON K A, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer[J]. J Clin Oncol, 2015, 33(1): 42-50.
[10] ZHANG B, LIU S, ZHANG Z, et al. Analysis of BRAF (V600E) mutation and DNA methylation improves the diagnostics of thyroid fine needle aspiration biopsies[J]. Diagn Pathol, 2014, 9: 45.
[11] JONES P A, BAYLIN S B. The epigenomics of cancer[J]. Cell, 2007, 128(4): 683-692.
[12] XING M. Gene methylation in thyroid tumorigenesis[J]. Endocrinology, 2007, 148(3): 948-953.
[13] GOMEZ S J. Diagnostic and prognostic markers in differentiated thyroid cancer[J]. Curr Genomics, 2011, 12(8): 597-608.
[14] JIN S, BORKHUU O, BAO W, et al. Signaling pathways in thyroid cancer and their therapeutic implications[J]. J Clin Med Res, 2016, 8(4): 284-296.
[15] WHITE M G, NAGAR S, ASCHEBROOK-KILFOY B, et al. Epigenetic alterations and canonical pathway disruption in papillary thyroid cancer: a genome-wide methylation analysis[J]. Ann Surg Oncol, 2016, 23(7): 2302-2309.
[16] XING M. Molecular pathogenesis and mechanisms of thyroid cancer[J]. Nature Reviews Cancer, 2013, 13(3): 184-199.
[17] SASTRE-PERONA A, SANTISTEBAN P. Role of the Wnt pathway in thyroid cancer[J]. Front Endocrinol (Lausanne), 2012, 3: 31.
[18] TSIAMBAS E, RAGOS V, GEORGAKOPOULOS G, et al. E-cadherin/α-catenin deregulated co-expression in thyroid carcinoma based on tissue microarray digital image analysis[J]. J BUON, 2016, 21(2): 450-455.
[19] PARK J Y, YI J W, PARK C H, et al. Role of BRAF and RAS mutations in extrathyroidal extension in papillary thyroid cancer[J]. Cancer Genomics Proteomics, 2016, 13(2): 171-181.
[20] SASTRE-PERONA A, RIESCO-EIZAGUIRRE G, ZABALLOS M A, et al. β-catenin signaling is required for RAS-driven thyroid cancer through PI3K activation[J]. Oncotarget, 2016, 7(31): 49435-49449.
[21] XING M, COHEN Y, MAMBO E, et al. Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis[J]. Cancer Res, 2004, 64(5): 1664-1668.
[22] KUNSTMAN J W, KORAH R, HEALY J M, et al. Quantitative assessment of RASSF1A methylation as a putative molecular marker in papillary thyroid carcinoma[J]. Surgery, 2013, 154(6): 1255-1262.
[23] JIANG J L, TIAN G L, CHEN S J, et al. Promoter methylation of p16 and RASSF1A genes may contribute to the risk of papillary thyroid cancer: a meta-analysis[J]. Exp Ther Med, 2015, 10(4): 1549-1555.
[24] VIVALDI A, MIASAKI F Y, CIAMPI R, et al. Redifferentiation of thyroid carcinoma cell lines treated with 5-Aza-2’-deoxycytidine and retinoic acid[J]. Mol Cell Endocrinol, 2009, 307(1-2): 142-148.
[25] HU S, EWERTZ M, TUFANO R P, et al. Detection of serum deoxyribonucleic acid methylation markers: a novel diagnostic tool for thyroid cancer[J]. J Clin Endocrinol Metab, 2006, 91(1): 98-104.
[26] WANG D, CUI W, WU X, et al. RUNX3 site-specific hypermethylation predicts papillary thyroid cancer recurrence[J]. Am J Cancer Res, 2014, 4(6): 725-737.
[27] HOQUE M O, ROSENBAUM E, WESTRA W H, et al. Quantitative assessment of promoter methylation profiles in thyroid neoplasms[J]. J Clin Endocrinol Metab, 2005, 90(7): 4011-4018.
[28] HU S, LIU D, TUFANO R P, et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer[J]. Int J Cancer, 2006, 119(10): 2322-232.
[29] BRAIT M, LOYO M, ROSENBAUM E, et al. Correlation between BRAF mutation and promoter methylation of TIMP3, RARβ2 and RASSF1A in thyroid cancer[J]. Epigenetics, 2012, 7(7): 710-719.
[30] PORRA V, FERRARO-PEYRET C, DURAND C, et al. Silencing of the tumor suppressor gene SLC5A8 is associated with BRAF mutations in classical papillary thyroid carcinomas[J]. J Clin Endocrinol Metab, 2005, 90(5): 3028-3035.
[31] HOU P, JI M, XING M. Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/ AKT signaling pathway in thyroid tumors[J]. Cancer, 2008, 113(9): 2440-2447.
[32] ALVAREZ-NU?EZ F, BUSSAGLIA E, MAURICIO D, et al. PTEN promoter methylation in sporadic thyroid carcinomas[J]. Thyroid, 2006, 16(1): 17-23.
[33] FU J, LV H, GUAN H, et al. Metallothionein 1G functions as a tumor suppressor in thyroid cancer through modulating the PI3K/Akt signaling pathway[J]. BMC Cancer, 2013, 13: 462.
[34] CHEN J, LIU C, YIN L, et al. The tumor-promoting function of ECRG4 in papillary thyroid carcinoma and its related mechanism[J]. Tumour Biol, 2015, 36(2): 1081-1089.
[35] CHOI Y W, KIM H J, KIM Y H, et al. B-RafV600E inhibits sodium iodide symporter expression via regulation of DNA methyltransferase 1[J]. Exp Mol Med, 2014, 46: e120.
[36] HOQUE M O, ROSENBAUM E, WESTRA W H, et al. Quantitative assessment of promoter methylation profiles in thyroid neoplasms[J]. J Clin Endocrinol Metab, 2005, 90(7): 4011-4018.
[37] LI J Y, HAN C, ZHENG L L, et al. Epigenetic regulation of Wnt signaling pathway gene SRY-related HMG-box 17 in papillary thyroid carcinoma[J]. Chin Med J (Engl), 2012, 125(19): 3526-3531.
[38] GUAN H, JI M, HOU P, et al. Hypermethylation of the DNA mismatch repair gene hMLH1 and its association with lymph node metastasis and T1799A BRAF mutation in patients with papillary thyroid cancer[J]. Cancer, 2008, 113(2): 247-255.
[39] ELISEI R, SHIOHARA M, KOEFFLER H P, et al. Genetic and epigenetic alterations of the cyclin-dependent kinase inhibitors p15INK4b and p16INK4a in human thyroid carcinoma cell lines and primary thyroid carcinomas[J]. Cancer, 1998, 83(10): 2185-2193.
[40] SASSA M, HAYASHI Y, WATANABE R, et al. Aberrant promoter methylation in overexpression of CITED1 in papillary thyroid cancer[J]. Thyroid, 2011, 21(5): 511-517.
[41] VASKO V, FERRAND M, DI CRISTOFARO J, et al. Specific pattern of RAS oncogene mutations in follicular thyroid tumors[J]. J Clin Endocrinol Metab, 2003, 88(6): 2745-2752.
[42] SCHAGDARSURENGIN U, RICHTER A M, HORNUNG J, et al. Frequent epigenetic inactivation of RASSF2 in thyroid cancer and functional consequences[J]. Mol Cancer, 2010, 9: 264.
[43] BRAIT M, LOYO M, ROSENBAUM E, et al. Correlation between BRAF mutation and promoter methylation of TIMP3, RARβ2 and RASSF1A in thyroid cancer[J]. Epigenetics, 2012, 7(7): 710-719.
[44] QI J H, EBRAHEM Q, MOORE N, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2[J]. Nat Med, 2003, 9(4): 407-415.
[45] CHU E C, TARNAWSKI A S. PTEN regulatory functions in tumor suppression and cell biology[J]. Med Sci Monit, 2004, 10(10): A235-A241.
[46] SMITH J A, FAN C Y, ZOU C, et al. Methylation status of genes in papillary thyroid carcinoma[J]. Arch Otolaryngol Head Neck Surg, 2007, 133(10): 1006-1011.
[47] LIU D, HU S, HOU P, et al. Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant[J]. Clin Cancer Res, 2007, 13(4): 1341-1349.
[48] JOSEPH B, JI M, LIU D, et al. Lack of mutations in the thyroid hormone receptor (TR) alpha and beta genes but frequent hypermethylation of the TRbeta gene in differentiated thyroid tumors[J]. J Clin Endocrinol Metab, 2007, 92(12): 4766-4770.
[49] KATOH R, KAWAOI A, MIYAGI E, et al. Thyroid transcription factor-1 in normal, hyperplastic, and neoplastic follicular thyroid cells examined by immunohistochemistry and nonradioactive in situ hybridization[J]. Mod Pathol, 2000, 13(5): 570-576.
[50] KONDO T, NAKAZAWA T, MA D, et al. Epigenetic silencing of TTF-1/NKX2-1 through DNA hypermethylation and histone H3 modulation in thyroid carcinomas[J]. Lab Invest, 2009, 89(7): 791-799.
[51] ISHIDA E, NAKAMURA M, SHIMADA K, et al. DNA hypermethylation status of multiple genes in papillary thyroid carcinomas[J]. Pathobiology, 2007, 74(6): 344-352.
[52] 戴亞麗, 蔡德鴻, 陳 宏, 等. 促進(jìn)甲狀腺激素受體和p16抑癌基因甲基化與乳頭狀甲狀腺癌臨床病理的關(guān)系[J].首都醫(yī)科大學(xué)學(xué)報(bào), 2012, 33(3): 361-365.
[53] 彭正良, 曹仁賢, 文格波, 等. 甲狀腺乳頭狀癌組織中p16基因甲基化的研究[J]. 現(xiàn)代腫瘤醫(yī)學(xué), 2006, 14(12): 1501-1503.
[54] 戴亞麗, 葉 靜, 張 帆, 等. 乳頭狀甲狀腺癌抑癌基因TSHR、P16和RAS啟動(dòng)子甲基化研究[J]. 中華內(nèi)分泌代謝雜志, 2010, 26(5): 381-384.
[55] SCHAGDARSURENGIN U, RICHTER A M, WOHLER C, et al. Frequent epigenetic inactivation of RASSF10 in thyroid cancer[J]. Epigenetics, 2009, 4(8): 571-576.
[56] SCHAGDARSURENGIN U, RICHTER A M, HORNUNG J, et al. Frequent epigenetic inactivation of RASSF2 in thyroid cancer and functional consequences[J]. Mol Cancer, 2010, 9: 264.
[57] KALLEL R, BELGUITH-MAALEJ S, AKDI A, et al. Genetic investigation of FOXE1 polyalanine tract in thyroid diseases: new insight on the role of FOXE1 in thyroid carcinoma[J]. Cancer Biomark, 2010, 8(1): 43-51.
[58] ZHAO Z, HERMAN J G, BROCK M V, et al. Methylation of DACT2 promotes papillary thyroid cancer metastasis by activating Wnt signaling[J]. PLoS One, 2014, 9(11): e112336.
[59] BYCHKOV A, SAENKO V, NAKASHIMA M, et al. Patterns of FOXE1 expression in papillary thyroid carcinoma by immunohistochemistry[J]. Thyroid, 2013, 23(7): 817-828.
[60] KONDO T, ZHENG L, LIU W, et al. Epigenetically controlled fibroblast growth factor receptor 2 signaling imposes on the RAS/BRAF/mitogen-activated protein kinase pathway tomodulate thyroid cancer progression[J]. Cancer Res, 2007, 67(11): 5461-5470.
[61] LAL G, PADMANABHA L, PROVENZANO M, et al. Regulation of 14-3-3sigma expression in human thyroid carcinoma is epigenetically regulated by aberrant cytosine methylation[J]. Cancer Lett, 2008, 267(1): 165-174.
[62] LAL G, PADMANABHA L, SMITH B J, et al. RIZ1 is epigenetically inactivated by promoter hypermethylation in thyroid carcinoma[J]. Cancer, 2006, 107(12): 2752-2759.
[63] ZHAO Z, HERMAN J G, BROCK M V, et al. Methylation of DACT2 promotes papillary thyroid cancer metastasis by activating Wnt signaling[J]. PLoS One, 2014, 9(11): e112336.
[64] ZHAO H, LI J, LI X, et al. Silencing GPX3 expression promotes tumor metastasis in human thyroid cancer[J]. Curr Protein Pept Sci, 2015, 16(4): 316-321.
[65] KIKUCHI Y, TSUJI E, YAGI K, et al. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation[J]. Front Genet, 2013, 4: 271.
[66] XING M. Molecular pathogenesis and mechanisms of thyroid cancer[J]. Nat Rev Cancer, 2013, 13(3): 184-199.
Research progress of DNA methylation in thyroid cancer
CAO Yiming, ZHU Yongxue (Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China)
ZHU Yongxue E-mail: zhuyongxue163@126.com
DNA methylation is an important epigenetic modification. Evaluating the status of DNA methylation could be useful for diagnosis, prognostic evaluation and predicting the risk of cancer. Thyroid cancer is the most prevalent endocrine malignancy in humans. Growing evidence shows that epigenetic abnormalities participate with genetic alterations in carcinogenesis of thyroid cancer. This article reviewed the recent research progress of DNA methylation in thyroid cancer.
Thyroid cancer; Epigenetics; DNA methylation
10.19401/j.cnki.1007-3639.2017.04.011
R736.1
A
1007-3639(2017)04-0304-08
2016-09-15
2016-11-20)
上海市自然科學(xué)基金資助項(xiàng)目(12ZR1406800)。
朱永學(xué) E-mail: zhuyongxue163@126.com