黃興成,石孝均,李渝,張雅蓉,劉彥伶,張文安,蔣太明
(1貴州省土壤肥料研究所,貴陽 550006;2農(nóng)業(yè)部貴州耕地保育與農(nóng)業(yè)環(huán)境科學觀測實驗站,貴陽 550006;3西南大學資源環(huán)境學院,重慶 400716;4貴州省農(nóng)業(yè)科學院,貴陽 550006)
基礎(chǔ)地力對黃壤區(qū)糧油高產(chǎn)、穩(wěn)產(chǎn)和可持續(xù)生產(chǎn)的影響
黃興成1,2,石孝均3,李渝1,2,張雅蓉1,2,劉彥伶1,2,張文安1,2,蔣太明2,4
(1貴州省土壤肥料研究所,貴陽 550006;2農(nóng)業(yè)部貴州耕地保育與農(nóng)業(yè)環(huán)境科學觀測實驗站,貴陽 550006;3西南大學資源環(huán)境學院,重慶 400716;4貴州省農(nóng)業(yè)科學院,貴陽 550006)
【目的】黃壤是中國重要的地帶性土壤,黃壤區(qū)糧油作物的高產(chǎn)、穩(wěn)產(chǎn)和可持續(xù)生產(chǎn)對于地區(qū)糧食安全和經(jīng)濟民生至關(guān)重要。研究黃壤區(qū)主要糧油作物基礎(chǔ)地力特征,評價地力對糧油作物高產(chǎn)、穩(wěn)產(chǎn)和可持續(xù)生產(chǎn)的影響,為黃壤耕地地力保育和區(qū)域作物綠色生產(chǎn)提供依據(jù)?!痉椒ā恳劳杏?006—2013年測土配方施肥項目在黃壤區(qū)開展的3 515個田間試驗(馬鈴薯434個、油菜525個、玉米1 318個、水稻1 238個),調(diào)查每個試驗點無肥對照(CK)和氮磷鉀肥(N2P2K2)處理作物產(chǎn)量;基于作物估計方法,分析了糧油基礎(chǔ)地力產(chǎn)量和地力貢獻率特征;采用直線擬合和邊界線分析評價了基礎(chǔ)地力對作物施肥產(chǎn)量及產(chǎn)量差的影響;采用穩(wěn)定性指數(shù)和可持續(xù)性指數(shù)評估了基礎(chǔ)地力對產(chǎn)量穩(wěn)定性和可持續(xù)性的影響?!窘Y(jié)果】黃壤區(qū)馬鈴薯、油菜、玉米和水稻平均基礎(chǔ)地力產(chǎn)量分別為10.8、1.13、4.57和5.73 Mg·hm-2,平均地力貢獻率分別為50.8%、49.0%、59.0%和 70.8%;基礎(chǔ)地力產(chǎn)量越高,地力對作物施肥產(chǎn)量的貢獻率越大。作物施肥產(chǎn)量與基礎(chǔ)地力產(chǎn)量顯著正相關(guān),馬鈴薯、油菜、玉米和水稻施肥產(chǎn)量與基礎(chǔ)地力產(chǎn)量的直線擬合方程決定系數(shù)分別為0.476、0.284、0.382和0.366(P<0.001)。邊界線分析結(jié)果表明,馬鈴薯、油菜、玉米和水稻4種作物的施肥產(chǎn)量潛力分別為42.8、4.07、11.8和12.4 Mg·hm-2;隨著基礎(chǔ)地力的提升,作物施肥產(chǎn)量差降低,產(chǎn)量的穩(wěn)定性和可持續(xù)性增加?!窘Y(jié)論】提升基礎(chǔ)地力能夠提升作物施肥產(chǎn)量,降低產(chǎn)量差,有利于黃壤區(qū)糧油作物的高產(chǎn)、穩(wěn)產(chǎn)和可持續(xù)生產(chǎn)。
黃壤;基礎(chǔ)地力;邊界線分析;產(chǎn)量差;穩(wěn)定性指數(shù);可持續(xù)性指數(shù)
【研究意義】通過“綠色革命”和集約化耕種等措施,中國主要糧油作物產(chǎn)量自建國以來均大幅提升[1-4]。然而,由于人口增長和糧食消費結(jié)構(gòu)變化等因素,世界糧油需求仍不斷增長。研究表明,到2050年全球糧食產(chǎn)量至少要比2005年增加60%—110%才能滿足人類消費和牲畜飼料對糧食的需求[5]。據(jù)LI等[4]預測,到 2030年,中國的糧食產(chǎn)量至少要比 2011年增長35.8%才能保證糧食自給。黃壤是中國中亞熱帶濕潤區(qū)的地帶性土壤,保障黃壤區(qū)糧油產(chǎn)量安全關(guān)系著地區(qū)發(fā)展與經(jīng)濟民生,地區(qū)糧油的高產(chǎn)、穩(wěn)產(chǎn)和可持續(xù)生產(chǎn)更符合國家糧食安全的戰(zhàn)略目標?!厩叭搜芯窟M展】前人研究[6-7]指出,影響中國糧食產(chǎn)量的關(guān)鍵因素是糧食播種面積、化肥施用量和播面單產(chǎn)。然而,由于黃壤區(qū)主要是山地丘陵地貌,耕地后備資源嚴重不足,耕地面積總量不可能大幅度增加;同時,目前中國單位面積化肥施用量已超過作物實際需求[8],過量施肥導致肥料利用率降低[9],作物產(chǎn)量不穩(wěn)定性和不可持續(xù)性增加[10],并導致生態(tài)環(huán)境問題[11-12]和資源浪費[13],結(jié)合當前“化肥零增長”要求,化肥投入量也不可能大幅增加;因此,只有通過耕地保育,提升單位面積土壤生產(chǎn)能力,保證產(chǎn)量的穩(wěn)定和可持續(xù)才是未來黃壤區(qū)糧食安全的出路。李忠芳等[14]和曾祥明等[15]通過長期定位試驗發(fā)現(xiàn),作物的施肥產(chǎn)量與基礎(chǔ)地力顯著正相關(guān),地力越高,作物施肥產(chǎn)量越高。FAN等[16]、李忠芳等[17]、梁濤等[18]采用地力貢獻率評價了基礎(chǔ)地力對施肥產(chǎn)量的貢獻,表明地力貢獻率與基礎(chǔ)地力呈顯著正相關(guān),基礎(chǔ)地力越高,作物產(chǎn)量越高,地力對施肥的產(chǎn)量貢獻率越大。梁濤等[18]研究表明,區(qū)域基礎(chǔ)地力越高的土壤在施肥和良好管理下所獲得的產(chǎn)量潛力越高,施肥產(chǎn)量的可持續(xù)性和穩(wěn)定性越高。基礎(chǔ)地力的研究為指導區(qū)域合理的耕地保育和作物綠色生產(chǎn)提供了依據(jù)?!颈狙芯壳腥朦c】評估基礎(chǔ)地力對黃壤區(qū)糧油高產(chǎn)、穩(wěn)產(chǎn)和可持續(xù)生產(chǎn)的影響,對確保地區(qū)糧食安全和實現(xiàn)區(qū)域作物綠色生產(chǎn)有重要意義。然而,目前針對黃壤糧油作物基礎(chǔ)地力現(xiàn)狀的研究未見報道,對地區(qū)糧食安全影響如何尚不清晰?!緮M解決的關(guān)鍵問題】選取2006—2013年測土配方施肥項目在黃壤區(qū)開展的3 515個田間試驗,對黃壤區(qū)馬鈴薯、油菜、玉米和水稻4種主要的糧油作物基礎(chǔ)地力產(chǎn)量和地力貢獻率特征進行評估,揭示基礎(chǔ)地力對黃壤區(qū)糧油產(chǎn)量高產(chǎn)、穩(wěn)產(chǎn)和可持續(xù)生產(chǎn)的影響,為黃壤耕地地力保育和區(qū)域作物綠色生產(chǎn)提供依據(jù)。
1.1 調(diào)查數(shù)據(jù)來源
本研究以黃壤分布面積最廣、耕地比重較大的貴州、四川和重慶3個省市為研究區(qū),調(diào)查了研究區(qū)黃壤分布區(qū) 2006—2013年全國測土配方施肥項目開展的3 515個田間試驗(馬鈴薯434個、油菜525個、玉米1 318個、水稻1 238個)。試驗點分布于調(diào)查區(qū)典型的糧油種植區(qū)域(圖 1),各試驗點選擇具有代表性的土壤肥力地塊(土壤基礎(chǔ)性質(zhì)見表 1)進行試驗。每個試驗在同一地塊開展一季試驗,試驗開始前為農(nóng)民常規(guī)施肥管理。調(diào)查了每個試驗點無肥對照(CK)和氮磷鉀肥(N2P2K2)處理的作物產(chǎn)量數(shù)據(jù),對照處理不施用任何肥料,氮磷鉀肥處理按照試驗點當?shù)販y土配方施肥推薦氮磷鉀肥料用量施用。試驗由試驗點當?shù)氐霓r(nóng)技部門開展,試驗的肥料、作物品種、田間操作和產(chǎn)量測定等均參照農(nóng)業(yè)部《測土配方施肥技術(shù)規(guī)范》[19]進行。
圖1 不同作物試驗點分布Fig. 1 Geographical distribution of on-farm trials sites for different crops
表1 不同作物試驗點土壤基礎(chǔ)性質(zhì)Table 1 The basic properties of soils at on-farm trials sites for different crops
1.2 數(shù)據(jù)處理與分析
本研究基于作物估計方法[16]進行土壤基礎(chǔ)地力評估,土壤基礎(chǔ)地力產(chǎn)量以作物無肥對照處理產(chǎn)量來評價;氮磷鉀肥處理產(chǎn)量代表養(yǎng)分供應充足下的現(xiàn)實生產(chǎn)力。為了評價基礎(chǔ)地力對作物施肥產(chǎn)量的貢獻,計算地力貢獻率(RCsoil)[16,18]。
式中,YCK為無肥對照處理產(chǎn)量,YN2P2K2為氮磷鉀肥處理產(chǎn)量。
采用線性回歸[18]和邊界線分析方法[20]量化基礎(chǔ)地力對施肥產(chǎn)量和產(chǎn)量差的影響。邊界線分析方法被廣泛用于描述現(xiàn)實產(chǎn)量與潛在產(chǎn)量的差距和評估產(chǎn)量限制因子[21-23]。邊界線擬合方法如下:式中,Yp是邊界線預測產(chǎn)量,Yatt是區(qū)域氮磷鉀肥處理可獲得的最高預測產(chǎn)量,K、R為方程常數(shù)。
根據(jù)邊界線擬合得到的最高產(chǎn)量(Yatt)計算產(chǎn)量差(yield gap)。
式中,Ygap是產(chǎn)量差,表示區(qū)域氮磷鉀肥處理可獲得的最高預測產(chǎn)量與試驗現(xiàn)實生產(chǎn)力之差。
作物產(chǎn)量的穩(wěn)定性和可持續(xù)性是反映作物產(chǎn)量安全的重要指標。作物產(chǎn)量的穩(wěn)定性用穩(wěn)定性指數(shù) SI(stability index)衡量,SI 值越低表明產(chǎn)量越穩(wěn)定[24];可持續(xù)性指數(shù)SYI(sustainable yield index)是衡量作物是否能持續(xù)生產(chǎn)的一個參數(shù),SYI值越大,產(chǎn)量的可持續(xù)性越好。計算方法如下:
式中,STD(YN2P2K2)、AVE(YN2P2K2)和YN2P2K2-max分別為氮磷鉀肥處理產(chǎn)量的標準差、平均值和最大值。
采用Excel 2016、Sigmaplot12.5、ArcGIS10.3軟件進行數(shù)據(jù)統(tǒng)計分析和作圖。
2.1 糧油作物基礎(chǔ)地力產(chǎn)量及地力貢獻率特征
不同糧油作物的基礎(chǔ)地力統(tǒng)計結(jié)果(表2)表明,黃壤區(qū)馬鈴薯基礎(chǔ)地力產(chǎn)量在1.2—33.9 Mg·hm-2,平均基礎(chǔ)地力產(chǎn)量10.8 Mg·hm-2;地力貢獻率在17.3%—99.6%,平均地力貢獻率50.8%。油菜基礎(chǔ)地力產(chǎn)量在0.19—2.74 Mg·hm-2,平均基礎(chǔ)地力1.13 Mg·hm-2;地力貢獻率在11.6%—98.7%,平均地力貢獻率49.0%。玉米基礎(chǔ)地力在0.74—10.61 Mg·hm-2,平均基礎(chǔ)地力4.57 Mg·hm-2;地力貢獻率在16.0%—99.9%,平均地力貢獻率59.0%。水稻基礎(chǔ)地力在1.58—9.98 Mg·hm-2間,平均基礎(chǔ)地力5.73 Mg·hm-2;地力貢獻率在36.9%—99.7%,平均地力貢獻率70.8%。
2.2 基礎(chǔ)地力產(chǎn)量對地力貢獻率的影響
隨著基礎(chǔ)地力產(chǎn)量的提升,作物地力貢獻率逐漸增加(圖2)。當馬鈴薯基礎(chǔ)地力由<6 Mg·hm-2上升到>24 Mg·hm-2時,地力貢獻率從46.5%上升至81.2%。當油菜基礎(chǔ)地力由<0.5 Mg·hm-2上升到>2 Mg·hm-2時,地力貢獻率從 23.1%上升至79.2%。當玉米基礎(chǔ)地力由<2 Mg·hm-2上升到>8 Mg·hm-2時,地力貢獻率從 30.2%上升至 86.5%。當水稻基礎(chǔ)地力由<2 Mg·hm-2上升到>8 Mg·hm-2時,地力貢獻率從63.3%上升至85.3%。表明隨著基礎(chǔ)地力的提升,土壤基礎(chǔ)地力對施肥產(chǎn)量的貢獻呈上升趨勢。
2.3 基礎(chǔ)地力對作物施肥產(chǎn)量及產(chǎn)量差的影響
作物氮磷鉀肥處理與基礎(chǔ)地力產(chǎn)量的擬合直線顯示(圖3,表3),馬鈴薯、油菜、玉米和水稻4種糧油作物現(xiàn)實生產(chǎn)力與基礎(chǔ)地力擬合直線決定系數(shù)分別達0.472、0.284、0.382和0.366(P<0.001),直線斜率均為正,表明隨著地力的提升,施肥產(chǎn)量也隨之提高,較高的基礎(chǔ)地力有利于作物的高產(chǎn)。
邊界線分析結(jié)果表明(圖3,表3),馬鈴薯、油菜、玉米、水稻 4種糧油作物符合邊界線擬合(P<0.001)。馬鈴薯、油菜、玉米和水稻的施肥高產(chǎn)潛力分別為42.8、4.07、11.8和12.4 Mg·hm-2。
不同基礎(chǔ)地力分級下作物產(chǎn)量差分析結(jié)果表明(圖4),隨著基礎(chǔ)地力的提升,不同作物產(chǎn)量差均呈降低趨勢。當馬鈴薯基礎(chǔ)地力由<6 Mg·hm-2上升到>24 Mg·hm-2時,產(chǎn)量差從 32.6 Mg·hm-2降低至 8.3 Mg·hm-2。當油菜基礎(chǔ)地力由<0.5 Mg·hm-2上升到>2 Mg·hm-2時,產(chǎn)量差從 2.34 Mg·hm-2降低至 1.22 Mg·hm-2。當玉米基礎(chǔ)地力由<2 Mg·hm-2上升到>8 Mg·hm-2時,產(chǎn)量差從 6.05 Mg·hm-2降低至 1.46 Mg·hm-2。當水稻基礎(chǔ)地力由<2 Mg·hm-2上升到>8 Mg·hm-2時,產(chǎn)量差從9.49 Mg·hm-2降低至2.38 Mg·hm-2。
表2. 不同糧油作物基礎(chǔ)地力及地力貢獻率Table 2 Inherent soil productivity and contribution rate of soil productivity for grain and oil crops
圖2 基礎(chǔ)地力產(chǎn)量對地力貢獻率的影響Fig. 2 Effect of inherent soil productivity on contribution rate of soil productivity
圖3 基礎(chǔ)地力對糧油作物施肥產(chǎn)量的影響Fig. 3 Effect of inherent soil productivity on fertilization yield of grain and oil crops
表3 基礎(chǔ)地力與施肥產(chǎn)量的直線擬合和邊界線分析Table 3 Linear fitting and boundary line analysis of inherent soil productivity and fertilization yield
圖4 基礎(chǔ)地力對作物施肥產(chǎn)量差的影響Fig. 4 Effect of inherent soil productivity on fertilization yield gap of grain and oil crops
2.4 基礎(chǔ)地力對作物施肥產(chǎn)量穩(wěn)定性和可持續(xù)性的影響
作物施肥產(chǎn)量的穩(wěn)定性和可持續(xù)性隨著地力的變化而變化(圖 5)。不同作物由低地力到高地力,施肥產(chǎn)量的可持續(xù)性指數(shù)均呈上升趨勢,而穩(wěn)定性指數(shù)均降低;當馬鈴薯基礎(chǔ)地力由<6 Mg·hm-2上升到>24 Mg·hm-2時,產(chǎn)量穩(wěn)定性指數(shù)從0.599降低至0.181,可持續(xù)性指數(shù)從0.134上升至0.656;當油菜基礎(chǔ)地力由<0.5 Mg·hm-2上升到>2 Mg·hm-2時,產(chǎn)量穩(wěn)定性指數(shù)從0.297降低至0.153,可持續(xù)性指數(shù)從0.447上升至 0.600;當玉米基礎(chǔ)地力由<2 Mg·hm-2上升到>8 Mg·hm-2時,產(chǎn)量穩(wěn)定性指數(shù)從0.245降低至0.070,可持續(xù)性指數(shù)從0.487上升至0.788;當水稻基礎(chǔ)地力由<2 Mg·hm-2上升到>8 Mg·hm-2時,產(chǎn)量穩(wěn)定性指數(shù)從0.189降低至0.087,可持續(xù)性指數(shù)從0.667上升至0.745。表明基礎(chǔ)地力越高,作物施肥可獲得的產(chǎn)量穩(wěn)定性和可持續(xù)性越高,有利于糧油作物的穩(wěn)產(chǎn)和可持續(xù)生產(chǎn)。
3.1 糧油作物基礎(chǔ)地力特征
以往對基礎(chǔ)地力的研究主要集中于點位長期試驗的土壤地力評估及地力演變分析[17,25-26],并不能反映區(qū)域土壤基礎(chǔ)地力的真實值;對于區(qū)域基礎(chǔ)地力的評價主要集中于水稻、玉米和小麥三大糧食作物[16,18,27],對于油料作物和第四大糧食作物馬鈴薯基礎(chǔ)地力的評價鮮有報道。本研究對黃壤區(qū)馬鈴薯、油菜、玉米和水稻4種糧油作物基礎(chǔ)地力進行了評價。結(jié)果顯示,黃壤區(qū)馬鈴薯、油菜、玉米和水稻基礎(chǔ)地力產(chǎn)量分別為10.8、1.13、4.57和5.73 Mg·hm-2,地力貢獻率分別為50.8%、49.0%、59.0%和70.8%。不同作物地力貢獻率以水稻最高,玉米次之,油菜的最低,此結(jié)果與夏圣益[28]開展的多點試驗結(jié)果一致;這可能是由于水耕條件下水熱環(huán)境更穩(wěn)定,促進了土壤養(yǎng)分釋放和水稻養(yǎng)分吸收,有利于水稻產(chǎn)量的形成[29];同時,山地丘陵地區(qū)水稻多種植于地形低洼地,是區(qū)域水分養(yǎng)分的匯集區(qū)[30],徑流和灌溉等環(huán)境養(yǎng)分帶入較多[31],導致施肥的貢獻降低,地力貢獻率高于旱地作物;此外,水稻和玉米根系是須根系,毛細根發(fā)達,根表面積大,能夠充分吸收土壤養(yǎng)分,而油菜根系為直根系,對土壤的養(yǎng)分吸收能力較弱[32],因而油菜地力貢獻率較低。就玉米和水稻而言,兩者平均基礎(chǔ)地力產(chǎn)量和平均地力貢獻率均高于全國平均水平[33],其原因一方面可能與研究區(qū)光溫水條件較好、氣候生產(chǎn)潛力較高等氣候環(huán)境因素有關(guān)[34];另一方面,黃壤區(qū)種植結(jié)構(gòu)較為單一,主要以單作為主[35],而全國其他糧油主產(chǎn)區(qū)復種指數(shù)較高[36],長期的持續(xù)耕種導致土壤基礎(chǔ)地力降低;此外,黃壤區(qū)農(nóng)業(yè)氣象災害發(fā)生率較其他糧食主產(chǎn)區(qū)低[37],更有利于地力的發(fā)揮和作物產(chǎn)量的形成。本研究對黃壤區(qū)馬鈴薯、油菜、玉米和水稻的礎(chǔ)地力產(chǎn)量和地力貢獻率的評估結(jié)果反映了區(qū)域糧油作物地力特征,為地區(qū)糧油作物的綠色生產(chǎn)提供了依據(jù)。但是,當前黃壤區(qū)基礎(chǔ)地力的時空特征尚不明晰,尤其是對低基礎(chǔ)地力土壤的空間分布分析較少,成為今后研究的重點。
圖5 不同作物土壤基礎(chǔ)地力對作物產(chǎn)量穩(wěn)定性(SI)和可持續(xù)性(SYI)的影響Fig. 5 Effect of inherent soil productivity on stability indexes (SI) and sustainable yield indexes (SYI) of fertilization yield for grain and oil crops
3.2 提升土壤地力,實現(xiàn)區(qū)域作物綠色生產(chǎn)
3 515個田間試驗結(jié)果分析顯示,4種糧油作物施肥產(chǎn)量與基礎(chǔ)地力產(chǎn)量呈極顯著正相關(guān)關(guān)系(圖3),這與李忠芳等[14],喬磊等[27]對水稻的研究基本一致,表明基礎(chǔ)地力在提高糧油產(chǎn)量上占有重要地位??s減產(chǎn)量差被認為是實現(xiàn)糧食安全的重要途徑。以往的研究表明,通過優(yōu)化水肥管理[38]和先進的農(nóng)業(yè)技術(shù)推廣[39]等措施能夠縮減產(chǎn)量差。本研究發(fā)現(xiàn),提升土壤地力也是縮減產(chǎn)量差的有效途徑,表現(xiàn)為隨著基礎(chǔ)地力產(chǎn)量的提升,作物獲得區(qū)域高產(chǎn)潛力的產(chǎn)量差逐漸降低(圖4),表明通過提升土壤地力,可以縮減產(chǎn)量差,實現(xiàn)區(qū)域作物高產(chǎn),為今后縮減產(chǎn)量差途徑研究提供了新的方向。土壤生產(chǎn)力的穩(wěn)定性和可持續(xù)性是實現(xiàn)區(qū)域糧食安全的必要條件,本研究結(jié)果顯示(圖 5),隨著地力的提升,作物施肥產(chǎn)量的穩(wěn)定性和可持續(xù)性均提高,表明地力提升能夠促進產(chǎn)量趨于穩(wěn)定并持續(xù)生產(chǎn),研究結(jié)果與梁濤等[18]對大區(qū)域的統(tǒng)計結(jié)果一致。提升黃壤地力對區(qū)域作物高產(chǎn)、穩(wěn)產(chǎn)和可持續(xù)生產(chǎn)至關(guān)重要,因此尋求黃壤地力提升有效途徑成為實現(xiàn)區(qū)域綠色生產(chǎn)的的關(guān)鍵點。研究指出,黃壤具有冷、酸、瘦(缺磷)和黏等障礙,是黃壤低地力的主要因素[40]。由此,提升黃壤地力關(guān)鍵是通過良好的土壤管理,進行土壤培肥,改良土壤障礙因素。進行土壤改良培肥有諸多方法,如實行合理耕作[40-41]、合理施肥[42]和施用調(diào)理劑[43]等措施在黃壤改良培肥均見諸報道。然而,以往的黃壤改良培肥研究主要針對黃壤單一或多肥力因子,鮮少有進行黃壤綜合肥力提升的報道研究,缺乏造成黃壤地力低的障礙因素定量分析及長期地力演變研究,這是今后研究的重點。
黃壤區(qū)馬鈴薯、油菜、玉米和水稻基礎(chǔ)地力產(chǎn)量分別為10.8、1.13、4.57和5.73 Mg·hm-2,地力貢獻率分別為50.8%、49.0%、59.0%和70.8%。隨著基礎(chǔ)地力的提升,作物施肥產(chǎn)量提升,產(chǎn)量差降低,地力貢獻率、產(chǎn)量的穩(wěn)定性和可持續(xù)性均提升。基礎(chǔ)地力提升有利于作物區(qū)域高產(chǎn)、穩(wěn)產(chǎn)和可持續(xù)生產(chǎn)。
致謝:本研究原始數(shù)據(jù)資料來自貴州、四川和重慶等省市開展的全國測土配方施肥項目,項目具體實施由各省市土壤肥料工作總站牽頭,各市州縣的農(nóng)委、土壤肥料工作站等農(nóng)技部門具體實施。在此,對這些長期在基層一線工作的農(nóng)業(yè)工作者們表示感謝。
[1] TONG C L, HALL C A S, WANG H Q. Land use change in rice, wheat and maize production in China (1961-1998). Agriculture Ecosystems and Environment, 2003, 95(2/3): 523-536.
[2] PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China. Plant Production Science, 2009, 12(1): 3-8.
[3] RONDANINI D P, GOMEZ N V, AGOSTI M B, MIRALLES D J. Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. European Journal of Agronomy, 2012, 37(1): 56-65.
[4] LI Y X, ZHANG W F, MA L, WU L, SHEN J B, DAVIES W J , OENEMA O, ZHANG F S, DOU Z X. An analysis of China's grain production: Looking back and looking forward. Food & Energy Security, 2014, 3(1): 19-32.
[5] TILMAN D, BALZER C, HILL J, BEFORT B L. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260-20264.
[6] 朱兆良, 金繼運. 保障我國糧食安全的肥料問題. 植物營養(yǎng)與肥料學報, 2013, 19(2):259-273.
ZHU Z L, JIN J Y. Fertilizer use and food security in China. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259-273. (in Chinese)
[7] 劉彥隨, 王介勇, 郭麗英. 中國糧食生產(chǎn)與耕地變化的時空動態(tài).中國農(nóng)業(yè)科學, 2009, 42(12): 4269-4274.
LIU Y S, WANG J Y, GUO L Y. The spatial-temporal changes of grain production and arable land in China. Scientia Agricultura Sinica, 2009, 42(12): 4269-4274. (in Chinese)
[8] FAN M S, CHRISTIE P, ZHANG W F, ZHANG F S. Crop productivity, fertilizer use, and soil quality in China//LAL R, STEWART B A. Advances in Soil Science: Food Security and Soil Quality. USA: CRC Press, 2010: 87-107.
[9] 張福鎖, 王激清, 張衛(wèi)峰, 崔振嶺, 馬文奇, 陳新平, 江榮風. 中國主要糧食作物肥料利用率現(xiàn)狀與提高途徑. 土壤學報, 2008, 45(5): 915-924.
ZHANG F S, WANG J Q, ZHANG W F, CUI Z L, MA W Q, CHEN X P, JIANG R F. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese)
[10] 林治安, 趙秉強, 袁亮, HWAT BING-SO. 長期定位施肥對土壤養(yǎng)分與作物產(chǎn)量的影響. 中國農(nóng)業(yè)科學, 2009, 42(8): 2809-2819.
LIN Z A, ZHAO B Q, YUAN L, HWAT B S. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield. Scientia Agricultura Sinica, 2009, 42(8): 2809-2819. (in Chinese)
[11] 王艷群, 彭正萍, 薛世川, 楊云馬, 周亞鵬, 趙立賓. 過量施肥對設(shè)施農(nóng)田土壤生態(tài)環(huán)境的影響. 農(nóng)業(yè)環(huán)境科學學報, 2005, 24(增刊): 81-84.
WANG Y Q, PENG Z P, XUE S C, YANG Y M, ZHOU Y P, ZHAO L B. Effect of excessive fertilization on soil ecological environment inthe facility farmland. Journal of Agro-Environment Science, 2005, 24(Suppl.): 81-84. (in Chinese)
[12] LIU Q P, GUO Y L, GIESY J P. Assessment on ecological safety of farmland fertilization of China. Advanced Materials Research, 2014, 962-965: 2170-2174.
[13] 高祥照, 馬文奇, 杜森, 張福鎖, 毛達如. 我國施肥中存在問題的分析. 土壤通報, 2001, 32(6): 258-261.
GAO X Z, MA W Q, DU S, ZHANG F S, MAO D R. Current status and problems of fertilization in China. Chinese Journal of Soil Science, 2001, 32(6): 258-261. (in Chinese)
[14] 李忠芳, 徐明崗, 張會民, 張文菊, 高靜. 長期施肥下中國主要糧食作物產(chǎn)量的變化. 中國農(nóng)業(yè)科學, 2009, 42(7): 2407-2414.
LI Z F, XU M G, ZHANG H M, ZHANG W J, GAO J. Grain yield trends of different food crops under long-term fertilization in China. Scientia Agricultura Sinica, 2009, 42(7): 2407-2414. (in Chinese)
[15] 曾祥明, 韓寶吉, 徐芳森, 黃見良, 蔡紅梅, 石磊. 不同基礎(chǔ)地力土壤優(yōu)化施肥對水稻產(chǎn)量和氮肥利用率的影響. 中國農(nóng)業(yè)科學, 2012, 45(14): 2886-2894.
ZENG X M, HAN B J, XU F S, HUANG J L, CAI H M, SHI L. Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities. Scientia Agricultura Sinica, 2012, 45(14): 2886-2894. (in Chinese)
[16] FAN M S, LAL R, CAO J, QIAO L, SU Y S, JIANG R F, ZHANG F S. Plant-based assessment of inherent soil productivity and contributions to China’s cereal crop yield increase since 1980. PLoS ONE, 2013, 8(9): e74617.
[17] 李忠芳, 張水清, 李慧, 孫楠, 逄煥成, 婁翼來, 徐明崗. 長期施肥下我國水稻土基礎(chǔ)地力變化趨勢. 植物營養(yǎng)與肥料學報, 2015, 21(6): 1394-1402.
LI Z F, ZHANG S Q, LI H, SUN N, PANG H C, LOU Y L, XU M G. Trends of basic soil productivity in paddy soil under long-term fertilization in China. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1394-1402. (in Chinese)
[18] 梁濤, 陳軒敬, 趙亞南, 黃興成, 李鴻, 石孝均, 張躍強. 四川盆地水稻產(chǎn)量對基礎(chǔ)地力與施肥的響應. 中國農(nóng)業(yè)科學, 2015, 48(23): 4759-4768. LIANG T, CHEN X J, ZHAO Y N, HUANG X C, LI H, SHI X J, ZHANG Y Q. Response of rice yield to inherent soil productivity of paddies and fertilization in Sichuan basin. Scientia Agricultura Sinica, 2015, 48(23): 4759-4768. (in Chinese)
[19] 中華人民共和國農(nóng)業(yè)部. 測土配方施肥技術(shù)規(guī)范(試行). 2006. [2016-12-16].http://www.natesc.org.cn/Html/2006_06_06/52871_537 41_2006_06_06_75460.html.
Ministry of Agriculture of the Peple’s Republic of China. Technical specification of soil testing and fertilizer recommendation(trial). 2006.[2016-12-16].http://www.natesc.org.cn/Html/2006_06_06/52871 _53741_2006_06_06_75460.html. (in Chinese)
[20] WEBB R A. Use of the boundary line in the analysis of biological data. Journal of Horticultural Science, 47(3): 309-319.
[21] SCHNUG E, HEYM J, ACHWAN F. Establishing critical values for soil and plant analysis by means of the boundary line development system (bolides). Communications in Soil Science and Plant Analysis, 2008, 27(13): 2739-2748.
[22] FERMONT A M, ASTEN P J A, TITTONELL P, WIJK M T, GILLER K E. Closing the cassava yield gap: An analysis from smallholder farms in East Africa. Field Crops Research, 2009, 112(1): 24-36.
[23] WANG N, JASSOGNE L, ASTEN P J A, MUKASA D, WANYAMA I, KAGEZI G, GILLER K E. Evaluating coffee yield gaps and important biotic, abiotic, and management factors limiting coffee production in Uganda. European Journal of Agronomy, 2015, 63(63): 1-11.
[24] PAN G X, SMITH P, PAN W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture Ecosystems and Environment, 2009, 129(1/3): 344-348.
[25] 貢付飛, 查燕, 武雪萍, 黃紹敏, 徐明崗, 張會民, 劉海龍, 姜志偉,王小彬, 蔡典雄. 長期不同施肥措施下潮土冬小麥農(nóng)田基礎(chǔ)地力演變分析. 農(nóng)業(yè)工程學報, 2013, 29(12): 120-129.
GONG F F, ZHA Y, WU X P, HUANG S M, XU M G, ZHANG H M, LIU H L, JIANG Z W, WANG X B, CAI D X. Analysis on basic soil productivity change of winter wheat in fluvo-aquic soil under long-term fertilization. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(12): 120-129. (in Chinese)
[26] 魯艷紅, 廖育林, 周興, 聶軍, 謝堅, 楊曾平. 長期不同施肥對紅壤性水稻土產(chǎn)量及基礎(chǔ)地力的影響. 土壤學報, 2015, 52(3): 597-606.
LU Y H, LIAO Y L, ZHOU X, NIE J, XIE J, YANG Z P. Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system. Acta Pedologica Sinica, 2015, 52(3): 597-606. (in Chinese)
[27] 喬磊, 江榮風, 張福鎖, 范明生. 土壤基礎(chǔ)地力對水稻體系的增產(chǎn)與穩(wěn)產(chǎn)作用研究. 中國科技論文, 2016, 11(9): 1031-1034.
QIAO L, JIANG R F, ZHANG F S, FAN M S. Improving inherent soil productivity enhances yield and resilience of rice farming systems. China Sciencepaper, 2016, 11(9): 1031-1034. (in Chinese)
[28] 夏圣益. 土壤基礎(chǔ)地力, 施肥水平與農(nóng)作物產(chǎn)量的關(guān)系. 上海農(nóng)業(yè)科技, 1998(1): 6-8.
XIA S Y. Relation of soil fertility with applying fertilizer quantity andcrop yields. Shanghai Agricultural Science and Technology, 1998(1): 6-8. (in Chinese)
[29] 湯勇華, 黃耀. 中國大陸主要糧食作物地力貢獻率及其影響因素的統(tǒng)計分析. 農(nóng)業(yè)環(huán)境科學學報, 2008, 27(4): 1283-1289.
TANG Y H, HUANG Y. Statistical analysis of the percentage of soil fertility contribution to grain crop yield and driving factors in mainland China. Journal of Agro-Environment Science, 2008, 27(4): 1283-1289. (in Chinese)
[30] 黃興成, 顏家均, 劉洪斌, 陳心佩, 宋美霞. 低山丘陵區(qū)農(nóng)田土壤有機質(zhì)預測性制圖. 西南師范大學學報(自然科學版), 2013, 38(5): 142-149.
HUANG X C, YAN J J, LIU H B, CHEN X P, SONG M X. On predictive mapping of farmland soil organic matter in hilly areas. Journal of Southwest China Normal University(Natural Science Edition), 2013, 38(5): 142-149. (in Chinese)
[31] 李忠芳. 長期施肥下我國典型農(nóng)田作物產(chǎn)量演變特征和機制[D].北京: 中國農(nóng)業(yè)科學院, 2009.
LI Z F. Characteristics and its mechanism of grain yield in typical cropland under long-term fertilization in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese)
[32] 王立德, 廖紅, 王秀榮, 嚴小龍. 植物根毛的發(fā)生、發(fā)育及養(yǎng)分吸收. 植物學報, 2004, 21(6): 649-659.
WANG L D, LIAO H, WANG X R, YAN X L. Root hair initiation and development and nutrient uptake in plants. Chinese Bulletin of Botany, 2004, 21(6): 649- 659. (in Chinese)
[33] 湯勇華, 黃耀. 中國大陸主要糧食作物地力貢獻率和基礎(chǔ)產(chǎn)量的空間分布特征. 農(nóng)業(yè)環(huán)境科學學報, 2009, 28(5): 1070-1078.
TANG Y H, HUANG Y. Spatial distribution characteristics of the percentage of soil fertility contribution and its associated basic crop yield in mainland China. Journal of Agro-Environment Science, 2009, 28(5): 1070-1078. (in Chinese)
[34] 侯光良, 劉允芬. 我國氣候生產(chǎn)潛力及其分區(qū). 資源科學, 1985(3): 52-59.
HOU G L, LIU Y F. Climatic production potential and its division in China. Resources Science, 1985(3): 52-59. (in Chinese)
[35] 劉珍環(huán), 楊鵬, 吳文斌, 李正國, 游良志. 近30年中國農(nóng)作物種植結(jié)構(gòu)時空變化分析. 地理學報, 2016, 71(5): 840-851.
LIU Z H, YANG P, WU W B, LI Z G, YOU L Z. Spatio-temporal changes in Chinese crop patterns over the past three decades. Acta Geographica Sinica, 2016, 71(5): 840-851. (in Chinese)
[36] 丁明軍, 陳倩, 辛良杰, 李蘭暉, 李秀彬. 1999-2013年中國耕地復種指數(shù)的時空演變格局. 地理學報, 2015, 70(7): 1080-1090.
DING M J, CHEN Q, XIN L J, LI L H, LI X B. Spatial and temporal variations of multiple cropping index in China based on SPOT-NDVI during 1999-2013. Acta Geographica Sinica, 2015, 70(7): 1080-1090. (in Chinese)
[37] 姚亞慶. 1950-2015年我國農(nóng)業(yè)氣象災害時空特征研究[D]. 楊凌:西北農(nóng)林科技大學, 2016.
YAO Y Q. The Spatial and temporal characteristics of agrometeorological disasters during 1950-2015 in China[D]. Yangling: Northwest Agriculture and Forestry University, 2016. (in Chinese)
[38] MUELLER N D, GERBER J S, JOHNSTON M, RAY D K, RAMANKUTTY N, FOLEY J A. Closing yield gaps through nutrient and water management. Nature, 2012, 490(7419): 254-260.
[39] ZHANG W F, CAO G X, LI X L, ZHANG H Y, WANG C, LIU Q Q, CHEN X P, CUI Z L, SHEN J B, JIANG R F, MI G H, MIAO Y X, ZHANG F S, DOU Z X. Closing yield gaps in China by empowering smallholder farmers. Nature, 537(7622): 671-674.
[40] 曹文藻. 黃壤改良. 貴陽:貴州人民出版社, 1981.
CAO W Z. Yellow Soil Improvement. Guiyang: Guizhou People's Publishing House, 1981. (in Chinese)
[41] 胡崗, 秦松, 范成五, 趙歡, 張邦喜, 嚴蓮英. 3種不同管理措施黃壤坡耕地的有機碳與氮養(yǎng)分. 西南農(nóng)業(yè)學報, 2015, 28(6): 2630-2636.
HU G, QIN S, FAN C W, ZHAO H, ZHANG B X, YAN L Y. Organic carbon and nitrogen nutrients in yellow soil of slope cropland under three different management measures. Southwest China Journal of Agricultural Sciences, 2015, 28(6): 2630-2636. (in Chinese)
[42] 張文安, 芶久蘭, 李劍, 肖厚軍, 秦松. 黃壤旱地長期不同耕作與施肥對玉米產(chǎn)量及施肥效益的影響. 貴州農(nóng)業(yè)科學, 2008, 36(2):105-107.
ZHANG W A, GOU J L, LI J, XIAO H J, QIN S. Effects of long-term different farming and fertilizer methods on maize yield and fertilizer efficiency in the upland field with yellow soil. Guizhou Agricultural Sciences, 2008, 36(2): 105-107. (in Chinese)
[43] 肖厚軍, 王正銀, 何佳芳, 茍久蘭. 磷石膏改良強酸性黃壤的效應研究. 水土保持學報, 2008, 22(6): 62-66.
XIAO H J, WANG Z Y, HE J F, GOU J L. Effects of phosphogypsum on nutrient balance of broomcorn grown in strongly acidic yellow soil. Journal of Soil and Water Conservation, 2008, 22(6):62-66. (in Chinese)
(責任編輯 楊鑫浩)
Effect of the Inherent Soil Productivity on High, Stable and Sustainable Yield of Grain and Oil Crops in Yellow Soil Region
HUANG XingCheng1,2, SHI XiaoJun3, LI Yu1,2, ZHANG YaRong1,2, LIU YanLing1,2, ZHANG WenAn1,2, JIANG TaiMing2,4
(1Guizhou Institute of Soil and Fertilizer, Guiyang 550006;2Scientific Observing and Experimental Station of Arable Land Conservation and Agricultural Environment (Guizhou), Ministry of Agriculture, Guiyang 550006;3College of Resources and Environmental, Southwest University, Chongqing 400716;4Guizhou Academy of Agricultural Sciences, Guiyang 550006)
【Objective】Yellow soil is an important zonal soil in China. High, stable and sustainable yield of grain and oil crops are fundamental to food security, economic development and people's livelihood for yellow soil region. This paper studied the characteristics of inherent soil productivity for grain and oil crops in yellow soil region in order to evaluate the effect of inherent soil productivity on high, stable and sustainable yield of grain and oil crops. The results of this study will provide a theoretical basis for cultivating land conservation and producing green crops in yellow soil region. 【Method】The assessment was conducted based on data-set derived from National Soil Test and Fertilizer Recommendation projects during 2006 to 2013 in yellow soil region. Yields ofunfertilized control (CK) and NPK fertilization (N2P2K2) treatments in 3 515 on-farm trials (434 potato trials, 525 rapeseed trials, 1 318 maize trials, and 1 238 rice trials) were surveyed. Characteristics of inherent soil productivity and its contribution rate to fertilization yield under on-farm conditions were assessed by using a plant-based agronomic approach. The effects of inherent soil productivity on fertilization yield and yield gap were also assessed by using linear fitting and boundary line analysis. Meanwhile, the effect of stable indexes and sustainable indexes of grain and oil crops under different inherent productivities were also assessed.【Result】The average yield based on inherent soil productivity of potato, rapeseed, maize and rice were 10.8, 1.13, 4.57 and 5.73 Mg·hm-2, and the average contribution rates of inherent soil productivity were 50.8%, 49.0%, 59.0% and 70.8%, respectively. It was found that the contribution rate of inherent soil productivity was increased with improvement of inherent soil productivity. There was a significant and positive correlation between fertilization yield and inherent soil productivity, R2of linear fitting with fertilization yield and inherent soil productivity of potato, rapeseed, maize and rice were 0.476, 0.284, 0.382 and 0.366 (P<0.001), respectively. Boundary line analysis showed that the attainable yield of potato, rapeseed, maize and rice were 42.8, 4.07, 11.8 and 12.4 Mg·hm-2, respectively. Meanwhile, it found that stability and sustainable of grain and oil crops yield were increased with improvement of inherent soil productivity. 【Conclusion】It was concluded that improving inherent soil productivity of farmland can decrease yield gap while promote high, stable and sustainable yield of grain and oil crops in yellow soil regions.
yellow soil; inherent soil productivity; boundary line analysis; yield gap; stability index; sustainable yield index
2016-10-24;接受日期:2016-12-16
國家科技支撐計劃(2015BAD06B04)、國家公益性行業(yè)(農(nóng)業(yè))科研專項(201203030)、貴州省農(nóng)業(yè)科學院自主創(chuàng)新專項(黔農(nóng)科院自主創(chuàng)新專項)(2014007)
聯(lián)系方式:黃興成,E-mail:huangxc90@163.com。通信作者蔣太明,E-mail:jtm532@163.com