王亞輝, 李彥伸, 宋麗廷, 張 靜,孫承峰, 尤艷莉, 趙玉平*, 楊建榮
(1.中國農(nóng)業(yè)科學(xué)院 農(nóng)業(yè)信息研究所,北京 100081;2.煙臺大學(xué) 生命科學(xué)學(xué)院,山東 煙臺 264000)
小分子化合物非競爭免疫檢測方法研究概述
王亞輝1, 李彥伸2, 宋麗廷2, 張 靜2,孫承峰2, 尤艷莉2, 趙玉平*2, 楊建榮2
(1.中國農(nóng)業(yè)科學(xué)院 農(nóng)業(yè)信息研究所,北京 100081;2.煙臺大學(xué) 生命科學(xué)學(xué)院,山東 煙臺 264000)
農(nóng)獸藥、非法添加劑及其他有毒有害化學(xué)污染物在食品和環(huán)境中的殘留引起人們越來越多的關(guān)注。這些殘留物多為小分子化合物,對其進行免疫測定因受限于分子量和抗原表位數(shù)量,多用競爭法,通常不能像檢測大分子抗原一樣采用夾心式的非競爭法,這就制約了其檢測的靈敏度、穩(wěn)定性及工作范圍等。但非競爭免疫分析法也并非完全不適用于小分子化合物,這需要方法學(xué)上的改進或創(chuàng)新。作者從檢測方法原理、體系構(gòu)成及應(yīng)用現(xiàn)狀等方面綜述了近幾十年來有關(guān)小分子化合物非競爭免疫分析方法的研究成果,以期為相關(guān)研究者提供借鑒和參考。
小分子;非競爭免疫;半抗原
小分子化合物(相對分子質(zhì)量通常小于1 000),如合成藥物、甲狀腺激素、小分子肽、環(huán)境激素和真菌毒素等,這類化合物在免疫反應(yīng)中只具有反應(yīng)原性,而沒有免疫原性,通常在免疫化學(xué)上被定義為半抗原。由于分子體積和空間位阻的原因,小分子化合物通常只有一個抗原表位,免疫測定一般采用競爭性分析模式[1-2]。在競爭性分析方法中,標記半抗原和抗體的量都是有限的,待測物與標記的半抗原競爭結(jié)合少量的固相抗體,反應(yīng)平衡后,分離結(jié)合和游離的半抗原,最終讀出信號強度與樣品中待測物的含量成反比。競爭性免疫分析的靈敏度受抗體親和常數(shù)的限制較大。小分子化合物的單克隆抗體的親和常數(shù)在一般情況下很難超過1012mol/L,這就決定了競爭性分析模式難以達到亞飛摩爾濃度的測量水平。另外,在低濃度的反應(yīng)信號很難與零區(qū)別開來,零劑量點的相對誤差較大,分析過程的重現(xiàn)性差,反應(yīng)孵育時間過長,所有上述因素致使競爭性免疫分析在靈敏度、精密度、動力學(xué)及工作曲線范圍方面都不及非競爭免疫分析[3]。
非競爭性分析方法目前主要用于大分子抗原的檢測,最常用的是夾心法,使用兩種不同的過量抗體,即固相捕獲抗體和標記抗體,結(jié)合待測物,造成一種夾心式的分析模型。這種方法要求待測物分子必須是多價抗原,具有多個抗原表位,可以同時結(jié)合固相和標記抗體,然后檢測標記抗體的活性以判斷待測物的含量。這種檢測模式顯然不適用于小分子化合物。血管緊張素Ⅱ是迄今為止采用雙位點夾心法能夠測量到的最小分子(相對分子質(zhì)量1 048)[4]。反應(yīng)體系中過量抗體的加入,使得非特異性信號成為影響非競爭性分析方法靈敏度的主要因素之一。如果抗體的親和力足夠高,降低非特異性反應(yīng),可以使夾心ELISA的最低檢測限達到atto mol(10-18mol)分子水平[5]。
關(guān)于小分子化合物非競爭性免疫分析方法的研究,近幾十年來取得了一些重要的進展。一些新的檢測原理和檢測方法不斷誕生,大大豐富了小分子半抗原的檢測模式。
Ishikawa等[6]提出了基于生物素親和素體系檢測小分子肽的雙位點夾心免疫分析模式,見圖1[6]。其檢測原理是生物素化后的待測物可同時結(jié)合標記抗體和固相的親和素,從而可建立針對半抗原的雙位點夾心式的非競爭性分析方法。反應(yīng)過程大致如下:首先,在待測物分子上引入生物素;生物素化的待測物經(jīng)固相抗體純化后,再與標記抗體混合;然后一同轉(zhuǎn)移到預(yù)包被有親和素的固相載體上,讀出的信號強度與樣品中待測抗原的含量成正相關(guān)。這種分析方法已經(jīng)成功應(yīng)用到血管緊張素Ⅰ[6]、精氨酸加壓素[7]等小分子肽以及甲狀腺素[8]的測定。后來,Hashida等[9-10]又進一步發(fā)展了超靈敏的雙位點復(fù)合物轉(zhuǎn)移酶免疫分析法。通過多次免疫復(fù)合物的固相轉(zhuǎn)移步驟,非特異性信號有了很大程度的降低,同時由于4種高親和力固相抗體的濃縮富集作用,檢測靈敏度也得到極大的提高。但這種方法過程較為繁瑣,對反應(yīng)試劑要求較高。
圖1 基于生物素親和素體系的雙位點夾心法原理模式Fig.1 Principle diagram of biotin and avidin based twosite sandwich immunoassay
Pradelles等[11-12]發(fā)展了基于固相固定化表位體系的非競爭性免疫分析方法 (Solid-phase Immobilized Epitope Immunoassay,SPIE-IA)用于檢測小分子半抗原。其反應(yīng)程序見圖2[12]:(a)半抗原(標準品或樣品)由固相抗體捕獲;(b)半抗原分子的氨基基團通過雙功能試劑,如戊二醛或雙琥珀酰亞胺辛二酸酯等,與固相蛋白發(fā)生化學(xué)交聯(lián);(c)在酸、堿或有機溶劑的變性作用處理下,半抗原表位由抗體結(jié)合位點處釋放;(d)借助共價作用結(jié)合于固相載體上的半抗原,被釋放的表位通過酶標抗體檢測。這種分析模式的優(yōu)點在于固相和標記抗體可以是同一種抗體,省去了傳統(tǒng)的雙抗體夾心法需要篩選針對不同抗原決定簇的兩種抗體的復(fù)雜程序;而局限性則在于要求目標分析物含有氨基官能團。該方法已被發(fā)展到甲狀腺素[11]、白三烯C4[13]、腫瘤轉(zhuǎn)移抑制因子metastin C端結(jié)構(gòu)域類似物TAK-448和TAK-683[14]等的測定。
當(dāng)然,對于很多不含有氨基的半抗原分子,如促甲狀腺激素釋放激素(TRH),可通過化學(xué)修飾引入氨基基團,再進行SPIE-IA反應(yīng)[15]。也可以通過紫外輻照[16]或類Fenton試劑產(chǎn)生的羥基自由基觸發(fā)的方式[17]實現(xiàn)半抗原與固相抗體的直接交聯(lián)。
圖2 SPIE-IA基本原理Fig.2 Principle diagram of SPIE-IA
抗獨特型抗體 (Anti-idiotype Antibody,AId或Ab2)是針對抗體(Ab1)可變區(qū)的抗原決定簇,即抗體的獨特位,所產(chǎn)生的特異性抗體。獨特型的差異,由抗體重鏈可變區(qū)(VH)和輕鏈可變區(qū)(VL)內(nèi)氨基酸序列不同造成[18]??躬毺匦涂贵w主要有兩類:Ab2α和Ab2β。Ab2α識別抗體可變區(qū)骨架區(qū)內(nèi)的獨特型決定簇,是抗體中遠離抗原結(jié)合部位的抗原決定簇產(chǎn)生的抗體,Ab2α與Ab1的結(jié)合不影響Ab1與抗原的結(jié)合,屬半抗原非抑制性Ab2;Ab2β是由抗體的抗原結(jié)合部位處的抗原決定簇產(chǎn)生的抗體,可完全抑制抗原與Ab1的結(jié)合,被認為是抗原的“內(nèi)影像”[19]。1990年Barnard等[20]報道建立了一種基于抗獨特型抗體檢測小分子化合物的非競爭性免疫分析方法,并用于血清中雌二醇的測定。其反應(yīng)過程如圖3[20]:(a)將特異性抗體Ab1包被于固相載體,加入標準品或樣品;(b)加入Ab2β,封閉Ab1中未被待測物占用的結(jié)合位點;(c)加入標記的Ab2α,由于空間位阻的原因,Ab2α不能和Ab2β/ Ab1復(fù)合物結(jié)合,而是識別捕獲有待測物的那部分抗體的骨架區(qū)位點。最終讀出的信號強度與抗體結(jié)合的待測物分子數(shù)量,也就是樣品中待測物的含量成正相關(guān)。這一反應(yīng)模式也被稱為選擇性抗體系統(tǒng)(Selective Antibody System),Ab2α為選擇抗體(Selective Antibody)[21]?;诳躬毺匦涂贵w的非競爭性免疫分析方法先后成功應(yīng)用于雌二醇[22]、皮質(zhì)醇[23]、甲氧基有機磷農(nóng)藥[24]、玉米赤霉烯酮[25]和嘔吐毒素[26]的測定。但是抗獨特型抗體的制備有一定難度,陽性克隆率低,抗體分型篩選復(fù)雜,獲得配對效果較好的Ab2α和Ab2β困難[27]。
圖3 基于抗獨特型抗體的免疫檢測方法原理Fig.3 Principlediagram ofanti-idiotypeantibody immunoassay
抗免疫復(fù)合物抗體是針對抗原與抗體結(jié)合后形成的新的抗原表位所產(chǎn)生的特異性抗體,又叫抗異型抗體(Anti-metatype Antibody)。該抗體只能識別抗原抗體復(fù)合物,對單獨存在的抗原或抗體幾乎沒有作用[28]。據(jù)此,Self等[29]建立了基于抗免疫復(fù)合物抗體檢測地高辛的非競爭性免疫分析方法。反應(yīng)過程非常簡單,酶標板上預(yù)包被有地高辛的特異性抗體Ab1,后加入地高辛標準品或樣品以及堿性磷酸酶標記的抗Ab1/地高辛免疫復(fù)合物的抗體,室溫孵育10 min后,顯色讀數(shù)。反應(yīng)時間可縮短至1 min,檢測靈敏度并無明顯降低。這種分析方法同樣成功應(yīng)用到血管緊張素Ⅱ的測定[30]。但是,這種抗免疫復(fù)合物抗體很難獲得,主要原因在于抗體結(jié)合抗原后引起的免疫復(fù)合物的空間構(gòu)象變化細微,且半抗原高達85%的可及表面包埋于抗體內(nèi)部,難以形成新的有效的抗原決定簇。并且在篩選過程中,由于抗免疫復(fù)合物抗體與Ab1以及分析物組成的三元復(fù)合物相互間的接觸表面積較大,無法實現(xiàn)對免疫復(fù)合物空間構(gòu)象變化的精準識別,從而造成較高的非特異性干擾?;谑删w展示技術(shù) (Phagedisplayed Library)[31-36]和近年來發(fā)展起來的自主多樣化庫技術(shù) (Autonomously Diversifying Library,ADLib)[37-38]則較好地解決了這一問題,在小分子化合物的非競爭性免疫分析領(lǐng)域有很好的應(yīng)用前景。
圖4 基于抗免疫復(fù)合物抗體的免疫檢測模式Fig.4 Schematic diagram of anti-immune complex antibody based immunoassay
1996年Ueda等[39]首次報道了在抗原存在時,抗體重鏈可變區(qū)(VH)與輕鏈可變區(qū)(VL)的結(jié)合穩(wěn)定性得到增強這一現(xiàn)象,并提出了開放式夾心免疫分析法(Open Sandwich Immunoassay,OS-IA)的概念,見圖5。Suzuki等[40]通過表達抗(4-羥基-3-硝基苯基)乙?;∟P)抗體的高親和力突變體VH片段與大腸桿菌堿性磷酸酶的融合蛋白 (VH-PhoA)以及VL片段與鏈球菌蛋白G的融合蛋白(VL-PG)構(gòu)建了檢測小分子化合物NP的開放式夾心免疫分析法。目前,開放式夾心免疫分析法已在玉米赤霉烯酮[41]、赤霉醇[42]、甲狀腺素T4[43]以及膝溝藻毒素[44]的測定上有成功的案例。然而,這種方法由于抗體的制備與篩選、編碼VH與VL的DNA片段的構(gòu)建以及融合蛋白的表達與純化等過程較為復(fù)雜,而且并非所有的抗體VH/VL間的相互作用都與抗原有關(guān),需要選擇合適的抗體來建立OS-IA體系,在推廣應(yīng)用上仍存在一定的難度。
圖5 OS-IA基本原理Fig.5 Schematic diagram of OS-IA
Giraudi等[45]提出了基于酶標記分析物-分析物抗體位點置換反應(yīng)來檢測半抗原的非競爭性免疫分析方法(見圖6),其反應(yīng)過程大致如下:固相包被抗體未被待測物占用的多余結(jié)合位點由封閉試劑封閉,后由酶標記的分析物來全部置換結(jié)合了待測物的那部分抗體位點,最終得到的信號強度與待測物結(jié)合的抗體位點數(shù)量成正比,即是與待測物的含量成正比關(guān)系。這種分析方法后來又被應(yīng)用到黃曲霉毒素的檢測[46]。這一反應(yīng)體系的關(guān)鍵在于有效封閉試劑的制備。
圖6 基于酶標記分析物-分析物抗體位點置換反應(yīng)的非競爭性免疫分析方法的原理示意Fig.6 Schematic diagram of enzyme labeled analyteanalyte antibody site substitution reaction based non-competitive immunoassay
Piran等[47]以三碘甲狀腺原氨酸(T3)為例,建立了一種新穎的可檢測單一表位半抗原的非競爭性免疫分析方法。它的反應(yīng)過程大致如下:吖啶酯(AE)標記的抗T3抗體與待測物在比色皿中孵育,形成AE-抗T3抗體/T3免疫復(fù)合物以及游離的AE-抗T3抗體;于混合物中加入過量的表面固定有二碘甲狀腺原氨酸(T2)的可控孔度玻璃珠(CPG),用以結(jié)合二價的AE-抗T3抗體,而不能與上述免疫復(fù)合物作用;加入固化有抗AE抗體的順磁性顆粒(PMP),捕獲AE-抗T3抗體/T3復(fù)合物,而結(jié)合在CPG表面的AE-抗T3抗體由于空間位阻作用不能被捕獲。反應(yīng)一段時間后,通過磁性分離檢測PMP微粒表面的化學(xué)發(fā)光強度。
此外,基于親和探針毛細管電泳技術(shù)(APCE)[48-50]以及基于流動注射分析[51-52]的非競爭性分析方法也廣泛應(yīng)用于小分子化合物的檢測。
隨著人類對食品和環(huán)境的質(zhì)量日益重視,以及檢測技術(shù)的不斷進步,對農(nóng)獸藥、激素、食品添加劑以及有毒有害化學(xué)污染物等小分子物質(zhì)的殘留分析工作提出了更高的要求,殘留檢測技術(shù)正朝著快速、靈敏、多殘留、高通量、低成本的方向發(fā)展。
相對于競爭法,非競爭法的優(yōu)勢有目共睹,發(fā)展空間廣闊。但在應(yīng)用非競爭免疫分析方法時,仍需強調(diào)以下幾個問題或需要努力的方向:第一,在食品和環(huán)境監(jiān)測領(lǐng)域的推廣力度有待加大。當(dāng)前,小分子物質(zhì)非競爭免疫分析方法的應(yīng)用多見于生物醫(yī)藥、臨床診斷等生物醫(yī)學(xué)分析領(lǐng)域,如對一些合成藥物、生理活性物質(zhì)的微量或超微量檢測較為普遍,而在食品和環(huán)境中的殘留或污染物的現(xiàn)場快速檢測和控制領(lǐng)域涉及的相對較少。第二,對抗原抗體免疫識別機制及構(gòu)效關(guān)系的系統(tǒng)而深入的基礎(chǔ)理論研究有待加強。雖然免疫學(xué)分析技術(shù)發(fā)展較快,傳統(tǒng)的抗體制備技術(shù)也已十分成熟,但獲得高親和力、靈敏度及特異性的抗體以及基于相應(yīng)抗體建立切實可行方便的檢測方法仍較為困難,其中一個重要原因便是對分析技術(shù)背后的基礎(chǔ)理論尤其是抗原抗體相互作用的結(jié)構(gòu)基礎(chǔ)及分子動力學(xué)過程的認識還不清楚、研究還不深入,在制備傳統(tǒng)抗體時如何克服半抗原或抗原設(shè)計的隨意性、盲目性,在篩選抗獨特型或抗免疫復(fù)合物抗體時如何提高篩選效率、方便快捷地獲得可與目標抗原精準識別的抗體分子及解決非特異性干擾,在建立開放式夾心免疫分析法時如何評估或測定VH、VL間的相互作用等等這些問題均需要相應(yīng)基礎(chǔ)理論的支持和指導(dǎo)。第三,與其他分離、富集和檢測技術(shù)體系的聯(lián)結(jié)有待加深。由于食品安全分析和環(huán)境評價對大批量樣品快速篩查的需要,檢測的高通量、自動化、標準化趨勢愈發(fā)明顯。如結(jié)合免疫親和色譜技術(shù)、毛細管電泳技術(shù)可實現(xiàn)多目標分析物的快速分離和富集,結(jié)合流動注射分析技術(shù)可實現(xiàn)樣品的連續(xù)自動分析,結(jié)合傳感器、生物芯片等新型的信號放大系統(tǒng)可增強信號響應(yīng)變化,提高檢測靈敏度。上述系統(tǒng)在以非競爭法對食品和環(huán)境中化學(xué)污染物殘留進行現(xiàn)場檢測過程中有著巨大的應(yīng)用價值。
小分子化合物免疫分析技術(shù)的發(fā)展,除了需要方法學(xué)上的革新外,在核心試劑,如抗體或與抗體功能相似的生物識別材料,包括標記材料的改善上也應(yīng)有所突破。比如說,常規(guī)的多克隆或單克隆抗體在目前的免疫分析領(lǐng)域仍具有不可替代的地位,但不可否認的是傳統(tǒng)抗體在靈敏度、親和力、穩(wěn)定性以及識別多目標物的性能方面正遭遇著發(fā)展瓶頸。找尋一些新的生物識別材料,如受體蛋白[53-55]、重組抗體[56-57]、核酸適配體[58-60]、分子印跡聚合物[61-63]成為研究的熱點。同時,一些新型的標記物,如鑭系元素[64-65]、量子點[66-69]、納米磁珠[70-73]及核酸片段[74-76]等的應(yīng)用將極大促進免疫標記技術(shù)的發(fā)展,有望進一步提高免疫測定的靈敏度、特異性、穩(wěn)定性和簡便性。
[1]PIRAN U,RIORDAN W J,LIVSHIN L A.New noncompetitive immunoassays of small analytes[J].Clinical Chemistry,1995,41(7):986-990.
[2]YANG Tangbin,ZENG Kun,DAI Zhongquan,et al.Advance in low-molecular-weight antigens’enzyme immunoassay[J]. China Biotechnology,2005,25(6):1-6.(in Chinese)
[3]JACKSON T M,EKINS R P.Theoretical limitations on immunoassay sensitivity.Current practice and potential advantages of fluorescent Eu3+chelates as non-radioisotopic tracers[J].Journal of Immunological Methods,1986,87(1):13-20.
[4]GRASSI J,CREMINON C,F(xiàn)ROBERT Y,et al.Two different approaches for developing immunometric assays of haptens[J]. Clinical Chemistry,1996,42(9):1532-1536.
[5]ISHIKAWA E,HASHIDA S,KOHNO T.Development of ultrasensitive enzyme immunoassay reviewed with emphasis on factors which limit the sensitivity[J].Molecular and Cellular Probes,1991,5(2):81-95.
[6]ISHIKAWA E,TANAKA K,HASHIDA S.Novel and sensitive noncompetitive(two-site)immunoassay for haptens with emphasis on peptides[J].Clinical Biochemistry,1990,23(5):445-453.
[7]HASHIDA S,TANAKA K,YAMAMOTO N,et al.Novel and sensitive noncompetitive enzyme immunoassay(hetero-two-site enzyme immunoassay)for arginine vasopressin in plasma[J].Analytical Letters,1991,24(7):1109-1123.
[8]TANAKA K,KOHNO T,HASHIDA S,et al.Novel and sensitive noncompetitive(two-site)enzyme immunoassay for haptens with amino groups[J].Journal of Clinical Laboratory Analysis,1990,4(4):208-12.
[9]HASHIDA S,TANAKA K,YAMAMOTO N,et al.Detection of one attomole of[Arg8]-vasopressin by novel noncompetitive enzyme immunoassay(hetero-two-site complex transfer enzyme immunoassay)[J].Journal of Biochemistry,1991,110(4):486-492.
[10]HASHIDA S,ISHIKAWA E.Novel and ultrasensitive noncompetitive enzyme immunoassay(hetero-two-site complex transfer enzyme immunoassay)for alpha-human atrial natriuretic peptide[J].Journal of Clinical Laboratory Analysis,1992,6(4):201-208.
[11]PRADELLES P,GRASSI J,CREMINON C,et al.Immunometric assay of low molecular weight haptens containing primary amino groups[J].Analytical Chemistry,1994,66(1):16-22.
[12]VOLLAND H,PRADELLES P,TARAN F,et al.Recent developments for SPIE-IA,a new sandwich immunoassay format for very small molecules[J].Journal of Pharmaceutical&Biomedical Analysis,2004,34(4):737-752.
[13]VOLLANDH,NORMANDBVL,MAMASS,etal.EnzymeimmunometricassayforleukotrieneC4[J].Journal of Immunological Methods,1994,175(1):97-105.
[14]YOSHIDA N,NISHIZAWA N,MATSUI H,et al.Development and validation of sensitive sandwich ELISAs for two investigational nonapeptide metastin receptor agonists,TAK-448 and TAK-683[J].Journal of Pharmaceutical&Biomedical Analysis,2012,70(11):369-377.
[15]ETIENNE E,CREMINON C,GRASSI J,et al.Enzyme immunometric assay of thyroliberin(TRH)[J].Journal of Immunological Methods,1996,198(1):79-85.
[16]ETIENNE E,CREMINON C,LAMOURETTE P,et al.Enzyme immunometric assay for L-thyroxine using direct ultraviolet irradiation[J].Analytical Biochemistry,1995,225(1):34-38.
[17]BUSCARLET L,VOLLAND H,DUPRET C J,et al.Use of free radical chemistry in an immunometric assay for 17 beta-estradiol [J].Clinical Chemistry,2001,47(1):102-109.
[18]COLJAVA,BRESJANACM,VRANACT,etal.Anti-idiotypicantibodies:anewapproachinprionresearch[J].BMC Immunology,2009,10:16.
[19]LIU Yuan,LIANG Ying,WANG Yun,et al.Review on application of anti-idiotype antibodies in immunoassay for pesticides and mycotoxins[J].Acta Agriculturae Zhejiangensis,2010,22(3):398-402.(in Chinese)
[20]BARNARD G,KOHEN F.Idiometric assay:noncompetitive immunoassay for small molecules typified by the measurement of estradiol in serum[J].Clinical Chemistry,1990,36(11):1945-1950.
[21]SELF C H.Determination method,use and components.World intellectual property organization international publication NO. WO89/05453:1989.
[22]MARES A,DE B J,OSHER J,et al.A direct non-competitive idiometric enzyme immunoassay for serum oestradiol[J].Journal of Immunological Methods,1995,181(1):83-90.
[23]NIWA T,KOBAYASHI T,SUN P,et al.An enzyme-linked immunometric assay for cortisol based on idiotype-anti-idiotype reactions[J].Analytica Chimica Acta,2009,638(1):94-100.
[24]JIANG H E,LIANG Y,F(xiàn)AN M T,et al.Preparation of anti-idiotype antibodies of o,o-dimethyl organophosphorus pesticides by phage display technology[J].Chinese Journal of Analytical Chemistry,2011,39(2):178-182.
[25]SONG Qifang,XIANG Junjian,LUO Miner,et al.Development of non-toxic ELISA quantitative detecting technique forzearalenone based on idiotype-anti-idiotype reactions[J].Chinese Journal of Immunology,2013,29(12):1317-1321.(in Chinese)
[26]MARAGOS C M.Production of anti-idiotype antibodies for deoxynivalenol and their evaluation with three immunoassay platforms[J].Mycotoxin Research,2014,30:103-111.
[27]HE Jiang,F(xiàn)AN Mingtao,LIANG Ying,et al.Application of anti-idiotype antibody in small molecules immunoassay[J].Chinese Journal of Analytical Chemistry,2010,38(9):1366-1370.(in Chinese)
[28]VOSS E J,MIKLASZ S D,PETROSSIAN A,et al.Polyclonal antibodies specific for liganded active site(metatype)of a high affinity anti-hapten monoclonal antibody[J].Molecular Immunology,1988,25(8):751-759.
[29]SELF C H,DESSI J L,WINGER L A.High-performance assays of small molecules:enhanced sensitivity,rapidity,and convenience demonstrated with a noncompetitive immunometric anti-immune complex assay system for digoxin[J].Clinical Chemistry,1994,40(11):2035-2041.
[30]TOWBIN H,MOTZ J,OROSZLAN P,et al.Sandwich immunoassay for the hapten angiotensin II.A novel assay principle based on antibodies against immune complexes[J].Journal of Immunological Methods,1995,181(2):167-176.
[31]GONZALEZ T A,VANRELL L,LAST J A,et al.Phage anti-immune complex assay:general strategy for noncompetitive immunodetection of small molecules[J].Analytical Chemistry,2007,79(20):7799-7806.
[32]GONZALEZ T A,KIM H J,GEE S J,et al.Polyclonal antibody-based noncompetitive immunoassay for small analytes developed with short peptide loops isolated from phage libraries[J].Analytical Chemistry,2007,79(23):9191-9196.
[33]HE Q H,XU Y,HUANG Y H,et al.Phage-displayed peptides that mimic zearalenone and its application in immunoassay[J]. Food Chemistry,2011,126(3):1312-1315.
[34]DONG J X,XU C,WANG H,et al.Enhanced sensitive immunoassay:noncompetitive phage anti-immune complex assay for the determination of malachite green and leucomalachite green[J].Journal of Agricultural&Food Chemistry,2014,62(34):8752-8758.
[35]HE Jiang.Application of phage display technology in food science:A review[J].Chinese Agricultural Science Bulletin,2014(24):303-309.(in Chinese)
[36]AROLA H O,TULLILA A,KILJUNEN H,et al.A specific non-competitive immunoassay for HT-2 mycotoxin detection[J]. Analytical Chemistry,2016,88(4):2446-2452.
[37]PAN Chao,SONG Wuqi,ZHANG Fengmin.Principle and application of somatic cell mutation based autonomously diversifying library system for monoclonal antibody preparation[J].International Journal of Immunology,2015,38(5).(in Chinese)
[38]KAZUYA O,TSUYOSHI A,TAKUYA S,et al.Noncompetitive immunoassay detection system for haptens on the basis of antimetatype antibodies[J].Clinical Chemistry,2015,61(4):627-635.
[39]UEDA H,TSUMOTO K,KUBOTA K,et al.Open sandwich ELISA:a novel immunoassay based on the interchain interaction of antibody variable region[J].Nature Biotechnology,1996,14(13):1714-1718.
[40]SUZUKI C,UEDA H,MAHONEY W,et al.Open sandwich enzyme-linked immunosorbent assay for the quantitation of small haptens[J].Analytical Biochemistry,2000,286(2):238-246.
[41]SUZUKI T,MUNAKATA Y,MORITA K,et al.Sensitive detection of estrogenic mycotoxin zearalenone by open sandwich immunoassay[J].Analytical Sciences,2007,23(1):65-70.
[42]LEE Y,ASAMI T,YAMAGUCHI I,et al.A new gibberellin detection system in living cells based on antibody V (H)/V(L)interaction[J].Biochemical and Biophysical Research Communications,2008,376(1):134-138.
[43]ISLAM K N,IHARA M,DONG J,et al.Direct construction of an open-sandwich enzyme immunoassay for one-step noncompetitive detection of thyroid hormone T4[J].Analytical Chemistry,2011,83(3):1008-1014.
[44]HARA Y,DONG J,UEDA H.Open-sandwich immunoassay for sensitive and broad-range detection of a shellfish toxin gonyautoxin[J].Analytica Chimica Acta,2013,793(5):107-113.
[45]GIRAUDI G,ANFOSSI L,ROSSO I,et al.A general method to perform a noncompetitive immunoassay for small molecules[J]. Analytical Chemistry,1999,71(20):4697-4700.
[46]ACHARYA D,DHAR T K.A novel broad-specific noncompetitive immunoassay and its application in the determination of total aflatoxins[J].Analytica Chimica Acta,2008,630(1):82-90.
[47]PIRAN U,RIORDAN W J,LIVSHIN L A.New noncompetitive immunoassays of small analytes[J].Clinical Chemistry,1995,41(7):986-990.
[48]HAFNER F T,KAUTZ R A,IVERSON B L,et al.Noncompetitive immunoassay of small analytes at the femtomolar level by affinity probe capillary electrophoresis:direct analysis of digoxin using a uniform-labeled scFv immunoreagent[J].Analytical Chemistry,2000,72(23):5779-5786.
[49]ZHU Z,RAVELET C,PERRIER S,et al.Multiplexed detection of small analytes by structure-switching aptamer-based capillary electrophoresis[J].Analytical Chemistry,2010,82(11):4613-4620.
[50]ZHANG X W,ZHANG Z X.Quantification of domoic acid in shellfish samples by capillary electrophoresis-based enzyme immunoassay with electrochemical detection[J].Toxicon,2012,59(59):626-632.
[51]LOVGREN U,KRONKVIST K,BACKSTROM B,et al.Design of non-competitive flow injection enzyme immunoassays for determination of haptens:application to digoxigenin[J].Journal of Immunological Methods,1997,208(2):159-168.
[52]WANG S,DU L,LIN S,et al.Flow injection chemiluminescence for the determination of estriol via a noncompetitive enzyme immunoassay[J].Microchimica Acta,2006,155(3):421-426.
[53]LAMAR J,PETZ M.Development of a receptor-based microplate assay for the detection of beta-lactam antibiotics in different food matrices[J].Analytica Chimica Acta,2007,586(1-2):296-303.
[54]ZENG K,ZHANG J,WANG Y,et al.Development of a rapid multi-residue assay for detecting beta-lactams using penicillin binding protein 2[J].Biomedical and Environmental Sciences,2013,26(2):100-109.
[55]JING Z,ZHANHUI W,KAI W,et al.Penicillin-binding protein 3 of streptococcus pneumoniae and its application in screening of β-lactams in milk[J].Analytical Biochemistry,2013,442(2):158-165.
[56]QI Y,WU C,ZHANG S,et al.Selection of anti-sulfadimidine specific scFvs from a hybridoma cell by eukaryotic ribosome display[J].PLoS One,2009,4(7):e6427.
[57]WEN K,NOLKE G,SCHILLBERG S,et al.Improved fluoroquinolone detection in ELISA through engineering of a broad-specific single-chain variable fragment binding simultaneously to 20 fluoroquinolones[J].Analytical and Bioanalytical Chemistry,2012,403(9):2771-2783.
[58]DUAN Nuo,WU Shijia,WANG Zhouping.An aptamer-based fluorescence assay for ochratoxin A[J].Chinese Journal of Analytical Chemistry,2011,39(3):300-304.(in Chinese)
[59]ZHAO Q,ZHANG Z,XU L,et al.Exonuclease I aided enzyme-linked aptamer assay for small-molecule detection[J].Analytical &Bioanalytical Chemistry,2014,406(12):2949-2955.
[60]HUANGR,XIZ,HEN.Applicationsofaptamersforchemistryanalysis,medicineandfoodsecurity[J].Science China-Chemistry,2015(7):1-9.
[61]XU Z X,GAO H J,ZHANG L M,et al.The biomimetic immunoassay based on molecularly imprinted polymer:a comprehensive review of recent progress and future prospects[J].Journal of Food Science,2011,76(2):R69-R75.
[62]ZHANG L M,ZHANG X,XU Z X.The applications of molecularly imprinted polymer in immunoassay,biosensor and enzyme mimic catalyst-a critical review[J].Advanced Materials Research,2012,466-467:84-87.
[63]LIU W,GUO Y,LUO J,et al.A molecularly imprinted polymer based a lab-on-paper chemiluminescence device for the detection of dichlorvos[J].Spectrochimica Acta Part A Molecular Spectroscopy,2015,141:51-57.
[64]ZHANG Z,LIU J F,SHAO B,et al.Time-resolved fluoroimmunoassay as an advantageous approach for highly efficient determination of sulfonamides in environmental waters[J].Environmental Science and Technology,2010,44(3):1030-1035.
[65]ZHANG Z,LIU J F,F(xiàn)ENG T T,et al.Time-resolved fluoroimmunoassay as an advantageous analytical method for assessing the total concentration and environmental risk of fluoroquinolones in surface waters[J].Environmental Science and Technology,2013,47(1):454-462.
[66]CHEN J,XU F,JIANG H,et al.A novel quantum dot-based fluoroimmunoassay method for detection of Enrofloxacin residue in chicken muscle tissue[J].Food Chemistry,2009,113(4):1197-1201.
[67]SUN H,WANG M,WANG J,et al.Development of magnetic separation and quantum dots labeled immunoassay for the detection of mercury in biological samples[J].Journal of Trace Elements in Medicine&Biology,2015,30:37-42.
[68]TAO L,ZHU L,YU H.Dual-label quantum dot-based immunoassay for simultaneous determination of Carbadox and Olaquindoxmetabolites in animal tissues[J].Food Chemistry,2015,199:70-74.
[69]LI Xiang,LI Xiangli,TAN Guiliang,et al.A new immunoassay method for aflatoxin B1 using CdTe luminescent quantum dots as labels[J].Journal of Food Science and Biotechnology,2013,32(3):258-264.(in Chinese)
[70]XU J,YIN W,ZHANG Y,et al.Establishment of magnetic beads-based enzyme immunoassay for detection of chloramphenicol in milk[J].Food Chemistry,2012,134(4):2526-2531.
[71]WANG X,NIESSNER R,KNOPP D.Magnetic bead-based colorimetric immunoassay for aflatoxin B1 using gold nanoparticles [J].Sensors,2014,14(11):21535-21548.
[72]KIM S,LIM H B.Chemiluminescence immunoassay using magnetic nanoparticles with targeted inhibition for the determination of ochratoxin A[J].Talanta,2015,140:183-188.
[73]DU Meihong,DAI Fengying,XU Dixin,et al.Factors effected on performance of immunomagnetic beads for bacteria enrichment [J].Journal of Food Science and Biotechnology,2015,34(5):501-506.(in Chinese)
[74]MALOU N,RAOULT D.Immuno-PCR:a promising ultrasensitive diagnostic method to detect antigens and antibodies[J]. Trends in Microbiology,2011,19(6):295-302.
[75]CHEN H Y,ZHUANG H S,YANG G X,et al.Determination of multi-residue PCBs in air by real-time fluorescent quantitative immuno-PCR assay[J].Analytical Methods,2014,6(17):6925-6930.
[76]CHANG L,LI J,WANG L.Immuno-PCR:An ultrasensitive immunoassay for biomolecular detection[J].Analytica Chimica Acta,2016,910:12-24.
A Review of Non-Competitive Immunoassays for Small Molecule Compounds
WANG Yahui1, LI Yanshen2, SONG Liting2, ZHANG Jing2,SUN Chengfeng2, YOU Yanli2, ZHAO Yuping*2, YANG Jianrong2
(1.Agricultural Information Institute,Chinese Academy of Agricultural Sciences,Beijing 100081,China;2. College of life science,Yantai University,Yantai 264000,China)
Pesticides,veterinary drugs,illegal additives and poisonous and harmful chemical pollutants in foods and environment have aroused more and more concerns.These residues are mostly assayed by competitive immunoassay modes due to their small molecular weight and single epitope.Since the sensitivity,stability,and liner range of competitive immunoassays are not as good as those in non-competitive sandwich immunoassays,methodological improvements could made non-competitive immunoassays suitable.Herein this review summarized their principles,elements and applications of non-competitive immunoassays for the detection of small molecules during last decades.
small molecule compounds,non-competitive immunoassay,hapten
TS 207.3;Q 503
A
1673—1689(2017)02—0113—09
2016-03-31
國家自然科學(xué)基金項目(31402246)。
王亞輝(1986—),男,河南寶豐人,農(nóng)學(xué)博士,助理研究員,主要從事動物源性食品安全與食品污染物監(jiān)測及農(nóng)業(yè)信息分析研究。E-mail:wangyahui@caas.cn
*通信作者:趙玉平(1964—),男,山西垣曲人,工學(xué)博士,教授,主要從事食品風(fēng)味物質(zhì)及食品安全研究。E-mail:water15689@163.com
王亞輝,李彥伸,宋麗廷,等.小分子化合物非競爭免疫檢測方法研究概述[J].食品與生物技術(shù)學(xué)報,2017,36(02):113-121.