亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        植物TIR—NB—LRR類型抗病基因各結(jié)構(gòu)域的研究進(jìn)展

        2017-04-29 00:00:00尹玲
        廣西植物 2017年2期

        摘要: 植物抗病反應(yīng)是一個(gè)多基因調(diào)控的復(fù)雜過程,在這個(gè)過程中R基因發(fā)揮了非常重要的作用。根據(jù)其氨基酸基序組成以及跨膜結(jié)構(gòu)域的不同,R基因可以分為多種類型,其中NBS-LRR類型是植物基因組中最大的基因家族之一。TIR-NB-LRR類型的抗病基因又是NB-LRR類型中的一大類,也是目前抗病基因研究的熱點(diǎn)。該文總結(jié)了TIR-NB-LRR類型抗病基因各個(gè)結(jié)構(gòu)域的功能和相關(guān)的研究進(jìn)展。相關(guān)研究表明,TIR結(jié)構(gòu)域主要通過自身或異源的二聚體化介導(dǎo)抗性信號(hào)的轉(zhuǎn)導(dǎo),但也有部分研究表明,該結(jié)構(gòu)域可能參與病原菌的特異性識(shí)別。NBS結(jié)構(gòu)域常被認(rèn)為具有“分子開關(guān)”的功能,它可以通過結(jié)合ADP或ATP來調(diào)節(jié)植物抗病蛋白的構(gòu)象變化,從而調(diào)節(jié)下游抗病信號(hào)的傳導(dǎo)。LRR結(jié)構(gòu)域在植物與病原菌互作的過程中可以通過與病原菌的無毒蛋白直接或間接互作來特異識(shí)別病原菌。也有研究發(fā)現(xiàn), LRR結(jié)構(gòu)域具有調(diào)節(jié)信號(hào)傳導(dǎo)的功能。這些信息將為研究植物抗病機(jī)理提供理論依據(jù),也為將來通過基因編輯技術(shù)對(duì)作物進(jìn)行定向抗病育種提供思路。

        關(guān)鍵詞: 抗病基因, TIR結(jié)構(gòu)域, NBS結(jié)構(gòu)域, LRR結(jié)構(gòu)域

        中圖分類號(hào): Q943, Q754文獻(xiàn)標(biāo)識(shí)碼: A文章編號(hào): 1000-3142(2017)02-0186-05

        Abstract: Plant disease-resistance response is a complex process which is regulated by multiple genes. Plant resistance genes (R genes) play an important role in this process. R genes can be divided into different types based on their N-terminal and transmembrane domains. The majority of disease resistance genes in plants encode nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins. The TIR-NB-LRR(TNL) type is a large family of plant NB-LRR genes. And it is also the current hot topics in the studies of plant disease resistance genes. We summarized the related research progresses of different domains of TNL proteins comprehensively in this review. TIR domain in resistance signaling via homodimerization or heterodimerization is a major role of plant TNL proteins. However, emerging roles for pathogen recognition for the plant TIR domain were identified in some researches. The NBS domain in NBS-LRR proteins was proposed to function as a molecular switch. It can adjust the conformation changes of plant R proteins through binding ADP or ATP, which regulates resistance signal conduction downstream. The LRRs of plant TIR-NB-LRR proteins were predicted to interact directly or indirectly with their avirulent effectors to recognize the pathogen specifically. The information provides a good theory basis for study of plant disease-resistance mechanisms, and also provides new insights and choices for crop disease-resistance breeding directionally by gene editing technology in the future.

        Key words: resistance genes, TIR domain, NBS domain, LRR domain

        植物的抗病反應(yīng)是一個(gè)多基因調(diào)控的復(fù)雜過程,在這個(gè)過程中植物抗病基因(Resistance gene, R gene)起到了非常重要的作用,也是近年來植物抗病的研究熱點(diǎn)。根據(jù)其氨基酸基序組成以及跨膜結(jié)構(gòu)域的不同,R基因可以分為多種類型,其中NBS-LRR(Nucleotide Binding Site-Leucine Rich Repeat)類型是植物基因組中最大的基因家族之一(Mchale et al,2006)。由于氨基端的保守結(jié)構(gòu)域不同,NBS-LRR類型的抗病蛋白又分為兩大類:第一類R基因編碼的蛋白質(zhì)在氨基端含有Toll及白細(xì)胞介素(IL)-1同源的TIR(Toll/interleukin-1 receptor like)結(jié)構(gòu)域,稱為TIR-NB-LRR(TNL)類型的抗病基因。煙草抗花葉病毒的N基因,亞麻抗條銹病L6基因,擬南芥RPS4 (Resistance to Pseudomonas Syringae 4)、RPP1A(Resistance to Phytophthora parasitica 1)、RPP4、RPP5基因,圓葉葡萄霜霉病抗性基因MrRPV1(Resistance to Plasmopara viticola)和白粉病抗性基因MrRUN1(Resistance to Uncinula necator)等均屬于此類型(Lawrence et al,1995;Weaver et al,2006;Feechan et al,2013)。第二類R基因編碼的蛋白質(zhì)在氨基端含有螺旋卷曲結(jié)構(gòu)域CC (Coiled-coil),稱為CC-NB-LRR(CNL)抗病基因。擬南芥RPS2 (Resistance to Pseudomonas Syringae 2)、RPM1(Resistance to Pseudomonas Maculicola 1)、RPP8(Resistance to Phytophthora parasitica 8),大麥MLA(for mildew-resistance locus A)以及小麥Lr10(leaf rust resistance)抗性基因等屬于此類(Shen et al,2007;Loutre et al,2009)。

        本文對(duì)植物TNL類型的抗病基因各結(jié)構(gòu)域功能的相關(guān)研究進(jìn)展進(jìn)行了總結(jié),這些信息將為研究植物抗病機(jī)理提供很好的理論依據(jù),也為將來通過基因編輯技術(shù)對(duì)作物進(jìn)行抗病分子設(shè)計(jì)育種提供一定的思路和參考。

        1TIR結(jié)構(gòu)域功能研究進(jìn)展

        1.1 TIR結(jié)構(gòu)域的信號(hào)轉(zhuǎn)導(dǎo)功能

        TNL類型的抗病基因是植物中存在的一大類,也是目前研究較多的一種類型。其氨基端的結(jié)構(gòu)域與果蠅Toll蛋白及哺乳動(dòng)物白細(xì)胞介素Ⅰ受體(IL-IR)蛋白同源,稱為TIR結(jié)構(gòu)域(Pan et al,2000)。由于TIR結(jié)構(gòu)域的氨基端序列在動(dòng)植物中是保守的,而在動(dòng)物中,該結(jié)構(gòu)域與免疫信號(hào)傳導(dǎo)有關(guān),因此推測(cè)植物抗病蛋白的該結(jié)構(gòu)域也可能與抗病信號(hào)的傳導(dǎo)有關(guān)。煙草N蛋白結(jié)構(gòu)和功能的研究為TIR結(jié)構(gòu)域介導(dǎo)植物防御信號(hào)的傳導(dǎo)提供了證據(jù)。將Toll或TLR信號(hào)傳導(dǎo)中重要的或保守的氨基酸位點(diǎn)在N蛋白中突變,含有這些突變體的轉(zhuǎn)基因煙草對(duì)煙草花葉病毒的抗性消失,病毒可以在侵染位點(diǎn)及其周圍擴(kuò)散(Dinesh-Kumar et al,2000),這說明N蛋白TIR結(jié)構(gòu)域參與了對(duì)煙草花葉病毒抗性信號(hào)的傳導(dǎo),而且保守的氨基酸對(duì)該信號(hào)的傳導(dǎo)具有非常重要的作用。此外,擬南芥抗病基因RPS4或RPP1A只含有TIR和NB結(jié)構(gòu)域的截短蛋白TIR+45或TIR+80片段,在沒有病原菌效應(yīng)蛋白誘導(dǎo)的情況下,也可以引起細(xì)胞壞死(Zhang et al,2004;Weaver et al,2006)。同樣,對(duì)亞麻條銹病抗病基因L6的結(jié)構(gòu)功能研究也發(fā)現(xiàn),將TIR結(jié)構(gòu)域保守氨基酸突變后或截短蛋白在亞麻葉片上瞬時(shí)表達(dá),超敏反應(yīng)也消失(Maud et al,2011)。我們知道,細(xì)胞壞死是R基因介導(dǎo)的抗性反應(yīng)的典型特征,它通??梢韵拗撇≡谇秩胛稽c(diǎn)的擴(kuò)散,以保衛(wèi)周圍的細(xì)胞。這些發(fā)現(xiàn)暗示著TIR結(jié)構(gòu)域在啟動(dòng)植物防御反應(yīng)信號(hào)方面的功能。同時(shí),近幾年對(duì)亞麻L(zhǎng)6 (Maud et al, 2011)、擬南芥NP_177436 protein (AtTIR)(Chan et al, 2010)、RPS4和RRS-1蛋白(Williams et al, 2014)、SNC1 (Suppressor of npr1-1, constitutive 1)蛋白(Hyun et al, 2016)和圓葉葡萄MrRPV1(Williams et al, 2016)的TIR結(jié)構(gòu)域的晶體結(jié)構(gòu)研究表明,TIR結(jié)構(gòu)域介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)依賴于TIR結(jié)構(gòu)域自身或異源的二聚體化。

        1.2 TIR結(jié)構(gòu)域與病原菌識(shí)別

        與上述研究不同的是,也有一些實(shí)驗(yàn)證明TIR結(jié)構(gòu)域和病原菌的特異識(shí)別有關(guān)。Burch-Smith et al(2007)發(fā)現(xiàn)煙草N基因獨(dú)立的TIR結(jié)構(gòu)域就可以與花葉病毒的效應(yīng)蛋白p50結(jié)合。亞麻的L6和L7基因,二者序列高度相似,僅在TIR區(qū)域存在11個(gè)氨基酸的差別,但二者卻介導(dǎo)對(duì)不同病原菌的抗性(Luck et al,2000),這表明TIR結(jié)構(gòu)域可能與病原菌的特異性識(shí)別有關(guān)。此外,還有報(bào)道表明,CNL類抗病蛋白的CC結(jié)構(gòu)域也表現(xiàn)出與TIR結(jié)構(gòu)域類似的功能。例如,丁香假單胞菌的效應(yīng)蛋白AvrB可以通過激活RIPK去磷酸化RIN4,RIN4 的磷酸化可以導(dǎo)致R基因RPM1的激活從而啟動(dòng)免疫防衛(wèi)反應(yīng) (Liu et al, 2011),而RPM1和RIN4之間的互作是通過其氨基酸的CC結(jié)構(gòu)域完成的(Mackey et al,2002)。與此類似,RPS5基因也通過其氨基端的CC結(jié)構(gòu)域結(jié)合PBS1保衛(wèi)蛋白,形成復(fù)合物參與病原菌蛋白的識(shí)別過程(Ade Innes,2007)。因此, TIR結(jié)構(gòu)域在抗病反應(yīng)信號(hào)傳導(dǎo)過程和病原菌AVR蛋白的特別識(shí)別過程中發(fā)揮著重要作用。

        2NBS結(jié)構(gòu)域的功能及研究進(jìn)展

        2.1 NBS結(jié)構(gòu)域的組成

        NBS結(jié)構(gòu)域,也稱為NB-ARC結(jié)構(gòu)域,其因在動(dòng)物的NOD-LRR蛋白,哺乳動(dòng)物細(xì)胞凋亡蛋白酶激活因子Apaf-1(Apoptotic protease-activating factor-1),植物R基因編碼的抗病蛋白和秀麗線蟲的細(xì)胞死亡蛋白CED-4(Caenorhabditis elegans death-4 protein)(Van der Biezen Jones,1998)中高度保守而得名。該結(jié)構(gòu)域約有300個(gè)氨基酸,包含多個(gè)STAND(Signal Transduction ATPases with Numerous Domains)家族的特征基序,分別是P-loop、RNBS-A、Kinase2、RNBS-B、RNBS-C、GLPL、RNBS-D 和MHDV(Mchale et al,2006)。該結(jié)構(gòu)域在植物抗病蛋白和動(dòng)物免疫蛋白質(zhì)的保守性比TIR/CC和LRR結(jié)構(gòu)域更強(qiáng),一般根據(jù)該結(jié)構(gòu)域的序列設(shè)計(jì)特異引物來擴(kuò)增抗病相關(guān)基因。

        2.2 NBS結(jié)構(gòu)域的功能

        NBS結(jié)構(gòu)域常被認(rèn)為具有“分子開關(guān)”的功能,它會(huì)形成一個(gè)催化和水解核苷酸的口袋結(jié)構(gòu),可以通過結(jié)合ADP或ATP來調(diào)節(jié)植物抗病蛋白的構(gòu)象變化,從而調(diào)節(jié)下游抗病信號(hào)的傳導(dǎo)。對(duì)馬鈴薯I-2和Mi-1蛋白CC-NB-ARC結(jié)構(gòu)域的生化研究表明,這些結(jié)構(gòu)域與ATP的綁定有關(guān)(Tameling et al,2002),而且這種結(jié)合活性是磷酸結(jié)合環(huán)狀結(jié)構(gòu)P-loop決定的,這個(gè)環(huán)狀結(jié)構(gòu)也就是我們熟知的Walker A基序(Walker et al,1982)。對(duì)于大麥的CNL蛋白MLA27的研究表明,全長(zhǎng)的植物NLR蛋白在“非活化”的狀態(tài)時(shí)會(huì)優(yōu)先結(jié)合ADP(Maekawa et al,2011)。同年,關(guān)于亞麻銹病抗病蛋白M的研究結(jié)果也證實(shí)了這一點(diǎn),而且該研究還發(fā)現(xiàn),M蛋白的自激活突變形式D555V(D555V in the conserved MHD motif)可以更多的結(jié)合ATP而非ADP。小麥Pm3基因NBS結(jié)構(gòu)域氨基酸的替換實(shí)驗(yàn)也證實(shí),該結(jié)構(gòu)域在小麥白粉病的抗性過程中起到了分子開關(guān)的作用,將個(gè)別氨基酸突變后細(xì)胞壞死反應(yīng)增強(qiáng),Pm3介導(dǎo)的病原菌的廣譜性擴(kuò)大(Stirnweis et al, 2014)。因此,NB-ARC結(jié)構(gòu)的相互作用與其激活下游抗病信號(hào)途徑和抗病功能密切相關(guān)(Williams et al,2011)。

        3LRR結(jié)構(gòu)域的功能及研究進(jìn)展

        3.1 LRR結(jié)構(gòu)域與病原菌識(shí)別

        LRR結(jié)構(gòu)域位于NBS-LRR類抗病基因的羧基端,由多個(gè)富含亮氨酸的重復(fù)序列組成。對(duì)動(dòng)物L(fēng)RR結(jié)構(gòu)域的晶體結(jié)構(gòu)研究表明,該結(jié)構(gòu)域是由β-折疊和α-螺旋經(jīng)由loop環(huán)連接成的桶狀結(jié)構(gòu)(Kobe Deisenhofer,1994),而且在動(dòng)物中,LRR結(jié)構(gòu)域介導(dǎo)蛋白與蛋白之間的互作。一直以來,植物NBS-LRR蛋白的LRR結(jié)構(gòu)域被認(rèn)為是與病原菌效應(yīng)分子特異識(shí)別有關(guān),而且該假設(shè)已經(jīng)得到了一些證據(jù)的支持。此外,LRR結(jié)構(gòu)域的β-折疊區(qū)存在配體結(jié)合界面,在許多植物NBS-LRR蛋白進(jìn)化過程中經(jīng)受著多樣化選擇壓力(Michelmore Meyers,1998)。盡管如此,目前對(duì)于支持LRR結(jié)構(gòu)域直接與病原菌效應(yīng)蛋白結(jié)合的實(shí)驗(yàn)證據(jù)還是比較有限的。

        對(duì)LRR結(jié)構(gòu)域與病原菌效應(yīng)蛋白互作最有說服力的證據(jù)是來源于亞麻L(zhǎng)基因的研究。將L6或L10基因的LRR結(jié)構(gòu)域替換為L(zhǎng)2的結(jié)構(gòu)域后,重組的基因具有與L2一樣識(shí)別特異的菌株的能力。但是一些L基因具有相同的LRR結(jié)構(gòu)域,但是卻識(shí)別不同的病原菌,這說明LRR結(jié)構(gòu)域之外的部分也會(huì)影響配體特異性,一些重組的L基因展示出識(shí)別新的病原菌的能力(Ellis et al,1999;Luck et al,2000)。此外,利用酵母雙雜交技術(shù)體外驗(yàn)證了效應(yīng)蛋白與NB-LRR類抗病蛋白Pi-ta、RRS1-R之間的直接互作。Pi-ta蛋白單獨(dú)的LRR結(jié)構(gòu)域就可以與對(duì)應(yīng)的無毒蛋白Avr-Pita互作,同時(shí)感病品種中的Pita基因與抗病品種相比,在LRR結(jié)構(gòu)域的末端存在A918S突變,而且體內(nèi)免疫共沉淀實(shí)驗(yàn)也檢測(cè)到了Avr-Pita與全長(zhǎng)Pi-ta蛋白之間的結(jié)合,這為L(zhǎng)RR結(jié)構(gòu)域與病原菌效應(yīng)蛋白結(jié)合提供了證據(jù)支持(Jia et al,2000)。但在RRS1-R只有全長(zhǎng)蛋白可以與其對(duì)應(yīng)的無毒蛋白PopP2互作,單獨(dú)的LRR結(jié)構(gòu)域并不可以,這也暗示著這種識(shí)別可能通過多個(gè)結(jié)構(gòu)域的作用,或需要某種特殊的蛋白質(zhì)構(gòu)象(Deslandes et al,2003)。最近研究表明,LRR結(jié)構(gòu)域通過與ARC2結(jié)構(gòu)域的締合或解締合來激活依賴于病原菌誘導(dǎo)的抗性(Slootweg Goverse,2013)。此外,擬南芥RPP1基因的LRR結(jié)構(gòu)域與效應(yīng)蛋白ATR1直接互作(Steinbrenner et al, 2015)。本課題組的最新研究也表明,圓葉葡萄霜霉病抗性基因MrRPV1和白粉病抗性基因MrRUN1基因的LRR結(jié)構(gòu)域互換后,分別轉(zhuǎn)化到感病的歐亞種葡萄中,轉(zhuǎn)基因苗的葉片對(duì)霜霉病和白粉病的抗性隨之改變,這說明,TNL類抗病蛋白的MrRPV1和MrRUN1的LRR結(jié)構(gòu)域確實(shí)介導(dǎo)了病原菌的特異性識(shí)別。

        3.2 LRR結(jié)構(gòu)域與信號(hào)轉(zhuǎn)導(dǎo)

        LRR結(jié)構(gòu)域具有調(diào)節(jié)信號(hào)傳導(dǎo)的功能。對(duì)于擬南芥RPS2、RPS5和RPP1A的研究發(fā)現(xiàn),LRR結(jié)構(gòu)域具有負(fù)調(diào)節(jié)抗性信號(hào)傳導(dǎo)的功能,因?yàn)長(zhǎng)RR結(jié)構(gòu)域缺失后,防御反應(yīng)一直處于激活狀態(tài)(Tao et al,2000;Weaver et al,2006)。同樣,過表達(dá)馬鈴薯Rx基因LRR結(jié)構(gòu)域的截短蛋白可以使超敏反應(yīng)加強(qiáng)(Inohara et al,2005)。類似的,脊椎動(dòng)物受體蛋白Nod2的截短實(shí)驗(yàn)也表明,即使只截短部分的LRR結(jié)構(gòu)域,就可以極大的增強(qiáng)對(duì)轉(zhuǎn)錄因子NF-κB的激活能力(Tanabe et al,2004)。而且,Rx-GPA2嵌合蛋白的表達(dá)實(shí)驗(yàn)表明,LRR結(jié)構(gòu)域中至少有2個(gè)區(qū)域?qū)τ诮Y(jié)合NBS區(qū)域?qū)崿F(xiàn)抑制信號(hào)傳導(dǎo)起作用(Rairdan Maffett,2006)。與上述研究矛盾的是,也有研究表明LRR具有正調(diào)控功能。將MI-1.2基因的LRR域或NBS-LRR域替換為其同源基因MI-1.1的LRR結(jié)構(gòu)域后,重組后的嵌合蛋白表現(xiàn)出組成型活性(Hwang et al,2000),LRR結(jié)構(gòu)域的突變可以導(dǎo)致這種組成型活性消失,這表明這種活性的產(chǎn)生是LRR結(jié)構(gòu)域正調(diào)控而非負(fù)調(diào)控的結(jié)果(Hwang Williamson,2003)。此外,對(duì)Rx和RPS5抗病蛋白LRR結(jié)構(gòu)域的突變研究也均證實(shí)了這種推測(cè)(Warren et al,1998;Rairdan Maffett,2006)。

        4研究展望

        植物的抗病基因,尤其是TNL和CNL類型的R基因,一直以來都是植物抗病性研究的熱點(diǎn)和重點(diǎn),也是植物與病原菌互作研究中的一個(gè)重要方面。近年來,高通量測(cè)序技術(shù)飛速發(fā)展,越來越多的植物基因組序列被公布,大量抗病基因從基因組或轉(zhuǎn)錄組數(shù)據(jù)中被挖掘出來,越來越多的R基因也被克隆出來。這些基因資源為探究植物抗病的分子機(jī)制提供了研究方向和理論依據(jù),也為抗病育種提供了豐富的抗性資源。目前對(duì)于植物抗病基因的結(jié)構(gòu)以及各結(jié)構(gòu)域的功能已有全面的認(rèn)識(shí),但對(duì)于抗病基因介導(dǎo)的表達(dá)調(diào)控機(jī)制還有待更深入的研究,以明確整個(gè)的抗病通路。同時(shí),伴隨著如CRISP/CAS9等新的基因編輯技術(shù)的出現(xiàn),明確R基因介導(dǎo)的整個(gè)抗性機(jī)制將為通過新的基因編輯技術(shù)實(shí)現(xiàn)定向抗病育種提供了新的思路和更多的選擇。

        參考文獻(xiàn):

        ADE J, DEYOUNG BJ, GOLSTEIN C, et al, 2007. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease [J]. Proc Nat Acad Sci USA, 104(7):2531-2536.

        BURCH-SMITH TM, SCHIFF M, CAPLAN JL, et al, 2007. A novel role for the TIR domain in association with pathogen-derived elicitors [J]. Plos Biol, 5(3):e68.

        CHAN SL, MUKASA T, SANTELLI E, et al, 2010. The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants [J]. Prot Sci, 19:155-161.

        DESLANDES L, OLIVIER J, PEETERS N, et al, 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type Ⅲ effector targeted to the plant nucleus [J]. Proc Nat Acad Sci USA, 100(13):8024-8029.

        DINESH-KUMAR SP, THAM WH, BAKER BJ, 2000. Structure-function analysis of the tobacco mosaic virus resistance gene N [J]. Proc Nat Acad Sci USA, 97(26):14789-14794.

        ELLIS JG,LAWRENCE GJ, LUCK JE, et al, 1999. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity [J]. Plant Cell, 11(3):495-506.

        FEECHAN A, ANDERSON C, TORREGROSA L, et al, 2013. Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine [J]. Plant J, 76:661-674.

        HWANG CF, BHAKTA AV, TRUESDELL GM, et al, 2000. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death [J]. Plant Cell, 12(8):1319-1329.

        HWANG CF, WILLIAMSON VM. 2003, Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi [J]. Plant J, 34(5):585-593.

        HYUN K, LEE Y, YOON J, et al, 2016, Crystal structure of Arabidopsis thaliana SNC1 TIR domain [J]. Biochem Biophys Res Comm, 481(1): 146-152.

        INOHARA N, CHAMAILLARD M, MCDONALD C, et al, 2005. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease [J]. Ann Rev Biochem, 74:355-383.

        JIA Y, MCADAMS SA, BRYAN GT, et al, 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance [J]. Embo J, 19(15):4004-4014.

        KOBE B, DEISENHOFER J, 1994. The leucine-rich repeat: a versatile binding motif [J]. Trends Biochem Sci, 19(10):415-421.

        LAWRENCE GJ, FINNEGAN EJ, AYLIFFE MA, et al, 1995. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N [J]. Plant Cell, 7(8):1195-1206.

        LIU J, ELMORE JM, LIN ZJD, et al, 2011. A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor [J]. Cell Host Microbe, 9(2): 137-146.

        LOUTRE C, WICKER T, TRAVELLA S, et al, 2009. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat [J]. Plant J, 60(6):1043-1054.

        LUCK JE, LAWRENCE GJ, DODDS PN, et al, 2000. Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination [J]. Plant Cell, 12(8):1367-1377.

        MACKEY D, HOLT BF, WIIG A, et al, 2002. RIN4 Interacts with Pseudomonas syringae, type Ⅲ effector molecules and is required for RPM1-Mediated Resistance in Arabidopsis [J]. Cell, 108(6):743-754.

        MAEKAWA T, CHENG W, SPIRIDON L, et al, 2011. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death [J]. Cell Host Microb, 9(3):187-199.

        MAUD B, THOMAS V, SIMON W, et al, 2011. Structural and functional analysis of a plant resistance protein tir domain reveals interfaces for self-association, signaling, and autoregulation [J]. Cell Host Microb, 9(3):200-211.

        MCHALE L, TAN X, KOEHL P, et al, 2006. Plant NBS-LRR proteins: adaptable guards [J]. Genom Biol, 7(4):1-11.

        MICHELMORE RW, MEYERS BC, 1998. Clusters of resistance genes in plants evolve by divergent selection and a birth and death process [J]. Genom Res, 8(11):1113-1130.

        PAN Q, WENDEL J, FLUHR R, 2000. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes [J]. J Mol Evol, 50(3):203-213.

        RAIRDAN GJ, MOFFETT P, 2006. Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation [J]. Plant Cell, 18(8):2082-2093.

        SHEN QH, SAIJO Y, MAUCH S, et al, 2007. Nuclear activity of mla immune receptors links isolate-specific and basal disease-resistance responses [J]. Science, 315(5815):1098-1103.

        SLOOTWEG EJ, GVERSE A, 2013. Structural determinants at the interface of the ARC2 and leucine-rich repeat domains control the activation of the plant immune receptors Rx1 and Gpa2 [J]. Plant Physiol, 162(3):1510-1528.

        STEINBRENNER AD, GORITSCHNIG S, STASKAWICZ BJ, 2015. Recognition and activation domains contribute to allele-specific responses of an Arabidopsis NLR receptor to an oomycete effector protein [J]. PLoS Pathog, 11(2): e1004665. doi:10.1371/journal.ppat.1004665.

        STIRNWEIS D, MILANI SD, JORDAN T, et al, 2014. Substitutions of two amino acids in the nucleotide-binding site domain of a resistance protein enhance the hypersensitive response and enlarge the PM3F resistance spectrum in wheat [J]. Mol Plant Microb Interact, 27(3): 265-276.

        TAMELING WI, ELZINGA SD, DARMIN PS, et al, 2002. The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity [J]. Plant Cell, 14(11):2929-2939.

        TAO Y, YUAN F, LEISTER RT, et al, 2000. Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rich repeat resistance gene RPS2 [J]. Plant Cell, 12(12):2541-2554.

        TANABE T, CHAMAILLARD M, OGURA Y, et al, 2004. Regulatory regions and critical residues of NOD2 involved in muramyl dipeptide recognition [J]. Embo J, 23(7):1587-1597.

        VAN DER BIEZEN EA, JONES JD, 1998. Plant disease-resistance proteins and the gene-for-gene concept [J]. Trends Biochem Sci, 23(12):454-456.

        WALKER JE, SARASTE M, RUNSWICK MJ, et al, 1982. Distantly related sequences in the alpha- and beta- subunits ATP synthase, myosin, kinases, and other ATP-requiring enzymes and a common nucleotide binding fold [J]. Embo J, 1(8):945-951.

        WARREN RF, HENK A, MOWERY P, et al, 1998. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes [J]. Plant Cell, 10(9):1439-1452.

        WEAVER LM, SWIDERSKI MR, LI Y, et al, 2006. The Arabidopsis thaliana, TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis [J]. Plant J, 47(6):829-840.

        WILLIAMS SJ, SORNARAJ P, DECOURCYIRELAND E, et al, 2011. An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP [J]. Mol Plant Microb Interact, 24(8):897-906.

        WILLIAMS SJ, SOHN KH, WAN L, et al, 2014. Structural basis for assembly and function of a heterodimeric plant immune receptor [J]. Science, 344:299-303.

        WILLIAMS SJ, YIN L, FOLEY G, et al, 2016. Structure and function of the TIR domain from the grape NLR protein RPV1 [J]. Front Plant Sci,7:1850. doi: 10.3389/fpls.2016.01850.

        ZHANG Y, DOREY S, SWIDERSKI M, et al, 2004. Expression of RPS4, in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90 [J]. Plant J, 40(2):213-224.

        亚洲熟伦熟女新五十路熟妇| 各类熟女熟妇激情自拍| 一区二区三区国产内射| 在厨房被c到高潮a毛片奶水 | 久久久亚洲欧洲日产国码αv| 99精产国品一二三产品香蕉| 国产综合久久久久影院| 91亚洲最新国语中文字幕| 免费在线国产不卡视频| 精品一区二区三区在线视频| 亚洲日韩av无码| 亚洲自拍另类欧美综合| 色婷婷久久99综合精品jk白丝| 网站在线观看视频一区二区| 天天做天天爱夜夜爽| 在线亚洲+欧美+日本专区| 国产成人精品三级在线影院| 一区二区三区精品偷拍av| 一区二区三区在线视频观看| 久久久久久欧美精品se一二三四| 欲色天天网综合久久| 97久久久久国产精品嫩草影院| av成人资源在线观看| 神马影院日本一区二区| 麻豆精品久久久久久中文字幕无码| av大全亚洲一区二区三区| 妺妺窝人体色www聚色窝| 少妇内射视频播放舔大片| 亚洲av色香蕉一区二区蜜桃| 午夜少妇高潮在线观看视频| 丰满少妇弄高潮了www| 亚洲欧美日韩人成在线播放| 91精品国产91久久久无码色戒| 伊人久久大香线蕉av色婷婷| 欧美亅性猛交内射| 亚洲国产成人无码av在线影院| 一本无码人妻在中文字幕| 日韩人妖一区二区三区| 变态另类手机版av天堂看网| 日韩乱码人妻无码中文字幕久久 | 国产精品无码dvd在线观看|