亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        豎向壓力和剪切速率對小麥直剪強度及剪脹特性的影響

        2017-04-24 03:46:52蔣敏敏郭祝輝
        農業(yè)工程學報 2017年6期
        關鍵詞:變形

        蔣敏敏,郭祝輝

        ?

        豎向壓力和剪切速率對小麥直剪強度及剪脹特性的影響

        蔣敏敏,郭祝輝

        (1. 河南工業(yè)大學土木建筑學院,鄭州 450001;2. 糧食儲運國家工程實驗室,鄭州 450001)

        為了得出糧倉設計中糧堆強度和剪脹特性等關鍵指標,通過直剪試驗研究糧堆剪切破壞面上,在豎向壓力50~300 kPa、剪切速率0.78~2.33 mm/min條件下,小麥糧堆單元體的強度和剪脹特性。結果表明:小麥糧堆單元體剪切分為彈性、塑性變形和籽粒壓縮3個階段。小麥糧堆單元體抗剪強度符合莫爾庫倫強度準則,剪切速率從0.78 mm/min增大至2.33 mm/min,咬合應力從7.5 kPa增大至12.9 kPa,內摩擦角從38.2°變化為35.0°,剪脹角介于5.1°~4.8°之間。彈性階段發(fā)生剪縮,最大剪縮體變小于0.4%;塑性變形階段發(fā)生剪脹,最大剪脹體變大于最大剪縮體變,豎向壓力越大最大剪脹體變越小,剪切速率越大隨著壓力的增大最大剪脹體變的變化越小。研究結果可用于糧倉內糧堆應力、變形的計算,為糧食倉儲結構的設計提供依據(jù)。

        糧食;剪切試驗;剪切強度;小麥糧堆;剪脹

        0 引 言

        糧食倉儲設施是保障糧食安全、關系國計民生的重要基礎設施。糧倉內的糧堆在一定的周期后需要進行裝糧和卸糧的作業(yè),引起糧堆豎向壓力和側向壓力的變化,產生相對滑移和剪切,進而作用于倉壁結構上[1-5],會對倉壁的受力產生重要影響,因此研究糧食的強度和剪脹特性對糧倉的安全具有重要意義[6-9]。

        科研工作者對糧食籽粒的力學性質進行了大量研究,Sayyah等[10]通過試驗得出了小麥籽粒的表觀彈性模量、粒間接觸應力、破壞應力,提出模量等力學指標受籽粒硬度的影響。Figueroa等[11]通過單軸壓縮試驗和應力松弛試驗,研究了小麥籽粒的壓縮變形、彈性特性和流變特性等問題。張克平等[12-17]針對儲藏和加工等條件下,小麥籽粒受擠壓的力學性質、破壞特性和摩擦特性進行了研究。在糧堆的力學性質方面,Moya等[18]通過壓縮、直剪等試驗,研究了不同種類糧堆的壓縮性、抗剪強度、容重的規(guī)律。程緒鐸等[19-20]通過直剪試驗研究了小麥的內摩擦角,小麥與鋼板壁、混凝土板壁之間的摩擦系數(shù)規(guī)律。許啟鏗等[21]提出小麥堆三軸壓縮分四階段,分析了小麥堆彈性模量隨剪切變形和圍壓的變化規(guī)律。陳家豪等[22]根據(jù)小麥三軸應力應變關系曲線,推導出小麥堆壓縮模量的數(shù)學表達式,提出了不同階段壓縮模量的特性。曾長女等[23-24]通過小麥堆三軸壓縮試驗,研究了含水率和孔隙率對強度參數(shù)的影響?,F(xiàn)有的關于糧食的試驗研究中,單個顆粒的力學特性研究,難以反映糧倉內大體積糧堆的力學性能;而對于糧堆的強度和壓縮等研究,主要為參數(shù)研究,缺乏對糧倉內糧堆單元體的強度和剪脹規(guī)律方面的研究。

        本文通過小麥糧堆單元體直剪試驗,模擬糧堆裝卸料過程中,剪切面上單元體剪切過程,考慮一定籽??蓧嚎s特性,研究倉內糧堆抗剪強度和剪脹的規(guī)律,以期用于糧倉內糧食應力、變形的計算,為糧食倉儲結構的設計提供依據(jù)。

        1 材料與方法

        直剪試驗通常用于測試巖土體材料的力學性質[25-26],本研究中用于測試糧倉裝卸料過程中糧堆的力學性質??紤]到小麥的平均粒徑比砂土等材料的顆粒略大,研究中采用改進的全自動糧食直剪儀,如圖1所示。直剪儀上、下剪切盒的總高度為20 mm,直徑為100 mm,剪切盒直徑與顆粒直徑比值為22.2,滿足散粒體材料直剪試驗的規(guī)范要求。采用可編程控制器(PLC)和人機界面的伺服電機和壓力傳感器,保證直剪試驗的均勻性、穩(wěn)定性和精確性。上、下剪切盒之間的接觸面處粘貼聚乙烯薄片,并用凡士林消除上下剪切盒之間的摩阻力。試驗在恒定的豎向壓力下,沿著上、下盒面剪切,直至產生較大的剪切位移,測量剪切過程中的剪切位移、應力和豎向變形量等參量。

        a. 直剪試驗儀器

        a. Direct shear apparatus

        b. 試樣受力變形狀態(tài)

        b. Stress and deformation of sample

        注:為試樣高度,mm;為試樣直徑,mm。

        Note:is the height of sample, mm;is the diameter of sample, mm .

        圖1 小麥糧堆直剪試驗示意圖

        Fig.1 Schematic diagram of direct shear test of wheat heap

        試驗材料為河南小麥,品種為鄭麥113,根據(jù)糧倉內儲糧狀態(tài),試驗中在直剪盒中裝入248.2 g小麥試樣,控制小麥的密度為0.79 g/cm3,小麥的含水率為10.9%,平均粒徑為4.5 mm。

        實際糧倉中,糧堆不同剪切破壞面上的上覆壓力和剪切速率會不同,本文選擇這2個影響因素,研究小麥糧堆直剪抗剪強度及剪脹特性。根據(jù)糧倉內糧堆壓力的范圍,選取試驗豎向壓力為50、100、150、200、250、300 kPa共6個等級。根據(jù)大體積糧堆破壞面上的剪切滑動速率,選取3種剪切速率為0.78、1.55、2.33 mm/min。小麥糧堆由小麥籽粒骨架和孔隙組成,糧倉內小麥堆視為松散介質材料,本文中應力均表示包含籽粒骨架和孔隙在內的整個面積上的平均應力[27]。試驗最終剪位移與試樣直徑的比值約為0.2,剪切后試樣面積減小約14%,針對直剪試驗過程中剪切面積會逐漸減少的問題,進行了剪切面積修正,修正后的剪應力(kPa)為[28-29]

        (1)

        式中F為剪切面上的剪力,N;0為試樣剪切面積,mm2;為試樣直徑,mm;為剪位移,mm。

        2 小麥堆剪應力-剪脹-剪位移關系

        不同剪切速率和豎向壓力下小麥糧堆的剪應力-剪位移的關系曲線如圖2所示,試驗曲線為3次直剪試驗的平均值。各次試驗抗剪強度的變異系數(shù)CV為0.025,因此本文中試驗結果均取平均值結果。從剪應力-剪位移試驗結果可見,剪應力隨著剪位移的增大初始時近似呈線性增大,隨著剪位移增大,剪應力逐漸呈非線性增長,剪位移較大時,剪應力趨于穩(wěn)定值或略有下降。

        體積應變-剪位移的關系曲線如圖3所示。體積應變ε=Δ/0(Δ為試樣剪切體積變化量(mm3),0為豎向壓力作用下壓縮穩(wěn)定后試樣體積(mm3)),上下剪切盒徑向為剛性邊界,剪切過程中面積不變,剪脹僅受豎向變形影響,,通過試樣盒上方的LVDT位移傳感器測量(mm)。試樣發(fā)生剪縮,體積應變?yōu)檎?;試樣發(fā)生剪脹,體積應變?yōu)樨撝?。從體積應變-剪位移關系曲線可見,剪切初始階段小麥堆產生一定的剪縮,隨著剪位移增大產生急劇的剪脹,剪位移較大時試樣發(fā)生一定的剪縮。

        剪切體積變形主要為上下剪切盒之間剪切面附近的籽粒錯動引起,在不同的應力和剪切位移條件下,小麥籽粒部分越過前方的籽粒往上抬升,部分落入前方的孔隙中,在宏觀上引起體積膨脹或收縮,如示意圖1b所示。剪切體積變形主要發(fā)生在剪切面附近的區(qū)域。與剪切體積變形不同,剪盒中所有的籽粒均會受到壓應力,小麥籽粒單向壓縮的最大變形ε在0.7%~1.0%之間[12],在三向壓力作用下,糧堆會產生宏觀體積壓縮變形。剪切過程中剪切體積變形和籽粒壓縮體積變形構成了糧堆的總體積變形。

        根據(jù)小麥糧堆剪應力與剪位移關系、體積應變與剪位移關系結果,小麥糧堆剪切可分為3個階段:1)彈性階段:在該階段剪應力隨著剪位移近似呈線性增長關系,該過程中試樣體積減小,發(fā)生剪縮。各組試驗彈性階段的最大剪位移介于0.2~0.6 mm,豎向壓力越大彈性階段變形范圍越大,剪切速率對彈性變形的影響較小。該階段由于糧堆的剪應力和剪位移較小,糧堆骨架處于彈性階段,近似呈彈性變形。剪切過程中由于骨架發(fā)生壓密、孔隙減小,糧堆發(fā)生剪縮。2)塑性變形階段:該階段剪應力隨著剪位移呈非線性增長,糧堆體積隨著剪位移的增大發(fā)生膨脹。該階段由于糧堆骨架產生較大的塑性剪切變形,糧堆中的剪應力增大,糧堆骨架承擔的剪應力逐漸趨于抗剪強度。各組試驗塑性變形階段的最大剪位移介于6.3~11.4 mm,該階段剪位移較大,剪切面上小麥籽??朔Ш献饔煤湍Σ磷饔?,產生相對位移,部分籽粒落入孔隙中,部分籽粒向上抬升,同時籽粒還會發(fā)生一定的彈性變形[12,15],其中籽粒抬升作用最顯著,最終形成了小麥堆宏觀上的體積膨脹。3)籽粒壓縮階段:剪位移大于6.3~11.4 mm時,該階段小麥糧堆剪切變形量較大,小麥籽粒間的接觸力逐漸增大,籽粒發(fā)生屈服[12,15],籽粒體積收縮,導致籽粒填入孔隙中,形成宏觀上糧堆骨架體積發(fā)生收縮,該階段剪應力隨著剪位移的增大略有下降或保持穩(wěn)定。

        3 小麥糧堆強度和剪脹特性

        3.1小麥糧堆強度特性

        由小麥糧堆單元體剪應力與剪位移關系曲線可見,剪位移為10mm左右時,小麥糧堆剪應力出現(xiàn)峰值或趨于穩(wěn)定值,該值取為抗剪強度。不同豎向壓力(50、100、150、200、250、300 kPa)和不同水平向剪切速率下(0.78、1.55、2.33 mm/min)小麥糧堆的抗剪強度τ結果如圖4所示。

        結果表明,與無黏性土類似,小麥糧堆的抗剪強度τ主要包括剪脹和摩擦2個分量,抗剪強度符合莫爾庫倫強度準則,可表示為

        式中τ為抗剪強度,kPa;為豎向壓力,kPa;為咬合應力,kPa;為峰值內摩擦角,(°)。

        得出不同剪切速率下糧堆的咬合應力和平面應變峰值內摩擦角,如下表1所示。從試驗結果可見:剪切速率對咬合應力影響最大,剪切速率從0.78增大至2.33 mm/min,咬合應力從7.5增大至12.9 kPa;而內摩擦角從38.2°變化為35.0°;剪脹角則介于5.1°~4.8°之間。

        表1 小麥糧堆強度參數(shù)

        3.2 小麥糧堆剪脹特性

        從圖3體積應變與剪位移關系曲線可見:在彈性階段,隨著剪位移的增大,小麥糧堆體積逐漸收縮,直至最大剪縮變形,此時體積應變?yōu)榧羟腥^程中最大的剪縮體變ε,為體積應變曲線的最低點。在塑性變形階段,隨著剪位移的增大,試樣發(fā)生顯著的剪脹,直至達到最大剪脹變形,此時體積應變?yōu)榧羟腥^程中最大的剪脹體變ε,為體積應變曲線的最高點。在籽粒壓縮階段,小麥籽粒發(fā)生屈服,糧堆體積再次發(fā)生一定程度的收縮。

        小麥糧堆具有代表性的剪脹性指標有彈性階段的最大剪縮體變ε和塑性變形階段的最大剪脹體變ε。根據(jù)圖3得出彈性階段的最大剪縮體變ε總體小于0.4%,一般介于0.1%~0.2%之間,變化較小。塑性變形階段的最大剪脹體變結果如圖5所示。從試驗結果可見,塑性變形階段的最大剪脹體變ε通常大于最大剪縮體變ε。剪切速率為最小值0.78 mm/min時,豎向壓力從50kPa變化到300 kPa,最大剪脹體變ε從?4.1%變化到?0.8%,表明上覆壓力越大,最大剪脹體變越小,小麥糧堆的剪脹性越小,上覆壓力較大會限制糧堆的剪脹變形。剪切速率越大,最大剪脹體變ε受豎向壓力影響越小,剪切速率為最大值2.33 mm/min時,豎向壓力從50 kPa變化到300 kPa,最大剪脹體變的變化較小,總體介于?2.2%~?1.5%之間,表明較大的剪切速率會限制最大剪脹體變的變化。

        4 結 論

        糧倉內糧堆的強度、剪脹等性質和參數(shù)是進行糧倉結構設計的重要方面。通過直剪試驗分析和研究了小麥糧堆在豎向壓力為50~300 kPa、剪切速率為0.78~2.33 mm/min時的強度和剪脹規(guī)律,得到以下結論:

        1)小麥糧堆剪切變形分彈性、塑性變形和籽粒壓縮3個階段。

        2)小麥糧堆抗剪強度包括剪脹分量和摩擦分量,符合莫爾庫倫強度準則;剪切速率從0.78增大至2.33 mm/min,咬合應力從7.5增大至12.9 kPa,峰值內摩擦角從38.2°變化為35.0°,剪脹角介于5.1°~4.8°之間。

        3)小麥糧堆在彈性階段的最大剪縮體變較小,總體小于0.4%。在塑性變形階段的最大剪脹體變通常遠大于最大剪縮體變,豎向壓力越大最大剪脹體變越小,剪切速率越大隨著壓力的增大最大剪脹體變的變化越小。

        [1] Ayuga F, Guaita M, Aguado P J, et al. Discharge and the eccentricity of the hopper influence on the silo wall pressures[J]. Journal of Engineering Mechanics, 2001, 127(10): 1067-1074.

        [2] Ayuga F, Guaita M, Aguado P J. Static and dynamic silo loads using finite element models[J]. Journal of Agricultural Engineering Research, 2001, 78(3): 299-308.

        [3] 程緒鐸. 筒倉中糧食卸載動壓力的研究與進展[J]. 糧食儲藏,2008,37(5):20-24. Cheng Xuduo. Research and advance of dynamic pressure in silo during discharge[J]. Grain Storage, 2008, 37(5): 20-24. (in Chinese with English abstract)

        [4] Cheng X, Zhang Q. A particular model for prediction vibration-induced loads in bulk solids storage bins[J]. Transactions of the ASABE, 2006, 49(3): 759-765.

        [5] 李智峰,彭政,蔣亦民. 糧倉內顆粒壓力的測量:Janssen行為及其偏差[J]. 物理學報,2014,63(10):292-299. Li Zhifeng, Peng Zheng, Jiang Yimin. Measurement of granular pressure in silo: Janssen behaviour and deviation[J]. Acta Phys Sin, 2014, 63(10): 292-299. (in Chinese with English abstract)

        [6] Song C Y, Teng J G. Buckling of circular steel silos subject to code-specified eccentric discharge pressures[J]. Engineering Structure, 2003, 25(11): 1397-1417.

        [7] Sadowski A J, Rotter J M. Study of buckling in steel silos under eccentric discharge flows of stored solids[J]. Journal of Engineering Mechanics, 2010, 136(6): 769-776.

        [8] Sadowski A J, Rotter J M. Buckling in eccentrically discharged silos and the assumed pressure distribution[J]. Journal of Engineering Mechanics, 2013, 139(7): 858-867.

        [9] Dogangun A, Karaca Z. Cause of damage and failures in silo structures[J]. Journal of Performance of Constructed Facilities, 2015, 23(2): 65-71.

        [10] Sayyah A A H, Minaei S. Behavior of wheat kernels under quasi-static loading and its relation to grain hardness[J]. Journal of Agricultural Science and Technology, 2004, 6(1/2): 11-19.

        [11] Figueroa J D C, Hernandez Z J E, Veles M J J, et al. Evaluation of degree of elasticity and other mechanical properties of wheat kernels[J]. Cereal Chemistry, 2011, 88(1): 12-18.

        [12] 張克平,黃建龍,楊敏,等. 冬小麥籽粒受擠壓特性的有限元分析及試驗驗證[J]. 農業(yè)工程學報,2010,26(6):352-356. Zhang Keping, Huang Jianlong, Yang Min, et al. Finite element analysis and experimental verification of wheat grain under compression loads[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(6): 352-356. (in Chinese with English abstract)

        [13] 程緒鐸,嚴曉婕,黃之斌. 儲藏條件對大豆籽粒力學特性的影響[J]. 中國糧油學報,2014,29(2):67-71. Cheng Xuduo, Yan Xiaojie, Huang Zhibin. Effects of storage conditions on mechanical properties of soybean[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(2): 67-71. (in Chinese with English abstract)

        [14] 周顯青,張玉榮,褚洪強,等. 糙米機械破碎力學特性試驗與分析[J]. 農業(yè)工程學報,2012,28(18):255-262. Zhou Xianqing, Zhang Yurong, Chu Hongqiang, et al. Experiment and analysis of mechanical properties of mechanical crushing brown rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 255-262. (in Chinese with English abstract)

        [15] 丁林峰,李耀明,徐立章. 稻谷壓縮試驗的接觸力學分析[J].農機化研究,2007(12):112-115. Ding Linfeng, Li Yaoming, Xu Lizhang. Research and analysis in the compressing experimentation about corn with contact mechanicals[J]. Journal of Agricultural Mechanization Research, 2007(12): 112-115. (in Chinese with English abstract)

        [16] 嚴曉婕,程緒鐸,馮家暢. 稻谷籽粒的壓縮特性與儲藏壓力關系的研究[J]. 中國糧油學報,2015,30(10):78-82.

        Yan Xiaojie, Cheng Xuduo, Feng Jiachang. The experimental research on the relationship of compressional properties of paddy grains and storage pressure[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(10): 78-82. (in Chinese with English abstract)

        [17] 楊作梅,孫靜鑫,郭玉明. 不同含水率對谷子籽粒壓縮力學性質與摩擦特性的影響[J]. 農業(yè)工程學報,2015,31(23):253-260.

        Yang Zuomei, Sun Jingxin, Guo Yuming. Effect of moisture content on compression mechanical properties and frictional characteristics of millet grain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 253-260. (in Chinese with English abstract)

        [18] Moya M, Ayuga F, Guaita M, et al. Mechanical properties of granular agricultural materials[J]. Transactions of the ASAE, 2002, 45(5): 1569-1577.

        [19] 程緒鐸,陸琳琳,石翠霞. 小麥摩擦特性的試驗研究[J]. 中國糧油學報,2012,27(4):15-19. Cheng Xuduo, Lu Linlin, Shi Cuixia. The experimental research on friction properties of wheat[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(4): 15-19. (in Chinese with English abstract)

        [20] Afzalinia1 S, Roberge M. Physical and mechanical properties of selected forage materials[J]. Canadian Biosystems Engineering, 2007, 49(2): 23-27.

        [21] 許啟鏗,陳家豪,王錄民. 小麥力學參數(shù)的三軸壓縮試驗研究[J]. 河南工業(yè)大學學報,2015,36(5):101-105. Xu Qikeng, Chen Jiahao, Wang Lumin. Mechanical properties of wheat in triaxial compression tests[J]. Journal of Henan University of Technology, 2015, 36(5): 101-105. (in Chinese with English abstract)

        [22] 陳家豪,韓陽,任杰,等. 小麥堆壓縮模量的三軸試驗研究[J]. 河南工業(yè)大學學報,2016,37(1):23-28. Chen Jiahao, Han Yang, Ren Jie,et al. Research on triaxial tests on compression modulus of wheat piles[J]. Journal of Henan University of Technology, 2016, 37(1): 23-28. (in Chinese with English abstract)

        [23] 曾長女,馮偉娜. 小麥強度特性的三軸試驗研究[J]. 中國糧油學報,2015,30(5):96-101. Zeng Changnü, Feng Weina. Strength properties of wheat in triaxial tests[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(5): 96-101. (in Chinese with English abstract)

        [24] 曾長女,于航. 基于線性接觸模型的小麥三軸試驗細觀模擬[J]. 河南工業(yè)大學學報,2015,36(2):66-70.

        Zeng Changnü, Yu Hang. Meso-simulation of triaxial test of wheat based on linear contact model[J]. Journal of Henan University of Technology, 2015, 36(2): 66-70. (in Chinese with English abstract)

        [25] 蔡正銀,茅加峰,傅華,等. NHRI-4000型高性能大接觸面直剪儀的研制[J]. 巖土工程學報,2010,32(9):1319-1322. Cai Zhengyin, Mao Jiafeng, Fu Hua, et al. Development of NHRI-4000 high performance with large contact surface direct shear apparatus[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1319-1322. (in Chinese with English abstract)

        [26] 徐肖峰,魏厚振,孟慶山. 直剪剪切速率對粗粒土強度與變形特性的影響[J]. 巖土工程學報,2013,35(4):728-733.

        Xu Xiaofeng, Wei Houzhen, Meng Qingshan. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733. (in Chinese with English abstract)

        [27] 邵龍?zhí)叮鶗韵?,鄭國鋒. 粒間應力、土骨架應力和有效應力[J]. 巖土工程學報,2015,37(8):1478-1483. Shao Longtan, Guo Xiaoxia, Zheng Guofeng. Intergranular stress, soil skeleton stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1478-1483. (in Chinese with English abstract)

        [28] 徐志偉,周國慶,劉志強,等. 直剪試驗的面積校正方法及誤差分析[J]. 中國礦業(yè)大學學報,2007,36(5):658-662. Xu Zhiwei , Zhou Guoqing , Liu Zhiqiang, et al. Correcting method and error analysis for sample area in direct shear test[J]. Journal of China University of Mining & Technology, 2007, 36(5): 658-662. (in Chinese with English abstract)

        [29] 余凱,姚鑫,張永雙,等. 基于面積和應力修正的直剪試驗數(shù)據(jù)分析[J]. 巖石力學與工程學報,2014,33(1):118-124. Yu Kai, Yao Xin, Zhang Yongshuang, et al. Analysis of direct shear test data based on area and stress correction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 118-124. (in Chinese with English abstract)

        [30] Simoni A, Houlsby G T. The direct shear strength and dilatancy of sand–gravel mixtures[J]. Geotechnical and Geological Engineering, 2006, 24(3): 523-549.

        [31] 史旦達,周健,劉文白. 砂土直剪力學性狀的非圓顆粒模擬與宏細觀機理研究[J]. 巖土工程學報,2010,32(12):1557-1565. Shi Danda, Zhou Jian, Liu Wenbai. Exploring macro- and micro-scale responses of sand in direct shear tests by numerical simulations using non-circular particles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1557-1565. (in Chinese with English abstract)

        Effects of vertical pressure and shear velocity on direct shear strength and dilatancy properties of wheat

        Jiang Minmin, Guo Zhuhui

        (1.,,450001,; 2.,450001,)

        Grain storage facility is an important infrastructure of guaranteeing food security and concerning people’s livelihood as well. Grain heap in bins will undergo filling and discharging process after a certain period. During the process, change of vertical and horizontal load will lead to generation of shear stress and slip band in heap, which then acts on grain bin wall, and will finally influence the stability of bin structure. Therefore, shear strength and dilatancy properties of wheat grain heap are important indicators in design of grain bins. A series of researches were conducted with Henan wheat (variety is Zhengmai 113) through direct shear tests on the strength and dilatancy characteristics under different vertical pressure and shear rate. According to grain heap parameters in bins, vertical pressure was set at 6 levels: 50, 100, 150, 200, 250 and 300 kPa; shear rate was set at 3 levels: 0.78, 1.55 and 2.33 mm/min. Direct shear test terminated at displacement-diameter ratio of about 0.2, and in the process, shear area decreased by 14%. By revising shear area, the research tried to improve the veracity of shear stress result. Research results revealed that, according to the relation between shear stress and shear displacement, volumetric strain and shear displacement, the shear deformation of wheat grain bulk could be divided into 3 stages: elastic stage, plastic deformation stage and kernel compression stage. In elastic stage, shear stress and shear displacement were small; grain skeleton was in elastic state, and with grain skeleton contracting, grain volume contracted as well; the relationship between shear stress and shear displacement was linear. In plastic deformation stage, large plastic deformation was generated in grain skeleton, and the relation between shear stress and shear displacement was nonlinear; as shear stress increased, huge plastic deformation occurred in grain skeleton, and grain was upraised on shear band, which thus led to the volume expansion. In kernel compression stage, grain kernel was compressed and volume contracted to a certain extent, and as the shear displacement rose, shear strength kept stable or decreased slightly. Wheat heap shear strength included 2 components: dilatancy and frication. Shear strength of wheat grain stack accorded with the Mohr-Coulomb strength principle. Results showed that shear rate influenced interlock stress, and as shear rate increased from 0.78 to 2.33 mm/min, interlock stress increased from 7.5 to 12.9 kPa, and internal friction angle varied from 38.2° to 35.0°, and dilatancy angle ranged from 5.1° to 4.8°. Volume of grain heap contracted in elastic stage, and the maximum contracted volumetric strain was less than 0.4%. Volume of grain heap dilated in plastic deformation stage, and the maximum dilated volumetric strain was generally greater than the maximum contracted volumetric strain. In plastic deformation stage, the maximum dilated volumetric strain decreased with the increase of vertical pressure, and the maximum volumetric strain rate decreased with the increase of the shear rate. This study provides a scientific basis for stress and strain calculation of grain heap and grain bin design.

        grain; shear test; shear strength; wheat heap; dilatancy

        10.11975/j.issn.1002-6819.2017.06.035

        TS210

        A

        1002-6819(2017)-06-0275-06

        2016-09-30

        2017-02-13

        國家自然科學基金項目(51408197);河南省科技攻關項目(162102210188);河南省屬高校基本科研業(yè)務費專項資金(2015RCJH16)

        蔣敏敏,男,江蘇鹽城人,博士,副教授,主要從事糧食倉儲結構研究。鄭州 河南工業(yè)大學土木建筑學院,450001。Email:jiangmmhaut@126.com

        猜你喜歡
        變形
        變形記
        談詩的變形
        中華詩詞(2020年1期)2020-09-21 09:24:52
        柯西不等式的變形及應用
        “變形記”教你變形
        不會變形的云
        “我”的變形計
        會變形的折紙
        童話世界(2018年14期)2018-05-29 00:48:08
        變形巧算
        例談拼圖與整式變形
        會變形的餅
        野外性史欧美k8播放| 给我看免费播放的视频在线观看| av人摸人人人澡人人超碰下载| 97久久精品亚洲中文字幕无码| 午夜一级成人| 日韩在线精品视频观看| 蜜桃视频在线观看网址| 一本久久a久久精品vr综合| 久操视频新免费伊人| 女同成片av免费观看| 亚洲精品在线免费视频| 疯狂的欧美乱大交| 国产黄页网站在线观看免费视频| 国产杨幂AV在线播放| 国产高清精品一区二区| 一本大道无码人妻精品专区| 亚洲av色福利天堂| 亚洲综合精品在线观看中文字幕 | 国产精品自拍盗摄自拍| 免费观看a级片| 国产乱理伦片在线观看| 亚洲日韩AV无码美腿丝袜| 青青草激情视频在线播放| 啦啦啦www在线观看免费视频| 91精品福利一区二区| 免费女同毛片在线不卡| 末成年人av一区二区| 中文国产日韩欧美二视频| 久久久久国产精品片区无码| 国家一级内射高清视频| 无遮挡18禁啪啪羞羞漫画| 偷窥村妇洗澡毛毛多| 日韩精品不卡一区二区三区| 亚洲三级视频一区二区三区 | 18禁免费无码无遮挡不卡网站 | 少妇一级内射精品免费| 无码av天天av天天爽| 嫖妓丰满肥熟妇在线精品| 久久久久久AV无码成人| 国产精品国产三级国产专区不| 国产精品 人妻互换|