亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        黑土立體休閑技術(shù)改土增產(chǎn)效果

        2017-04-24 03:47:58王秋菊高中超賈會彬張勁松張春峰常本超
        農(nóng)業(yè)工程學報 2017年6期
        關(guān)鍵詞:大豆

        王秋菊,劉 峰,高中超,賈會彬,張勁松,張春峰,常本超,姜 輝

        ?

        黑土立體休閑技術(shù)改土增產(chǎn)效果

        王秋菊1,劉 峰2,高中超1※,賈會彬3,張勁松1,張春峰3,常本超1,姜 輝2

        (1. 黑龍江省農(nóng)業(yè)科學院土壤肥料與環(huán)境資源研究所,哈爾濱150086; 2. 黑龍江省農(nóng)業(yè)科學院科研處,哈爾濱150086;3. 黑龍江省農(nóng)業(yè)科學院佳木斯分院,佳木斯154007)

        為了打破犁底層障礙,消減連作障礙,分別在輪作和連作的黑土上采用分層深耕犁將0~20 cm耕層土與>20~40 cm下層土進行轉(zhuǎn)換,以達到休閑表層土壤的目的。采用大區(qū)對比法連續(xù)2年調(diào)查改土后效果。結(jié)果表明:第1年、第2年立體休閑處理較對照組未改土,0~40 cm土層土壤平均容重分別降低0.05、0.11 g/cm3;通氣系數(shù)分別提高14.97×10-2、16.69×10-2cm/s;而飽和導水率較對照組第1年降低了3.14×10-3cm/s,第2年提高了10.95×10-3cm/s;抗剪強度較對照組第1年降低了0.72 kPa,第2年提高了0.82 kPa;土壤平均含水率提高分別提高4.07%、4.95%;溫度分別提高0.78、0.13 ℃。立體休閑后表層土壤有機質(zhì)、堿解氮、速效磷和速效鉀降低、下層土土壤肥力增加。在輪作條件下,立體休閑后第1年馬鈴薯和甜菜分別減產(chǎn)5.63%和3.06%;第2年玉米和馬鈴薯分別增產(chǎn)5.20%和27.00%。在大豆連作條件下,立體休閑區(qū)植株干質(zhì)量平均比對照提高7.63~7.82%;根干質(zhì)量提高7.61%~13.41%;根長增加4.42%~6.26%;單株莢數(shù)增加18.83%~20.71%;株粒數(shù)增加幅度為32.43%~37.21%;根瘤數(shù)每株增加1.46~5.15個;產(chǎn)量比對照增加3.09%~22.38%。

        土壤;作物;物理性質(zhì);產(chǎn)量;黑土;立體休閑;連作障礙

        0 引 言

        黑土是中國東北地區(qū)最重要的耕地土壤資源之一,以腐殖質(zhì)深厚、土壤肥力高著稱。據(jù)調(diào)查,黑土的腐殖質(zhì)層厚度一般為30~70 cm以上,土質(zhì)肥沃,疏松綿軟,土壤產(chǎn)能高[1-2]。但由于黑土主要分布在丘陵曼岡地帶,地勢高,開墾早,由于長期忽視地力培肥,水土流失嚴重,黑土層變薄,土壤肥力不斷下降[3]。特別是近10 a來,隨著農(nóng)村老齡化,農(nóng)作業(yè)向輕簡化方向發(fā)展。農(nóng)田基本整地由原來的以翻耕為主變?yōu)橐孕麥绮鐬橹鳎麑幼儨\,犁底層位置由原來的地表下18~22 cm上移到12~15 cm,有效土層變淺,土壤生產(chǎn)潛力受到制約;糧食增產(chǎn)由原來的依靠地力轉(zhuǎn)向依靠化肥[4-6],而大量施用化肥又增加土壤負荷,污染環(huán)境。因此農(nóng)業(yè)部提出減化肥、減農(nóng)藥計劃,倡導增施有機肥提升地力,改善耕地質(zhì)量[7-9]。另一方面,隨著一些效益高的作物種植面積不斷擴大,種植業(yè)結(jié)構(gòu)趨于單一,連作面積逐年加大,連作障礙頻頻發(fā)生,導致農(nóng)產(chǎn)品產(chǎn)量下降、品質(zhì)降低[10-13]。

        大量研究證明,黑土增施有機肥、秸稈深埋還田,對于增加耕層厚度,改善地力和提高作物產(chǎn)量有重要作用[14-18];而輪作、土壤消毒、改善施肥等技術(shù)對于消減作物連作障礙效果十分明顯[19-22],但上述技術(shù)在實際應用中受到各方面條件限制。本文提出的“立體休閑改良土壤的技術(shù)”,就是根據(jù)土地休閑休耕原理,針對土壤存在的連作障礙,充分利用黑土腐殖質(zhì)層深厚的特點,將多年連作的耕層土壤定期翻到下層進行休閑,實現(xiàn)上下層土壤輪換使用,達到休閑耕層土壤、實現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展目的[23-24]。本文是在多年連作和正常輪作換茬的黑土上開展的多點試驗研究,試圖通過比較研究明確“立體休閑技術(shù)”的改土增產(chǎn)效果,為該技術(shù)的推廣提供技術(shù)支持。

        1 材料與方法

        1.1 試驗地點和供試土壤

        試驗分別在黑龍江省依安縣長山村、依安縣農(nóng)技推廣中心試驗地,嫩江縣農(nóng)業(yè)技術(shù)推廣中心示范園區(qū)試驗地、寶清縣農(nóng)業(yè)推廣中心示范園區(qū)試驗地。供試土壤為黑土,土壤農(nóng)化性質(zhì)和耕種情況如表1所示。

        表1 供試地點土地基本情況

        1.2 試驗設(shè)計

        采用大田對比試驗,設(shè)置如下2個處理:

        1)對照區(qū)(CK):采用淺翻深松犁作業(yè)(上翻12 cm,下松10 cm),總作業(yè)深度22 cm。

        2)立體休閑區(qū)(SL):采用自主研發(fā)的分層深耕犁,作業(yè)幅寬為100 cm,總作業(yè)深40 cm。該機械為4鏵分層耕作犁(圖1a),其中第1、第3犁為超大犁壁鏵式犁,耕翻下層土,第2、第4犁為短犁壁鏵式犁,耕作表層土。作業(yè)原理如圖1b所示,作業(yè)前地表處于平整狀態(tài)(圖1b-1),作業(yè)時,首先開出1條深20 cm,寬50 cm的淺塹溝(圖1b-2),為耕翻處理做好準備;然后位于前面的第1犁在所述的淺塹溝內(nèi)作業(yè),將>20~40 cm下層土耕起翻扣在已翻過來的表層土上,其后形成一條深40 cm的深塹溝(圖1b-3);位于其后第2犁將鄰近的0~20 cm表層土翻扣在所述的深塹溝中,并形成新的淺塹溝(圖1b-4);后面的第3犁在淺塹溝中作業(yè),將>20~40 cm的下層土耕起翻扣到所述的深塹溝中的表層土之上(圖1b-5),第4犁隨后將鄰近表土反扣在深塹溝中(圖1b-6),從而完成一次立體休閑作業(yè)。在下一次耕作時重復上一次作業(yè)模式。試驗處理面積0.1~1.2 hm2,無重復。

        施肥均按照當?shù)爻R?guī)施肥方法及用量進行施肥,于春季播種時直接起壟施肥。不同處理間施肥量及施肥方法一致。耕種情況及施肥量如表2。

        表2 供試土壤生產(chǎn)管理狀況

        1.3 調(diào)查項目與方法

        1)采樣及測定方法

        試驗區(qū)處理后第2年秋季取樣,在每個處理區(qū)的中心部位挖一個60×60×60 cm3土壤剖面,按照0~10、>10~20、>20~30、>30~40 cm分層,采用100 mL的環(huán)刀取原狀土,3次重復。用膠帶密封;同時采取非原裝土樣500 g,其中0~20 cm表層土壤按S型取樣,5點混合后帶回實驗室備用。

        土壤容重采用環(huán)刀法測定、土壤含水量采用烘干法測定;土壤抗剪強度采用荷蘭EIJKELKAMP公司(型號:GEONOR72572)土壤剪切儀測定;土壤通氣系數(shù)采用日本Daiki公司(型號:DIK-5001)土壤透氣性測定儀測定;土壤透水系數(shù)采用日本Daiki公司(型號:DIK-4012)土壤透水性測定儀測定[25]。

        土壤有機質(zhì)采用重鉻酸鉀外加熱法測定,堿解氮采用擴散吸收法測定,有效磷含量測定采用碳酸氫鈉提取法測定,速效鉀含量測定采用鹽酸浸提-AAS法測定[26-27]。

        2)作物生育性狀調(diào)查

        大豆始花期選取有代表性植株連續(xù)10株,調(diào)查根長、根瘤個數(shù),地上、地下部干質(zhì)量。

        3)作物產(chǎn)量調(diào)查:作物成熟期每區(qū)選3點,每點取連續(xù)10株進行考種,馬鈴薯、甜菜采用馬鈴薯專用收獲機和甜菜專用收獲機進行全區(qū)收獲,玉米、大豆采用約翰迪爾聯(lián)合收割機全區(qū)收獲,收獲后測定每區(qū)產(chǎn)量。

        2 結(jié)果與分析

        2.1 立體休閑對土壤物理性質(zhì)的影響

        表3是依安農(nóng)技中心試驗區(qū)土壤物理性質(zhì)的調(diào)查結(jié)果。從表3看出,立體休閑在降低土壤容重、提高土壤通氣性和土壤含水量等方面效果顯著,2年結(jié)果相對趨勢一致。第1年、第2年立體休閑處理較對照組,0~40 cm土壤平均容重分別降低0.05、0.11 g/cm3;通氣系數(shù)分別提高14.97×10-2、16.69×10-2cm/s;而飽和導水率較對照組第1年降低了3.14×10-3,第2年提高了10.95×10-3cm/s;抗剪強度較對照組第一年降低了0.72 kPa,第2年提高了0.82 kPa;土壤平均含水率提高分別提高4.07%、4.95%;溫度分別提高0.78、0.13 ℃;從表3還可看出,立體休閑改善下層土物理性質(zhì)的效果更為明顯。

        表3 不同處理土壤物理性質(zhì)(依安農(nóng)技中心)

        2.2 立體休閑對土壤養(yǎng)分影響

        圖2是長山試驗點處理后第2年土壤養(yǎng)分測量結(jié)果。立體休閑將下層土翻到表層后土壤化學養(yǎng)分分布與對照相比呈相反的趨勢,表層土壤有機質(zhì)、堿解氮、速效磷和速效鉀均有降低趨勢;而下層土高于對照。總體看,表層土壤整體肥力下降可能會影響作物初期生育,但下層土肥力高則利于作物根系向下伸展,利于作物后期生長。

        2.3 對連作大豆生育影響

        表4是嫩江農(nóng)技中心試驗點在大豆花期的生育調(diào)查以及成熟期的產(chǎn)量性狀調(diào)查結(jié)果。從表4看出,立體休閑區(qū)大豆植株干質(zhì)量平均比對照提高7.63%~7.82%;根干質(zhì)量提高7.61%~13.41%;根長增加4.42%~6.26%;根瘤數(shù)增加1.46~5.15個/株。成熟期調(diào)查大豆單株莢數(shù)和株粒數(shù),休閑后單株莢數(shù)增加18.83%~20.71%;株粒數(shù)增加32.43%~37.21%。

        圖3、4分別是嫩江試驗點大豆生育中期和成熟期植株圖片。從圖3、圖4看出,立體休閑區(qū)大豆根系量多、粗壯,根瘤多;成熟期植株高比對照明顯高,植株結(jié)莢數(shù)差異也十分明顯。

        2.4 對作物產(chǎn)量影響

        依安長山試驗點在南瓜茬上進行的立體休閑改土作業(yè),改土后分別種植馬鈴薯和甜菜,輪作順序分別為馬鈴薯—玉米、甜菜—馬鈴薯。產(chǎn)量調(diào)查結(jié)果如表5所示,立體休閑后第1年馬鈴薯和甜菜分別減產(chǎn)5.63%和3.06%,但減產(chǎn)幅度不大。這與立體休閑后深層土壤翻到耕層,耕層土壤養(yǎng)分下降有關(guān)。經(jīng)過1年土壤熟化后,第2年玉米和馬鈴薯分別增產(chǎn)5.20%和27.00%。在正常輪作條件下,立體休閑后第1年會導致作物減產(chǎn),但第2年則表現(xiàn)增產(chǎn),其中馬鈴薯增產(chǎn)效果好于玉米。

        表6是大豆連作土壤上立體休閑后大豆產(chǎn)量。依安、嫩江和寶清3個試驗點連續(xù)2 a大豆產(chǎn)量調(diào)查結(jié)果表明,立體休閑可以比對照增產(chǎn)3.09%~22.38%,但各地區(qū)增產(chǎn)幅度不完全一致,可能與各點連作障礙的輕重有關(guān)。

        表4 不同處理大豆生育性狀(嫩江)

        表5 立體休閑的增產(chǎn)效果(依安縣長山村)

        表6 立體休閑消除大豆連作障礙的效果

        3 討 論

        立體休閑雖然是一種新的改土理念,但屬于深耕技術(shù)的范疇。不同的是,傳統(tǒng)的深耕是采用傳統(tǒng)的鏵式犁將表層土和下層土同時翻轉(zhuǎn)90°~120°,由于在耕翻時土壤在犁壁作用下崩解破碎產(chǎn)生上下土層混合現(xiàn)象,有相當一部分上層土壤仍滯留在表層內(nèi),達不到休閑目標;而立體休閑耕作是使用特殊的分層深耕犁,將表層土深埋到下層,實現(xiàn)上下土層位置輪換,無土層之間的混層現(xiàn)象。

        在廣大的黑土區(qū)域,由于長期以來種植結(jié)構(gòu)單一,殘留農(nóng)藥污染嚴重,限制輪作倒茬;加之淺耕導致犁底層上移,限制作物根系下扎。高中超等[24]采用土層置換技術(shù)修復除草劑污染土壤,取得明顯效果,本研究是通過立體休閑減緩作物連作障礙。應用立體休閑技術(shù)同時存在正負雙方面的效應,一是改良土壤物理性質(zhì)的正效應,二是由于上下土層翻轉(zhuǎn)導致表層肥力降低帶來的負效應。由于正負效應相互抵消作用,在改土后第1年種植玉米和馬鈴薯均表現(xiàn)略減產(chǎn);第2年增產(chǎn),說明翻轉(zhuǎn)到表層的下層土壤在經(jīng)過1年的熟化后,土壤化學肥力得到恢復;試驗表明,立體休閑后連續(xù)種植大豆表現(xiàn)持續(xù)增產(chǎn),意味著連作障礙是導致大豆產(chǎn)量降低的主導因素,一方面說明立體休閑消減連作障礙的作用大于表層肥力降低帶來的負效應,另一方面也可能與大豆本身有固氮能力有關(guān)。因此,在技術(shù)應用初期階段,應適當配合增施肥料以減輕負效應,提高增產(chǎn)效果。立體休閑或深翻由于會使深層生土翻到表層,使表層土壤養(yǎng)分下降,因此在實際操作中要選擇黑土層深厚的地塊,以達到原位立體休閑的目的。實施以消減連作障礙為目的的立體休閑改土,建議3~5 a進行一次。今后應深入開展對土壤微生物區(qū)系影響方面研究,探討機理。

        本研究采用大型機械進行田間改土作業(yè),作業(yè)精度存在一定誤差,所取得的產(chǎn)量等數(shù)據(jù)皆為大田實測值,可能對試驗數(shù)據(jù)精度有一定影響,但從多點調(diào)查結(jié)果看,結(jié)論是一致的,由此可見研究得出的數(shù)據(jù)是可信的。

        4 結(jié) 論

        通過在輪作和連作的黑土上開展立體休閑技術(shù)改土效果研究,得到如下結(jié)論:

        1)第1年、第2年立體休閑處理較對照組未改土,0~40 cm土層土壤平均容重分別降低0.05、0.11 g/cm3;通氣系數(shù)分別提高14.97×10-2、16.69×10-2cm/s;而飽和導水率較對照組第1年降低了3.14×10-3cm/s,第2年提高了10.95×10-3cm/s;抗剪強度較對照組第1年降低了0.72 kPa,第2年提高了0.82 kPa;土壤平均含水率提高分別提高4.07%、4.95%;溫度分別提高0.78、0.13 ℃。

        2)立體休閑后表層土壤有機質(zhì)、堿解氮、速效磷和速效鉀降低、下層土土壤肥力增加。

        3)在輪作條件下,立體休閑后第1年馬鈴薯和甜菜分別減產(chǎn)5.63%和3.06%;第2年玉米和馬鈴薯分別增產(chǎn)5.20%和27.00%。在大豆連作條件下,立體休閑后沒有減產(chǎn)現(xiàn)象,大豆連年增產(chǎn),產(chǎn)量比對照增加3.09%~22.38%。

        [1] 中國科學院南京土壤研究所. 中國土壤[M]. 北京:科學出版社,1980.

        [2] 黑龍江省土地管理局,黑龍江省土壤普查辦公室. 黑龍江土壤[M]. 北京:農(nóng)業(yè)出版社,1992.

        [3] 徐明崗,張文菊,黃紹敏,等. 中國土壤肥力演變[M]. 北京:中國農(nóng)業(yè)科學技術(shù)出版社,2016.

        [4] 欒江,仇煥廣,井月,等. 我國化肥施用量持續(xù)增長的原因分解及趨勢預測[J]. 自然資源學報,2013,28(11):1869-1877.

        Luan Jiang, Qiu Huanguang, Jing Yue, et al. Decomposition of factors contributed to the increase of China’s chemical fertilizer use and projections for future fertilizer use in China[J]. Journal of Natural Resource, 2013, 28(11): 1869-1877. (in Chinese with English abstract)

        [5] 王昱程. 黑土坡耕地玉米苗期耕作措施對土壤侵蝕和農(nóng)業(yè)非點源污染物運移的影響[D]. 長春:吉林農(nóng)業(yè)大學,2015. Wang Yucheng. The Effects of Maize Tillage Measure During Seedling Stage on Soil Erosion and Migration of Agricultural Nonpoint Source Pollution on Slope Cropland in Black Soil Region[D].Changchun: Jilin University, 2015. (in Chinese with English abstract)

        [6] 鄒文秀,韓曉增,陸欣春,等. 不同土地利用方式對黑土剖面土壤物理性質(zhì)的影響[J]. 水土保持學報,2015,29(5):187-199.

        Zou Wenxiu, Han Xiaozeng, Lu Xinchun, et al. Effect of land use types on physical properties of black soil profiles[J]. Journal of Soil and Water Conservation, 2015, 29(5): 187-199. (in Chinese with English abstract)

        [7] Huang J K, Hu R F, Cao J M, et al. Training programs and in-the-field guidance to reduce China’s over use of fertilizer without hurting profitability[J]. Journal of Soil and Water Conservation, 2008, 63(5): 165-167.

        [8] Fischer G, Winiwarter W, Ermolieva T, et al. Integrated modeling framework for assessment and mitigation of nitrogen pollution from agriculture: Concept and case study for China[J]. Agriculture, Ecosystems and Environment, 2010, 136(1/2): 116-124.

        [9] Velthof G L, Oudendag D, Witzke H P, et al. Integrated assessment of nitrogen emissions from agriculture in EU-27 using MITERRA-Europe[J]. Journal of Environmental Quality, 2009,38: 402-417.

        [10] 王小兵,吳元元,鄧玲. 東北黑土區(qū)黑土退化防治與保護研究[J]. 資源與產(chǎn)業(yè),2008,3(12):81-83.

        Wang Xiaobing, Wu Yuanyuan, Deng Ling. Approaches to Black Soil Degeneration in Northeast China[J]. Resources & Industrise, 2008, 3(12): 81-83. (in Chinese with English abstract)

        [11] 于磊,張柏. 中國黑土退化現(xiàn)狀與防治對策[J]. 干旱區(qū)資源與環(huán)境,2004,18(1):99-103.

        Yu Lei, Zhang Bai. The degradation situations of black soil in china and its prevention and counter measures[J]. Journal of Arid Land Resources and Environment, 2004, 18(1): 99-103. (in Chinese with English abstract)

        [12] 常麗君. 我國東北黑土區(qū)糧食綜合生產(chǎn)能力研究[D]. 北京:中國農(nóng)業(yè)科學院,2007.

        Chang Lijun. Comprehensive Productivity in Mollisols Area of Northeast of China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. (in Chinese with English abstract)

        [13] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.

        [14] 邵興芳,徐明崗,張文菊,等. 長期有機培肥模式下黑土碳與氮變化及氮素礦化特征[J]. 植物營養(yǎng)與肥料學報,2014,20(2):326-335.

        Shao Xingfang, Xu Minggang, Zhang Wenju, et al. Changes of soil carbon and nitrogen and characteristics of nitrogen mineralization under long-term manure fertilization practices in black soil[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2): 326-335. (in Chinese with English abstract)

        [15] 勞秀榮,吳子一,高燕春. 長期秸稈還田改土培肥效應的研究[J]. 農(nóng)業(yè)工程學報,2002,18(2):49-52.

        Lao Xiurong, Wu Ziyi, Gao Yanchun. Effect of long-term returning straw to soil on soil fertility[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2002, 18(2): 49-52. (in Chinese with English abstract)

        [16] 李慧,徐明崗,朱平,等. 長期培肥我國典型黑土玉米氮肥效應的演變趨勢[J]. 植物營養(yǎng)與肥料學報,2015,21(6):1506-1513.

        Li Hui, Xu Minggang, Zhu Ping, et al. Change of nitrogen use efficiency of maize affected by long-term manure fertilization in the typical black soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1506-1513. (in Chinese with English abstract)

        [17] 王秋菊,高中超,劉峰,等. 有機物料深耕還田改善石灰性黑鈣土化學性質(zhì)提高玉米產(chǎn)量[J]. 農(nóng)業(yè)工程學報,2015,31(14):110-115.

        Wang Qiuju, Gao Zhongchao, Liu Feng, et al. Organic materials returning to field and deep tillage improving chemical properties of calcic chernozem and increasing crop yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 110-115. (in Chinese with English abstract)

        [18] 王秋菊,劉峰,高中超,等. 心土培肥犁改良瘠薄土壤的效果[J]. 農(nóng)業(yè)工程學報,2016,32(6):27-32.

        Wang Qiuju, Liu Feng, Gao Zhongchao, et al. Subsoil fertilization plow and its effect on improving barren soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 27-32. (in Chinese with English abstract)

        [19] 苗淑杰,喬云發(fā),韓曉增. 大豆連作障礙的研究進展[J]. 中國生態(tài)農(nóng)業(yè)學報,2007,15(3):203-206.

        Miao Shujie, Qiao Yunfa, Han Xiaozeng. Review of researches on obstacles of continuous cropping of soybean[J]. Chinese Journal of Eco-agriculture, 2007, 15(3): 203-206. (in Chinese with English abstract)

        [20] 王飛,李世貴,徐鳳花,等. 連作障礙發(fā)生機制研究進展[J]. 中國土壤與肥料,2013(5):6-12.

        Wang Fei, Li Shigui, Xu Fenghua, et al. The research progress on mechanism of continuous cropping obstacle[J]. Soil and Fertilizer Sciences in China, 2013(5): 6-12. (in Chinese with English abstract)

        [21] 李天來,楊麗娟. 作物連作障礙的克服——難解的問題[J]. 中國農(nóng)業(yè)科學,2016,49(5):916-918.

        Li Tianlai, Yang Lijuan. Overcoming continuous cropping obstacles: The difficult problem[J]. Scientia Agricultura Sinica, 2016, 49(5): 916-918. (in Chinese with English abstract)

        [22] 胡國彬,董坤,董艷,等. 間作緩解蠶豆連作障礙的根際微生態(tài)效應[J]. 生態(tài)學報,2016,36(4):1010-1020.

        Hu Guobin, Dong Kun, Dong Yan, et al. Effects of cultivars and intercropping on the rhizosphere microenvironment for alleviating the impact of continuous cropping of faba bean[J]. Acta Ecologica Sinica, 2016, 36(4): 1010-1020. (in Chinese with English abstract)

        [23] 祖永平,白杰,張忠亮,等. 立體休閑翻耕降低土壤中氟磺胺草醚殘留污染的研究[J]. 農(nóng)業(yè)環(huán)境科學學報,2014,33(4):715-720.

        Zu Yongping, Bai Jie, Zhang Zhongliang, et al. Soil layer replacement reduced fomesafen residue in soil[J]. Journal of Agro-Environment Science, 2014, 33(4): 715-720. (in Chinese with English abstract)

        [24] 高中超,劉峰,張春峰,等. 土層置換犁消除豆田殘留除草劑藥害的效果[J]. 農(nóng)業(yè)工程學報,2012,28(20):202-207.

        Gao Zhongchao, Liu Feng, Zhang Chunfeng, et al. Elimination of herbicide residue by soil displacing plough in soybean fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 202-207. (in Chinese with English abstract)

        [25] 翁德衡. 土壤物理性測定法[M]. 重慶:科學技術(shù)文獻出版社重慶分社,1979.

        [26] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國農(nóng)業(yè)出版社,2005,30-165.

        [27] Page A L,Miller R H,Keeney D R.Methods of Soil Analysis[M]. Madison: Soil Science Society of America. 1982.

        Effect of improving black soil and crop yield by using soil layer up-down fallow technology

        Wang Qiuju1, Liu Feng2, Gao Zhongchao1※, Jia Huibin3, Zhang Jinsong1, Zhang Chunfeng3, Chang Benchao1, Jiang Hui2

        (1.,,150086,; 2.,,150086,; 3.,154007,)

        Black soil is one of the most important cultivated land resources in Northeast China. Black soil has high soil fertility, and brings about high and stable yield. According to the survey, the humus layer of black soil is generally 30-70 cm. But black soil is on high terrain and the cultivation time is long, coupled with the neglect of enhancing soil fertility management, which lead to serious soil erosion, soil layer thinning, and soil fertility decline. Especially in the past 10 years, in order to save costs, farmers have widely used simplified technology, and the basic soil tillage method has changed from plowing to rotary tillage and stubble cleaning, which has resulted in shallow tillage layer and increased the bottom thickness. The depth of the plough bottom moves from 18-22 to 12-15 cm, and the potential productivity of black soil is restricted. People try to stop the decline of soil fertility and soil thinning by improving the application of organic fertilizer, straw returning and subsoiling technology. Our research group found that the straw deep buried and organic fertilizer application have effectively improved soil fertility. In view of removing the obstacle of continuous cropping, the existing technologies including the nutritional therapy, soil disinfection, and crop rotation technology had the problem of high cost and were difficult in the rotation of crops. Therefore, these techniques were limited to solve the problem of soil continuous cropping obstacles. According to the principle of land fallow for leisure, the technology of improving soil by stereo leisure was presented in this paper, which was aimed at continuous cropping obstacles in soils. Through making full use of the characteristics of black soil with deep humus layer, continuous cropping soil was regularly turned to lower leisure. By alternate use of upper and lower soil, the objectives of soil leisure and agricultural sustainable development would be achieved. In this paper, a machine developed to turn the top soil to the lower layer was operated in the black soil field for breaking its hard plough pan. As the depth of top black soil is more than 40 cm, it has good homogeneity from up part to low part, which can provide a choice for developing soil layer up-down fallow technology. Two test fields were selected. One was operated by above mentioned machine, and the other was operated by conventional machine. The results showed that in the up-down fallow field the soil bulk density was decreased by 0.05, 0.11 g/cm3respectively compared with that in the conventional field. The soil aeration coefficient was increased by 14.97×10-2, 16.69×10-2cm/s respectively in the first year and second year. The soil saturated hydraulic conductivity was reduced by 3.14×10-3in the first year, increased by 10.95×10-3cm/s in the second year. The soil shearing strength was reduced by 0.72 in the first year, increased by 0.82 kPa in the second year, and the soil moisture content was increased by 4.07%, 4.95% respectively in the first year and second year. It was also found that in the up-down fallow field, soil chemical index including soil organic matter, alkali-hydrolysable nitrogen, available phosphorus and available potassium tended to be lower in the upper layer but higher in the down layer. Under the rotation conditions, the yield of potato and beet in the up-down fallow field was decreased by 5.63% and 3.06% respectively in the first year, but the yield of corn and potato increased by 5.20% and 27.00% respectively in the second year. Under the soybean continuous cropping conditions, soybean grew well in the up-down fallow field, dry weight and root dry weight of soybean were increased by 7.63%-7.82% and 7.61%-13.41% respectively, root length was increased by 4.42%-6.26%, pod number and grain number per plant were increased by 18.83%-20.71% and 32.43%-37.21% respectively, and nodule number was increased by 1.46-5.15. During the 2 tested years, soybean yield in the up-down fallow field was 3.09%-22.38% higher than that in the conventional field.

        soils; crops; physical properties; yield; black soil; soil layer up-down fallow; continuous cropping obstacle

        10.11975/j.issn.1002-6819.2017.06.013

        S281

        A

        1002-6819(2017)-06-0100-07

        2016-09-21

        2017-03-07

        公益性行業(yè)(農(nóng)業(yè))科研專項(201303126-7);省招標項目(GA14B101-A04);國家科技支撐計劃(2014BAD11B01-A027)

        王秋菊,女,黑龍江省依蘭人,博士,副研究員,從事土壤改良研究。哈爾濱 黑龍江省農(nóng)業(yè)科學院土壤肥料與環(huán)境資源研究所,150086。Email:bqjwang@126.com.

        高中超,男,黑龍江綏棱人,副研究員,研究方向為土壤改良。哈爾濱 黑龍江省農(nóng)業(yè)科學院土壤肥料與環(huán)境資源研究所,150086。Email:gaozhongchao0713@163.com

        猜你喜歡
        大豆
        2022年國審大豆新品種
        注意防治大豆點蜂緣蝽
        大豆帶狀種植技術(shù)如何提升我國大豆產(chǎn)量
        從大豆種植面積增長看我國糧食安全
        大豆噴施多效唑 增產(chǎn)防倒效果好
        巴西大豆播種順利
        大豆的營養(yǎng)成分及其保健作用
        用大豆“炸沉”軍艦
        中國大豆供需平衡表
        大豆農(nóng)場
        精品人妻一区二区三区蜜臀在线| 精品无人码麻豆乱码1区2区| 国产av无码专区亚洲av中文| 成人免费视频在线观看| 欧美韩国精品另类综合| 亚洲av成人久久精品| 91精品国产综合久久久密臀九色 | 女同在线视频一区二区| 中文字幕一区二区人妻秘书| 国产精品久久人妻无码| 精品国产福利一区二区在线| 久久精品韩国日本国产| 免费在线不卡黄色大片| 真实的国产乱xxxx在线| 少女高清影视在线观看动漫| 成 人 网 站 在线 看 免费| 亚洲一区二区三区av天堂| 国产综合精品久久99之一| 最近中文字幕大全在线电影视频| 亚洲人成影院在线无码观看| 国产内射视频在线播放| 国产成人精品日本亚洲i8| 亚洲日韩av无码一区二区三区人 | 亚洲综合精品在线观看中文字幕 | 人妻少妇边接电话边娇喘| 亚洲影院丰满少妇中文字幕无码| 日韩精品少妇专区人妻系列| 国产精品久久久在线看| 丰满多毛的大隂户毛茸茸 | 一区二区三区不卡在线| 在线看高清中文字幕一区| 国产精品久久国产精品99 gif| 国产成人啪精品视频免费软件| 亚洲精品亚洲人成在线播放| 婷婷久久亚洲中文字幕| 欧美v国产v亚洲v日韩九九| 欧美人与动人物姣配xxxx| 久热爱精品视频在线观看久爱| av毛片亚洲高清一区二区| 国产va免费精品观看精品| av人摸人人人澡人人超碰小说|