宋淑然,陳建澤,洪添勝2,4,,薛秀云,夏侯炳,宋 勇
?
遠(yuǎn)射程風(fēng)送式噴霧機(jī)風(fēng)場中霧滴粒徑變化規(guī)律
宋淑然1,2,3,4,5,陳建澤6,洪添勝2,4,6※,薛秀云1,2,3,4,5,夏侯炳7,宋 勇1
(1. 華南農(nóng)業(yè)大學(xué)電子工程學(xué)院,廣州 510642; 2. 國家柑橘產(chǎn)業(yè)技術(shù)體系機(jī)械研究室,廣州 510642; 3. 廣東省農(nóng)情信息監(jiān)測工程技術(shù)研究中心,廣州 510642; 4. 廣東省山地果園機(jī)械創(chuàng)新工程技術(shù)研究中心,廣州 510642; 5. 廣州市農(nóng)情信息獲取與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,廣州 510642; 6. 華南農(nóng)業(yè)大學(xué)工程學(xué)院,廣州 510642; 7. 華南農(nóng)業(yè)大學(xué)后勤處,廣州 510642)
對風(fēng)送式噴霧機(jī)的研究集中在噴霧機(jī)結(jié)構(gòu)的優(yōu)化、霧滴沉積、霧滴飄移及回收方面,但遠(yuǎn)射程風(fēng)送式噴霧機(jī)霧滴在空間風(fēng)場中的變化規(guī)律尚未明確。該文以遠(yuǎn)射程風(fēng)送式噴霧機(jī)為試驗(yàn)平臺,研究霧滴由噴嘴噴出后在風(fēng)力的裹挾運(yùn)動過程中霧滴參數(shù)(主要指粒徑或直徑)在噴幅內(nèi)和射程內(nèi)的變化規(guī)律。結(jié)果表明,遠(yuǎn)射程噴霧機(jī)噴出的霧滴粒徑均大于50m,霧滴中粒徑大于400m的粗霧滴體積累計所占的百分比在0.4%以下;在遠(yuǎn)射程風(fēng)送式噴霧機(jī)方向水平噴出的霧滴柱中,距離噴嘴7、8、9 m處的7個高度上,霧滴體積中值直徑呈現(xiàn)出從上到下逐漸變大的規(guī)律;霧滴在風(fēng)場中向前運(yùn)動的過程中,霧滴體積中值直徑的變化分為3個階段:近出風(fēng)口處高速氣流對霧滴的破碎使得霧滴體積中值直徑變??;在中速氣流作用下,霧滴之間發(fā)生碰撞與聚合,霧滴體積中值直徑變大;低速氣流使霧滴發(fā)生擴(kuò)散彌漫、濃度變低,霧滴體積中值直徑在空氣的蒸發(fā)作用下變??;風(fēng)場中的霧滴譜分布中出現(xiàn)了2個譜峰。研究可為遠(yuǎn)射程風(fēng)送式噴霧機(jī)的噴霧技術(shù)參數(shù)的優(yōu)化提供參考。
噴霧;譜分析;機(jī)械;霧滴;中值直徑;遠(yuǎn)射程;風(fēng)送式噴霧機(jī)
風(fēng)送式噴霧是聯(lián)合國糧農(nóng)組織推薦的一種先進(jìn)高效的施藥技術(shù),被國際公認(rèn)為是一種僅次于航空噴霧的高效地面施藥技術(shù),同時又是一種自動化程度高,防治效果好,環(huán)境污染少的先進(jìn)施藥技術(shù)[1]。國內(nèi)學(xué)者在對風(fēng)送式噴霧機(jī)的研究中,重點(diǎn)圍繞風(fēng)送式噴霧機(jī)結(jié)構(gòu)設(shè)計[2-7]、噴霧機(jī)氣流場研究[8-10]、霧滴沉積分布研究[11-12]和霧滴漂移研究[13-14]開展。國外相關(guān)研究則側(cè)重于利用計算機(jī)對風(fēng)送式噴霧機(jī)的流場進(jìn)行仿真[15-18],研究風(fēng)送式噴霧機(jī)的霧滴覆蓋沉積和穿透性[16,19-23]、風(fēng)送式噴霧霧滴漂移及霧滴回收[24-29]。前人對風(fēng)送式噴霧技術(shù)的研究重點(diǎn)著眼于風(fēng)送噴霧過程的始端與末端2個局部:1)關(guān)于風(fēng)送式噴霧機(jī)結(jié)構(gòu)的優(yōu)化設(shè)計(始端);2)關(guān)于霧滴的分布優(yōu)化、霧滴沉積、霧滴飄移性(末端)的研究。針對遠(yuǎn)射程風(fēng)送式噴霧機(jī)的霧滴在空間傳輸規(guī)律的研究較少。同時,針對果園風(fēng)助式噴霧機(jī)(射程短)的研究較多,而針對遠(yuǎn)射程風(fēng)送式噴霧機(jī)的研究報道較少。
無論采用何種噴霧方式,植保機(jī)械的作業(yè)質(zhì)量與霧滴直徑大小有直接關(guān)系[30]。如果選擇的霧滴大小合適,可以用最小的藥量、最小的環(huán)境污染達(dá)到最大控制病蟲害的目的。如果實(shí)際的霧滴比需要的霧滴大,所浪費(fèi)的農(nóng)藥就會以霧滴直徑三次方的速率增長[31]。因此,本文重點(diǎn)研究遠(yuǎn)射程風(fēng)送式噴霧機(jī)的噴霧特性,研究霧滴由噴嘴噴出后,在風(fēng)力的裹挾運(yùn)動過程中霧滴參數(shù)(主要指粒徑或直徑)的變化規(guī)律,為遠(yuǎn)射程風(fēng)送式噴霧機(jī)的噴霧技術(shù)參數(shù)的優(yōu)化提供理論依據(jù)。
1.1 試驗(yàn)設(shè)備
試驗(yàn)用遠(yuǎn)射程風(fēng)送式噴霧機(jī)[3],由河南萬豐農(nóng)林設(shè)備有限公司生產(chǎn),水平射程13 m,噴幅2.29 m(當(dāng)風(fēng)機(jī)運(yùn)轉(zhuǎn)達(dá)到平穩(wěn)時,在送風(fēng)狀態(tài)下,用風(fēng)速儀測定氣流達(dá)2 m/s且與射程方向相垂直的最大距離),空心錐噴嘴;霧滴測試儀器為濟(jì)南微納顆粒儀器股份有限公司生產(chǎn)的Winner318C,量程4.6~2 000m,準(zhǔn)確性誤差<3%,重復(fù)性誤差<3%,綠色激光器波長532 nm,功率30 mW。
試驗(yàn)樣機(jī)中,10個空心錐噴嘴呈圓周狀均勻分布在噴筒的圓形出風(fēng)口邊沿,噴嘴間隔36°圓心角,每個噴嘴的軸線垂直于噴筒的圓周并向噴筒軸心方向傾斜15°,噴嘴間的直線距離為11.2 cm,10個噴嘴兩兩成組、分5組均勻安裝在噴筒邊沿的不同高度下。
1.2 遠(yuǎn)射程風(fēng)送式噴霧機(jī)霧滴參數(shù)試驗(yàn)
1.2.1 霧滴參數(shù)試驗(yàn)
遠(yuǎn)射程風(fēng)送式噴霧機(jī)霧滴參數(shù)試驗(yàn)分為無送風(fēng)時的霧滴參數(shù)測定、有送風(fēng)時噴幅內(nèi)霧滴參數(shù)測定和射程內(nèi)霧滴參數(shù)測定。噴霧試驗(yàn)時,采用自來水代替藥液,風(fēng)筒處于水平方向,噴霧壓力1.8 MPa、風(fēng)機(jī)供電頻率50 Hz。試驗(yàn)現(xiàn)場如圖1所示。
無送風(fēng)試驗(yàn):前期試驗(yàn)表明,當(dāng)噴霧壓力P在1.0~2.0 MPa間變化時,噴嘴的霧錐角隨P的變化呈二次多項(xiàng)式關(guān)系=?6.765P2+18.48P+58.57 (2=0.986,<0.05),噴嘴的變化范圍為68.47°~71.23°,當(dāng)P為1.8 MPa時,=70°;遠(yuǎn)射程噴霧機(jī)相鄰兩噴嘴噴出的霧滴交匯點(diǎn)距離噴嘴為0.16 m,為使10個噴嘴噴出的霧滴充分交匯,在距離噴嘴水平距離0.5 m、噴筒軸線的上方和下方垂直距離均為0.12 m處進(jìn)行采樣,用激光粒度儀測量霧滴參數(shù)。
送風(fēng)時噴幅內(nèi)霧滴測定及射程內(nèi)霧滴測定示意圖如圖2所示。
送風(fēng)時噴幅內(nèi)霧滴測定:前期測定霧滴粒徑時,粒度儀信息提示霧滴柱外圍有霧滴,但濃度過低,無法測量,故研究選取霧滴柱中心區(qū)域(?18~18 cm)進(jìn)行試驗(yàn)。為研究遠(yuǎn)射程風(fēng)送式噴霧機(jī)送風(fēng)時,在垂直于射程方向上的平面噴幅內(nèi)不同高度下霧滴的變化,在離噴嘴水平距離()7、8、9 m處7個高度上(=?18、?12、?6、0、6、12、18 cm),用激光粒度儀測量霧滴參數(shù)。
送風(fēng)時射程內(nèi)霧滴測定:為研究遠(yuǎn)射程風(fēng)送式噴霧機(jī)送風(fēng)時射程內(nèi)霧滴參數(shù),在噴筒軸線(中線)方向上,從距噴嘴水平距離=1 m處開始,每隔0.5 m,利用激光粒度儀分別測量風(fēng)場中的霧滴參數(shù)。
1.2.2 指標(biāo)計算
10、50、90分別指取樣霧滴的體積按霧滴從小到大順序進(jìn)行累計,其累計值為取樣霧滴體積總和的10%、50%、90%時所對應(yīng)的霧滴直徑。
NMD(number median diameter)為數(shù)量中值直徑,指取樣霧滴的個數(shù)按霧滴大小順序進(jìn)行累計,其累計值為取樣霧滴個數(shù)總和的50%所對應(yīng)的霧滴直徑。
為體積比表面積,指單位體積霧滴的表面積。
SMD(Sauter mean diameter)為索太爾平均直徑,是霧滴粒徑對表面積的加權(quán)平均。
VAD(volume average diameter)為體積平均直徑,指取樣霧滴群平均體積所對應(yīng)的直徑。
NAD(number average diameter)為數(shù)量平均直徑,指取樣霧滴群的直徑之和與霧滴群個數(shù)之和的比值。
DR(droplet diffusion ratio)為霧滴擴(kuò)散比,DRNMD50,當(dāng)DR≥0.67時,表明霧滴的噴灑質(zhì)量良好[30]。
DW(droplet spectrum width)為霧滴譜寬度,DW90-50。
氣溶膠和粗霧滴分別為50<50m和50>400m的霧滴。
霧滴譜表明霧滴直徑大小分布狀況。
2.1 遠(yuǎn)射程風(fēng)送式噴霧機(jī)無送風(fēng)狀態(tài)下的霧滴特性
遠(yuǎn)射程噴霧機(jī)在無送風(fēng)狀態(tài)時霧滴參數(shù)值如表1所示。如表1所示,遠(yuǎn)射程噴霧機(jī)在無送風(fēng)狀態(tài)時,噴嘴噴出的霧滴擴(kuò)散比DR較小,處于噴筒軸線上方處的霧滴擴(kuò)散比DR比處于噴筒軸線下方處的霧滴擴(kuò)散比DR還要小,表明在無送風(fēng)狀態(tài)下,霧滴的噴灑質(zhì)量較差。
表1 遠(yuǎn)射程噴霧機(jī)無送風(fēng)時霧滴參數(shù)
在霧滴柱中的不同高度上(值不同),霧滴的50(為便于分析,同一處只取霧滴代表性參數(shù)50進(jìn)行分析)也不同,下方的霧滴比上方的霧滴大。主要原因可能是,在無送風(fēng)情況下噴霧,霧滴沒有氣流提供的動能,作用在霧滴上的力主要是重力和空氣的阻力,當(dāng)霧滴處于靜止的空氣中時,在重力的作用下會加速下降,直到重力與空氣阻力達(dá)到平衡。=?0.12 m處的霧滴處于霧柱的下方,此處的霧滴一部分來自裝在噴筒出口下部的噴嘴,一部分來自裝在噴筒出口上部的噴嘴所噴出霧滴的沉降,上方霧滴在重力作用下加速下降時,霧滴之間發(fā)生碰撞聚合形成大霧滴,使得=?0.12 m處50變大。從=?0.12和0.12 m處采樣點(diǎn)上的霧滴譜(圖3)可以看出,=?0.12 m處霧滴譜中大霧滴所占的比例比=0.12 m處的大。
a.=0.5 m、=0.12 m
b.=0.5 m、=?0.12 m
圖3 遠(yuǎn)射程噴霧機(jī)無送風(fēng)時霧滴譜
Fig.3 Droplets spectrum of long-range air-assisted sprayer without blowing
2.2 遠(yuǎn)射程風(fēng)送式噴霧機(jī)噴幅內(nèi)霧滴特性
射程內(nèi)7、8、9 m處不同高度的霧滴參數(shù)如表2所示。
根據(jù)試驗(yàn)測定的數(shù)據(jù),繪制出遠(yuǎn)射程風(fēng)送式噴霧機(jī)射程內(nèi)=7、8、9 m處霧滴參數(shù)50隨高度的變化曲線如圖4所示(為便于分析,同一處只取50進(jìn)行分析)。從圖4看出,50在不同的水平高度下,呈現(xiàn)出從上到下逐漸變大的規(guī)律,說明霧滴在同一個垂直平面上,下部的霧滴體積中值直徑比上部的霧滴體積中值直徑大,其主要原因可能是,在此區(qū)域中(7 m≤≤9 m),由于風(fēng)速的減弱,霧滴由風(fēng)力推動的前行速度逐漸降低,重力對霧滴的作用明顯,上層霧滴在重力的作用下下降,下降過程中發(fā)生霧滴間的聚合匯成大霧滴。
表2 遠(yuǎn)射程風(fēng)送式噴霧機(jī)噴幅內(nèi)不同高度的霧滴參數(shù)
注:10和90分別指按體積從小到大順序排列的霧滴累計值為取樣霧滴體積總和的10%和90%時所對應(yīng)的霧滴直徑。下同。
Note:10and90are diameters of droplets with cumulative volumes that are 10% and 90% of the total when droplet volume ranks from small to large; Same as below.
距離噴嘴7、8、9 m處,在霧滴柱的上、下不同水平高度的霧滴譜如圖5所示(為便于分析,同一處只取最上部=18 cm和最下部=?18 cm的2個采樣點(diǎn)進(jìn)行分析)。
將圖5a~5f與圖3a~3b對比分析可以看出,有風(fēng)送時的霧滴譜中出現(xiàn)了2個譜峰,與無風(fēng)送時的霧滴譜分布有明顯不同,表明處于風(fēng)場中的霧滴含有了2種成分:1)由噴嘴霧化作用產(chǎn)生的霧滴(譜峰在90m左右);2)由風(fēng)場中的霧滴傳輸運(yùn)動作用產(chǎn)生的另一種粒徑的霧滴(譜峰在170m左右),即風(fēng)場的作用使霧滴的粒徑分布發(fā)生了變化。其原因是,在風(fēng)的助力裹挾作用下,風(fēng)送式噴霧機(jī)吹出的霧滴柱中(流速大、壓強(qiáng)小)存在卷吸現(xiàn)象,一些霧滴在前行過程中,霧滴間發(fā)生聚合而形成大粒徑的霧滴。
將圖5 a、5c、5e(=18 cm)分別與圖5 b、5d、5f(=?18 cm)對應(yīng)比較,可以看出,在距離噴嘴系統(tǒng)的水平距離處,處于霧滴柱中下方(=?18 cm)的大霧滴占比(霧滴譜中右邊的峰值)均比處于霧滴柱中上方(=18 cm)的大霧滴占比高,說明在距離噴嘴7、8、9 m處,一些霧滴在重力的作用下下降且這一過程也存在著霧滴間的聚合,使風(fēng)送式噴霧機(jī)噴幅內(nèi)霧滴譜的分布發(fā)生了改變,即=?18 cm的霧滴譜中的2個峰的高度為左低右高;而=18 cm的霧滴譜中的2個峰的高度為左高右低。
2.3 遠(yuǎn)射程風(fēng)送式噴霧機(jī)射程內(nèi)霧滴特性
從距噴嘴水平距離=1 m處開始,每隔1 m,測量噴筒軸線(中線)方向上的風(fēng)速,列于表3中。
表3 遠(yuǎn)射程風(fēng)送式噴霧機(jī)噴筒軸線氣流風(fēng)速
從距噴嘴水平距離=1 m處開始,每隔0.5 m,利用激光粒度儀進(jìn)行霧滴采樣,分別測量噴筒軸線(中線)方向上,風(fēng)場中的霧滴參數(shù)。試驗(yàn)數(shù)據(jù)如表4所示。試驗(yàn)中發(fā)現(xiàn),各個采樣點(diǎn)上均沒有直徑小于50m的氣溶膠出現(xiàn),表明這種遠(yuǎn)射程噴霧機(jī)抗霧滴漂移能力較強(qiáng);粒徑大于400m的粗霧滴體積累計所占的百分比均在0.4%以下,說明粗霧滴稀少,可以忽略由粗霧滴所引起的由于霧滴過大而直接從植物葉面滴落到土壤中所造成的農(nóng)藥污染;為1.5~7 m時,DR均大于0.67,表明在此區(qū)間內(nèi),霧滴直徑較均勻;此區(qū)域外的點(diǎn),擴(kuò)散比DR小于但接近于0.67。
將表1中的50與圖4中的50的數(shù)值進(jìn)行對比分析可以看出,無風(fēng)送時的50值均小于有風(fēng)送時的50值。初步分析如下:無風(fēng)送時,霧滴只受到液力的作用發(fā)生霧化,霧滴參數(shù)僅僅和液體壓力、噴嘴特性及液體性質(zhì)有關(guān);有風(fēng)送時,霧滴受到液力的霧化與風(fēng)力的輸送2種作用,霧滴參數(shù)在這2種作用力下發(fā)生了變化:霧滴在風(fēng)的助力裹挾作用下向前運(yùn)動的同時,風(fēng)送式噴霧機(jī)吹出的霧滴柱中(流速大、壓強(qiáng)?。┐嬖诰砦F(xiàn)象,一些霧滴在前行過程中,發(fā)生聚合而使50變大。
根據(jù)霧滴擴(kuò)散比的數(shù)據(jù)可以分析霧滴的噴灑質(zhì)量,有送風(fēng)時的霧滴擴(kuò)散比(表4中的DR均值為0.70)比無送風(fēng)時的霧滴擴(kuò)散比(表1中DR均值為0.61)大,且大于0.67,說明與無送風(fēng)情況相比,有送風(fēng)時噴霧機(jī)的霧滴噴灑質(zhì)量較好,即風(fēng)力提高了霧滴的噴灑質(zhì)量。
表4 遠(yuǎn)射程風(fēng)送式噴霧機(jī)射程內(nèi)霧滴參數(shù)
為了解遠(yuǎn)射程風(fēng)送式噴霧機(jī)霧滴在風(fēng)場中運(yùn)動時參數(shù)的變化,繪制出如圖6所示的霧滴參數(shù)隨霧滴傳輸距離變化的曲線。由圖6可以看出,遠(yuǎn)射程風(fēng)送式噴霧機(jī)噴出的霧滴,其參數(shù)隨距離不同而有所變化。
根據(jù)各參數(shù)的變化趨勢,分析霧滴傳輸?shù)囊?guī)律:1)90、DW、VAD、50和SMD變化規(guī)律相似,根據(jù)其在射程中的變化特點(diǎn),將射程分為3個區(qū)間,各個區(qū)間影響霧滴運(yùn)動及參數(shù)變化的因素不同,而使得霧滴參數(shù)在不同的區(qū)域具有不同的變化規(guī)律:在距離噴嘴1 m<≤2 m的區(qū)間內(nèi)(此區(qū)域的風(fēng)速大于18.7 m/s),這種速度的氣流對霧滴粒徑具有很強(qiáng)的剪切和擾動作用,使噴嘴噴出的霧滴發(fā)生進(jìn)一步破碎,故此區(qū)間中的霧滴粒徑隨距離增加而變小。同時,此區(qū)間的霧滴在高速氣流中獲得能量,以較高的速度向前傳輸。此區(qū)間內(nèi)霧滴的受力主要是氣流的作用,氣流對霧滴的作用以破碎和向前推動為主。距離噴嘴2 m<≤8 m區(qū)間內(nèi),風(fēng)速介于6.8~13.3 m/s之間,此區(qū)間內(nèi)充滿了獲得氣流動能的霧滴,越遠(yuǎn)離噴嘴,霧滴向前的運(yùn)動速度越低;霧滴運(yùn)動方向上前后速度的不同加劇了相互碰撞和聚合作用,使霧滴粒徑變大;同時,處于霧柱中上方的霧滴,在重力作用下加速下降,也存在著霧滴間的聚合,這是該區(qū)域內(nèi)霧滴粒徑變大的因素之一。此區(qū)間內(nèi)霧滴的受力表現(xiàn)為重力沉降和氣流推動的共同作用,在向前傳輸過程中存在著碰撞聚合。當(dāng)距離噴嘴>8 m后,風(fēng)速≤6 m/s,霧滴在出風(fēng)口處所獲得的氣流的動能,大部分消耗在運(yùn)動中克服空氣的阻力上,同時,氣流從出風(fēng)口吹送到>8 m的過程中,風(fēng)速越來越低,霧滴柱的徑向范圍不斷變大,霧滴在氣流中呈擴(kuò)散和彌漫運(yùn)動,霧滴的顆粒密度變小,霧滴間的碰撞聚合不再占優(yōu)勢,霧滴柱中的大霧滴不斷降落而脫離霧滴柱;其余的霧滴在向前運(yùn)動的同時,受空氣的蒸發(fā)作用而變小。
2)10與NAD變化規(guī)律相似,在1 m<≤8 m區(qū)間內(nèi),處于緩慢上升趨勢,說明在此區(qū)間中,小霧滴按體積從小到大順序累積,占霧滴體積總和的10%時所對應(yīng)的直徑在變大,即小霧滴所占的成份在減??;同時,將霧滴按照從小到大排序并將霧滴數(shù)目二等分,等分點(diǎn)的霧滴粒徑NAD在變大,說明霧滴群整體的粒徑在緩慢變大;>8 m后,10與NAD均呈下降趨勢,說明在此區(qū)間,小霧滴的所占成份將變大,霧滴越來越細(xì)小,說明此區(qū)域中的蒸發(fā)使得霧滴繼續(xù)變小,這與前面分析的規(guī)律極為相近。
綜上所述,遠(yuǎn)射程風(fēng)送式噴霧機(jī)的霧滴傳輸主要經(jīng)歷以下3個過程:近出風(fēng)口處高速氣流對霧滴的破碎使得霧滴粒徑變??;中速氣流作用下,霧滴間的碰撞使霧滴聚合、粒徑變大;低速氣流使霧滴擴(kuò)散彌漫、蒸發(fā)作用而使霧滴粒徑變小。
圖7是遠(yuǎn)射程風(fēng)送式噴霧機(jī)霧滴在距離出風(fēng)口8 m處的霧滴譜。由圖7中可以看出,處于射程內(nèi)不同點(diǎn)處風(fēng)場中的霧滴,霧滴譜分布中也出現(xiàn)了2個譜峰,這與無送風(fēng)時的霧滴譜分布明顯不同(圖3所示),說明風(fēng)場中的霧滴除了有噴嘴霧化產(chǎn)生一定粒度分布的霧滴外,在風(fēng)場的影響及霧滴傳輸運(yùn)動的影響下,霧滴的聚合使霧滴的粒徑發(fā)生了變化,出現(xiàn)了大粒徑霧滴的分布。
粒度測量是在被測顆粒假定為球形的前提下進(jìn)行的,但霧滴并不一定是標(biāo)準(zhǔn)的球形。測試顆粒粒徑的技術(shù)和方法有多種,除顯微鏡法屬于直接測量顆粒的絕對幾何尺寸外,其余方法測得的粒徑都不是絕對的幾何概念上的尺寸,而是所謂的“等效粒徑”,其中激光衍射法測試的結(jié)果重復(fù)性好,精度高,適用性強(qiáng)[32]。本文使用激光粒度儀進(jìn)行試驗(yàn)研究,在每次試驗(yàn)前,多次測試同一個樣品,結(jié)果基本相同,保證了儀器測量結(jié)果的穩(wěn)定性。
強(qiáng)光會影響激光粒度儀測量的準(zhǔn)確性,為此,本文均在晚上進(jìn)行霧滴粒度測量試驗(yàn),盡量避免陽光對測試結(jié)果可信度的影響。
本文以遠(yuǎn)射程風(fēng)送式噴霧機(jī)為試驗(yàn)平臺,分別研究了無送風(fēng)時、有風(fēng)送時霧滴在噴幅內(nèi)不同高度下及射程內(nèi)不同距離上參數(shù)的變化規(guī)律,對霧滴在風(fēng)場中的運(yùn)動及參數(shù)變化進(jìn)行了分析,獲得以下結(jié)論:
1)與無送風(fēng)情況相比,有送風(fēng)時噴霧機(jī)的霧滴噴灑質(zhì)量較好;
2)遠(yuǎn)射程風(fēng)送式噴霧機(jī)噴出的霧滴粒徑均大于50m,抗霧滴漂移能力較強(qiáng);粗粒徑霧滴稀少,霧滴粒徑較均勻;在與噴嘴相同距離時的不同高度下,重力對霧滴的作用顯著,使霧滴聚合匯成大霧滴;
3)近出風(fēng)口處的高速氣流的破碎所用是霧滴粒徑變小的重要因素;射程末端的低速氣流使霧滴在擴(kuò)散彌漫中因蒸發(fā)作用而使霧滴直徑變??;在中速氣流下,霧滴柱中的卷吸作用使霧滴間發(fā)生聚合而形成粒徑大的霧滴;重力及風(fēng)場對霧滴作用的機(jī)理有待進(jìn)一步研究。
[1] 傅錫敏,呂曉蘭,丁為民,等. 我國果園植保機(jī)械現(xiàn)狀與技術(shù)需求[J]. 中國農(nóng)機(jī)化,2009(6):11-13,17.
Fu Ximin, Lü Xiaolan, Ding Weimin, et al. Present state and technical requirement about orchard plant protection machinery in China[J]. Chinese Agricultural Mechanization, 2009(6): 11-13, 17. (in Chinese with English abstract)
[2] 宋淑然,阮耀燦,洪添勝,等. 寬噴幅風(fēng)送式噴霧機(jī)擴(kuò)幅噴筒優(yōu)化設(shè)計及試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(18):34-42.
Song Shuran, Ruan Yaocan, Hong Tiansheng, et al. Optimal design and test on expanding duct of wide-swath air-blast sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 34-42. (in Chinese with English abstract)
[3] 宋淑然,夏侯炳,盧玉華,等. 風(fēng)送式噴霧機(jī)導(dǎo)流器結(jié)構(gòu)優(yōu)化及試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(6):7-12.
Song Shuran, Xiahou Bing, Lu Yuhua, et al. Structural optimization and experiment on fluid director of air-assisted sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 7-12. (in Chinese with English abstract)
[4] 李超,張曉輝,姜建輝,等. 葡萄園立管風(fēng)送式噴霧機(jī)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(4):71-78.
Li Chao, Zhang Xiaohui, Jiang Jianhui, et al. Development and experiment of riser air-blowing sprayer in vineyard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 71-78. (in Chinese with English abstract)
[5] 張曉輝,姜宗月,范國強(qiáng),等. 履帶自走式果園定向風(fēng)送噴霧機(jī)[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(8):117-122,247.
Zhang Xiaohui, Jiang Zongyue, Fan Guoqiang, et al. Self-propelled crawler directional air-blowing orchard sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 117-122, 247. (in Chinese with English abstract)
[6] 劉秀娟,鄭加強(qiáng),周宏平. 噴筒結(jié)構(gòu)對風(fēng)送式噴霧機(jī)射流動力的影響[J]. 中國農(nóng)機(jī)化,2012(2):106-109.
Liu Xiujuan, Zheng Jiaqiang, Zhou Hongping. Jet dynamics and spraying nozzle structure of air-assisted sprayer [J]. Chinese Agricultural Mechanization, 2012(2): 106-109. (in Chinese with English abstract)
[7] 丁素明,傅錫敏,薛新宇,等. 低矮果園自走式風(fēng)送噴霧機(jī)研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(15):18-25.
Ding Suming, Fu Ximin, Xue Xinyu, et al. Design and experiment of self-propelled air-assisted sprayer in orchard with dwarf culture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 18-25. (in Chinese with English abstract)
[8] 傅澤田,王俊,祁力鈞,等. 果園風(fēng)送式噴霧機(jī)氣流速度場模擬及試驗(yàn)驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(1):69-74.
Fu Zetian, Wang Jun, Qi Lijun, et al. CFD simulation and experimental verification of air-velocity distribution of air-assisted orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 69-74. (in Chinese with English abstract)
[9] 周良富,薛新宇,賈衛(wèi)東,等. CFD 技術(shù)在果樹風(fēng)送噴霧中的應(yīng)用與前景分析[J]. 排灌機(jī)械工程學(xué)報,2014,32(9):776-782.
Zhou Liangfu, Xue Xinyu, Jia Weidong, et al. Application of CFD technology in air-assisted spraying in orchard and analysis of its prospects[J]. Journal of Drainage and Irrigation Machinery Engineering(JDIME), 2014, 32(9): 776-782. (in Chinese with English abstract)
[10] 宋淑然,洪添勝,劉洪山,等. 寬噴幅風(fēng)送式噴霧機(jī)空間氣流速度分布規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(24):17-24.
Song Shuran, Hong Tiansheng, Liu Hongshan, et al. Law of spatial airflow velocity distribution for wide-swath air-blast sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 17-24. (in Chinese with English abstract)
[11] 呂曉蘭,傅錫敏,吳萍,等. 噴霧技術(shù)參數(shù)對霧滴沉積分布影響試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2011,42(6):70-75.
Lü Xiaolan, Fu Ximin, Wu Ping, et al. Influence of spray operating parameters on droplet deposition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 70-75. (in Chinese with English abstract)
[12] 宋淑然,洪添勝,孫道宗,等. 風(fēng)機(jī)電源頻率對風(fēng)送式噴霧機(jī)噴霧沉積的影響[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(1):153-159.
Song Shuran, Hong Tiansheng, Sun Daozong, et al. Effect of fan power supply frequency on deposition of air-assisted sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 153-159. (in Chinese with English abstract)
[13] 崔志華. 風(fēng)送式噴霧機(jī)風(fēng)筒結(jié)構(gòu)改進(jìn)及對飄移性能影響的研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2007.
[14] 崔志華,傅澤田,祁力鈞,等. 風(fēng)送式噴霧機(jī)風(fēng)筒結(jié)構(gòu)對飄移性能的影響[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(2):111-115.
Cui Zhihua, Fu Zetian, Qi Lijun, et al. Effect of the air duct medication on the spray drift emitted by an air-assisted sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(2): 111-115. (in Chinese with English abstract)
[15] Delele M A, Jaeken P, Debaer C, et al. CFD prototyping of an air-assisted orchard sprayer aimed at drift reduction[J]. Computers and Electronics in Agriculture, 2007, 55(1): 16-27.
[16] Endalew A M, Debaer C, Rutten N, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying. Part I. Model development and effect of wind speed and direction on sprayer airflow[J]. Computers and Electronics in Agriculture, 2010, 71(2): 128-136.
[17] Dekeyser D, Duga A T, Verboven P, et al. Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modelling[J]. Biosystems Engineering, 2013, 114(2): 157-169.
[18] Osterman A, Godesa T, Hocevar M, et al. Real-time positioning algorithm for variable-geometry air-assisted orchard sprayer[J]. Computers and Electronics in Agriculture, 2013, 98: 175-182.
[19] Fox R D, Derksen R C, Zhu H, et al. A history of air-blast sprayer development and future prospects[J]. Transactions of the ASABE, 2008, 51(2): 405-410.
[20] Sanchez hermosilla J. Adaptive threshold for droplet spot analysis using water-sensitive paper[J]. Applied Engineering in Agriculture, 2004, 20(5): 547-551.
[21] Wolf R E. Assessing the ability of droplets can to analyze spray droplets from a ground operated sprayer[J]. Applied Engineering in Agriculture, 2003, 19(5): 525-530.
[22] Derksen R C, Zhu H, Fox R D, et al. Coverage and drift produced by air induction and conventional hydraulic nozzles used for orchard applications[J]. Transactions of the ASABE, 2007, 50(5): 1493-1501.
[23] Zyl J G V, Grout T G, Schutte G C, et al. Reduced volume spray application in South African citrus orchards: Effects on deposition quantity, quality and uniformity[C/OL]// SuproFruit 2015– 13th Workshop on Spray Application in Fruit Growing, Lindau, Germany, July 15-18, 2015. Germany: Julius-Kühn-Archiv, 2015. http://pub.jki.bund.de/index.php/JKA/article/view/4756/4566
[24] Molari G, Benini L, Ade G. Design of a recycling tunnel sprayer using CFD simulations[J]. Transactions of the ASABE, 2005, 48(2): 463-468.
[25] Ade G, Molari G, Rondelli V. Recycling tunnel sprayer for pesticide dose adjustment to the crop environment[J]. Transactions of the ASABE, 2007, 50(2): 409-413.
[26] Oliveira R B D, Antuniassi U R, Gandolfo M A, et al. Spray adjuvant parameters affecting agricultural spraying drift[J]. Engenharia Agrícola, 2015, 35(1): 109-116.
[27] Otto S, Loddo D, Baldoin C, et al. Spray drift reduction techniques for vineyards in fragmented landscapes[J]. Journal of Environmental Management, 2015, 162: 290-298.
[28] Fuentes M A, Diezma G L J , Roldán B L G, et al. Testing the influence of the air flow rate on spray deposit, coverage and losses to the ground in a super-intensive olive orchard in southern Spain[C/OL]//SuproFruit 2015 – 13th Workshop on Spray Application in Fruit Growing, Lindau, Germany, 15-18, July 2015. Germany: Julius-Kühn-Archiv, 2015, 448: 17-18. http://pub.jki.bund.de/index.php/JKA/article/view/4756/4566
[29] Sirohi N P S, Gupta P, Mani I. Development of air-assisted hydraulic sprayer for vegetable crops[J]. Journal of the Institution of Engineers (India): Agricultural Engineering Division, 2008, 89: 18-23
[30] 劉青,史建新,陳發(fā),等. 一種改善91WDC-150型噴霧機(jī)噴霧性能的新方法[J]. 新疆農(nóng)業(yè)大學(xué)學(xué)報,2003,26(1):76-79.
Liu Qing, Shi Jianxin, Chen Fa, et al. A new technique to improve spray quality on the air-assisted system of 91WDC-150 sprayer[J]. Journal of Xinjiang Agricultural University, 2003, 26(1): 76-79. (in Chinese with English abstract)
[31] 祁力鈞,傅澤田. 不同條件下噴霧分布試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報,1999,15(2):107-111.
Qi Lijun, Fu Zetian. Experimental study on spray deposition uniformity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(2): 107-111. (in Chinese with English abstract)
[32] 譚立新,余志明,蔡一湘. 激光粒度法測試結(jié)果與庫爾特法、沉降法的比較[J]. 中國粉體技術(shù),2009,15(3):60-63.
Tan Lixin, Yu Zhiming, Cai Yixiang. Measurement result comparison between laser analyzer, coulter counter and pipette methods[J]. China Powder Science and Technology, 2009, 15(3): 60-63. (in Chinese with English abstract)
Variation of droplet diameter in wind field for long-range air-assisted sprayer
Song Shuran1,2,3,4,5, Chen Jianze6, Hong Tiansheng2,4,6※, Xue Xiuyun1,2,3,4,5, Xiahou Bing7, Song Yong1
(1.,,510642,; 2.,,510642,; 3.,510642,; 4.,510642,; 5.,510642,; 6.,,510642,; 7.,,510642,)
Research in the air-assisted spraying field has been focusing on optimization of structure, droplets deposition, droplets drift and recovery. But the droplets transfer in wind field is not clear yet. In this study, we investigated the variation of droplet parameter especially diameter in wind field for long-range air-assisted sprayer. The droplets parameters of long-range air-assisted sprayer was measured and calculated and analyzed after the droplets were ejected from the nozzles by using a prototype and laser particle size analyzer. The testing prototype had the horizontal spraying range of 13 m and spraying width 2.29 m. During the test, the sprayer sprayed water instead of pesticides liquid under the plunger pump pressure of 1.8 MPa. The experiments of droplets parameters included 3 situations: 1) the droplets were sprayed from the nozzles without air blowing; 2) the droplets were sprayed within the width under the condition of the long-range air-assisted sprayer; and 3) the droplets were sprayed within the range under the condition of the long-range air-assisted sprayer. In the test of spraying within the width, droplets were sampled in 7 different heights at 7, 8 and 9 m away from the nozzles. In the test of spraying within the range, droplets sampling points were arranged along with the sprayer duct axis, starting with 1 m away from the nozzles position and separated from each other by 0.5 m. The results showed that there was only 1 peak in the droplets spectrum distribution and the droplets diffusion ratio was relatively small when the long-range air-assisted sprayer did not blow. The diffusion ratio was 0.70 with wind, higher than 0.61 without blowing condition. The diffusion ratio with wind was higher than 0.67, indicating that the spraying effect and droplet quality were better under the condition with wind than that without blowing. Within the spraying width, the droplets volume median diameter became large along the direction from top to bottom of the droplets column, or the lower droplets were larger than the upper in the same vertical plane of the droplets column. In the last 2 situations with wind, the droplets volume median diameters were all larger than 50m and the volume cumulative percentage of large droplets diameter larger than 400m was lower than 0.4%. In addition, two peaks were found in the droplets spectrum, which was different from the 1 peak in the situation without blowing. The wind speed was higher than 18.7 m/s within 1-2 m away from the nozzle, 6.8-13.3 m/s in 2-8 m away from the nozzle, and not less than 6 m/s in 8-10 m away from the nozzle, respectively. In general, the moving and forward transmission of droplets in wind was mainly divided into the following 3 stages: 1) within 1-2 m distance near the nozzles position, high speed air flow broke the droplets twice and thus made the droplets smaller; 2) In the middle of the range, the droplets diameter became larger due to collision and aggregation with the moving and transmission under the medium speed air flow; 3) In the end of the range, the droplets diameter decreased because of the evaporation and diffusion in the low speed flow. The study provides information for sprayer design and optimization.
spraying; spectrum analysis; machinery; droplets; median diameter; long-range; air-assisted sprayer
10.11975/j.issn.1002-6819.2017.06.008
S491; S224.3
A
1002-6819(2017)-06-0059-08
2016-11-12
2017-02-15
國家自然科學(xué)基金項(xiàng)目(31671591);“揚(yáng)帆計劃”引進(jìn)創(chuàng)新創(chuàng)業(yè)團(tuán)隊(duì)專項(xiàng)(201312G06);廣東省科技計劃項(xiàng)目(2015B090901031);廣州市科技計劃項(xiàng)目(201607010362);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金(CARS-27)
宋淑然,河北安國人,教授,博士,主要從事噴霧技術(shù)及測控技術(shù)研究。廣州 華南農(nóng)業(yè)大學(xué)電子工程學(xué)院,510642。Email:songshuran@scau.edu.cn
洪添勝,廣東梅縣人,教授,博士,主要從事農(nóng)業(yè)工程、機(jī)電一體化和信息技術(shù)應(yīng)用研究。廣州 華南農(nóng)業(yè)大學(xué)工程學(xué)院,510642。Email:tshong@scau.edu.cn