汪時機(jī),程明書,李 賢,2,王曉琪,毛 新,楊惠迪
?
非飽和土雙應(yīng)力變量廣義土水特征曲線理論模型構(gòu)建
汪時機(jī)1,程明書1,李 賢1,2,王曉琪1,毛 新1,楊惠迪3
(1. 西南大學(xué)工程技術(shù)學(xué)院,重慶400715;2. College of Physical Sciences & Engineering, Cardiff University, CF243AA, UK;3. 湖南大學(xué)土木工程學(xué)院,長沙410082)
土水特征曲線(soil-water characteristic curve,SWCC)方程是非飽和土力學(xué)中最重要的土性表征手段之一。該文評價當(dāng)前經(jīng)典的SWCC方程,指出其未具有包容復(fù)雜因素的能力,具有靈活性的優(yōu)點(diǎn)但卻同時具有對試驗(yàn)數(shù)據(jù)量依賴性高的缺點(diǎn),不能處理多孔隙尺度集群土體固-液-氣共同運(yùn)動及作用的水力-力學(xué)耦合效應(yīng)問題。建立雙應(yīng)力變量廣義SWCC概念圖示并定義相對體積含水比,基于Fredlund雙應(yīng)力變量理論及van Genuchten土-水表征方程,構(gòu)建考慮土體變形及多孔隙分布形態(tài)的雙應(yīng)力狀態(tài)變量的廣義SWCC方程。相較于2個參數(shù)的Brooks等的方程、3個參數(shù)的van Genuchten方程以及4個參數(shù)的Fredlund等的方程,廣義SWCC方程僅3個參數(shù),其中2個參數(shù)在雙對數(shù)坐標(biāo)系的“相對體積含水比-吸力”平面中進(jìn)行最小二乘法線性擬合得到,僅1個參數(shù)需非線性最小二乘法擬合得到。該模型可利用不同應(yīng)力狀態(tài)下的至少3個土水試驗(yàn)數(shù)據(jù)點(diǎn),繪制出1條具有適宜精度的單峰SWCC;方程考慮了多峰孔隙概率密度函數(shù)分布及土體變形因素,實(shí)現(xiàn)了從應(yīng)力歷史推廣到應(yīng)力狀態(tài)的廣義情況,為定量描述不同孔隙結(jié)構(gòu)土體雙應(yīng)力狀態(tài)下的持水特性、滲透特性和強(qiáng)度特性提供了一條途徑。
土壤水分;應(yīng)力;模型;持水特性;非飽和土;土水特征曲線;雙峰SWCC
非飽和土壤是由固-液-氣組成的可變形、可壓縮的多相地質(zhì)體[1-2],持水狀態(tài)的不同,是造成土壤變形、強(qiáng)度、滲透性差異的重要原因[3-5];同時,土壤受本身的孔隙結(jié)構(gòu)形態(tài)、分布以及應(yīng)力狀態(tài)的影響,具有較一般材料復(fù)雜的水力-力學(xué)性質(zhì)。這種復(fù)雜性的重要成因是由土壤孔隙中的水體(重力水、毛管水、吸附水、薄膜水)隨吸力(=u?u,為孔隙氣壓、u為孔隙水壓)的變化進(jìn)入新的耦合平衡狀態(tài)及形成復(fù)雜的土-水結(jié)合系統(tǒng)(水封閉、雙開敞、氣封閉系統(tǒng)[6])造成。吸力和持水量(飽和度S、質(zhì)量含水量或體積含水量)之間的曲線關(guān)系定義為土水特征曲線(soil-water characteristic curve,SWCC)[7-9]。土壤學(xué)上,利用土性估算土壤水力性質(zhì)(包括SWCC)的曲線方程亦稱作土壤轉(zhuǎn)換函數(shù)(pedotransfer functions,PTFs)[8]。SWCC模型是定量表征土-水關(guān)系的核心,已被廣泛用于研究土壤持水能力[10]、滲透特性[9,11]、土壤結(jié)構(gòu)穩(wěn)定性[12]、顆粒大小分布[13]及抗剪強(qiáng)度[14],有著廣泛的應(yīng)用需求[15-16]。
自20世紀(jì)60年代以來,van Genuchten[11]提出了一系列的SWCC表征方程,對土-水關(guān)系進(jìn)行定量表征。這些研究多是基于吸力變化過程中土體零體變、孔隙結(jié)構(gòu)連續(xù)假定的情形。由于土體的多相、可壓縮特點(diǎn),在凈法向應(yīng)力及吸力作用下,會產(chǎn)生不可忽略的變形。Fredlund等[17]基于多相連續(xù)介質(zhì)力學(xué)從理論及試驗(yàn)上證明了土壤固-液-氣三相介質(zhì)實(shí)際上受凈法向應(yīng)力(=–u,為豎向壓力)和吸力2個變量的控制。及被看作是建立非飽和土本構(gòu)模型的2個關(guān)鍵的獨(dú)立應(yīng)力狀態(tài)變量[17-18],為定量研究土壤持水、滲透、變形和強(qiáng)度提供了嚴(yán)謹(jǐn)?shù)睦碚撝蝃17,19]。
直到最近,Gallipoli等[20-22]開始考慮土體變形的SWCC以及多峰孔隙密度分布函數(shù)(multimodal pore-size density probability distribution function,M-PDF)的情形。當(dāng)前,應(yīng)力引起土體變形的研究可分為吸力[23]、正應(yīng)力[16,20]及二者耦合引起土體變形3類[24]。由于傳統(tǒng)SWCC量測極為耗時,動輒數(shù)月,而當(dāng)前眾多的SWCC方程研究僅考慮單一或者是兩影響因素的特殊狀態(tài),其方程足夠復(fù)雜;同時,SWCC方程參數(shù)對試驗(yàn)數(shù)據(jù)量及數(shù)據(jù)分布敏感,即SWCC曲線擬合精度與試驗(yàn)數(shù)據(jù)量成正相關(guān),而試驗(yàn)數(shù)據(jù)點(diǎn)越多,則曲線測定越耗時。這些因素成為制約SWCC方程工程應(yīng)用的重要原因。因而,尋找對試驗(yàn)數(shù)據(jù)量依賴性低、包容主要土-水影響因素、能夠處理多組分復(fù)合介質(zhì)在多應(yīng)力耦合作用下的廣義SWCC方程,成為土-水關(guān)系研究的關(guān)鍵。
本文旨在基于van Genuchten土-水方程[11]、Fredlund等[17]的雙應(yīng)力變量理論及Tarantino研究[25],導(dǎo)出考慮土體變形、應(yīng)力狀態(tài)及多孔隙集群分布的廣義SWCC方程,為定量表征和擬合土壤土-水關(guān)系提供理論參考,為后期土體變形、強(qiáng)度及滲透的水力-力學(xué)本構(gòu)研究提供參考。
表1列出部分經(jīng)典的SWCC模型,并比較其特點(diǎn)和適用范圍。
表1 經(jīng)典土-水特征曲線表征方程及其特點(diǎn)和適用范圍
注:在某狀態(tài)下的整條脫濕或吸濕SWCC曲線上和為定值,表中未將其納入?yún)?shù)數(shù)量統(tǒng)計。
Note:andare constants during drying/wetting process of SWCC at certain condition and thus not included in counting of parameter numbers.
由表1可見,眾多SWCC方程都僅考慮1或2個因素,方程曲線對試驗(yàn)數(shù)據(jù)量及數(shù)據(jù)分布敏感性高因而試驗(yàn)測定較為耗時。包承綱[30]針對粉質(zhì)黏土將工程關(guān)心的吸力∈[,](為殘余含水量對應(yīng)的吸力、為進(jìn)氣值,kPa)段認(rèn)為是半對數(shù)坐標(biāo)上的直線,提出了簡單易用的表達(dá)式
式中p、q為擬合參數(shù);為體積含水量,%;為殘余體積含水量,%;為飽和體積含水量,%;為吸力,kPa。
黃海等[31]提出考慮凈平均應(yīng)力影響的SWCC
式中0為初始含水率,%;0為初始比容;G為土粒相對密實(shí)度;為凈平均應(yīng)力,kPa;K為與凈平均應(yīng)力相關(guān)的切線體積模量,kPa;()為常數(shù);P為大氣壓,kPa。
周葆春等[32]基于Fredlund等的方程提出考慮吸力引起體變的膨脹土SWCC方程,但未涉及附加正應(yīng)力引起變形的情形,也沒有涉及多孔隙集群狀態(tài)。Tarantino[25]在不考慮殘余飽和含水量及多峰的情況下,導(dǎo)出了考慮孔隙比變化的SWCC方程。
鑒于此,筆者認(rèn)為,SWCC模型具有較好的適用性,至少應(yīng)具有以下3個特點(diǎn):1)具有足夠的表征精度;2)方程參數(shù)對試驗(yàn)數(shù)據(jù)量依賴性低;3)便于工程應(yīng)用。
2.1 廣義SWCC圖示及概念
通常,SWCC可劃分為邊界效應(yīng)區(qū)(boundary-effect zone,BE-Z)、過渡區(qū)(transition zone,T-Z)、非飽和殘余區(qū)(residual zone of unsaturation,RU-Z)3個區(qū)域[16],本文稱這3個區(qū)為“特征吸力域”。對于連續(xù)級配或單一級配土壤,其孔隙尺寸密度分布函數(shù)(pore-size density probability distribution function, PDF)為一個S形的單峰形態(tài),SWCC也呈單峰形態(tài),如Fredlund等的方程[27];自然土壤及工程填土等不可能是完全的連續(xù)級配,同時存在干濕裂隙,使PDF[33]呈現(xiàn)雙峰甚至多峰,SWCC也會對應(yīng)多個S形態(tài)變化[34],如Rahardjo等[22]的方程。此外,應(yīng)力(如上覆壓力)會引起體變,改變SWCC形態(tài)。鑒于此,定義廣義土-水特征曲線:基于多因素(如孔隙結(jié)構(gòu)、應(yīng)力歷史、應(yīng)力狀態(tài))影響下土壤吸力與含水量(S、及)之間關(guān)系的空間曲線。構(gòu)建全吸力域(∈[0,106] kPa)雙應(yīng)力變量下體積含水量與吸力關(guān)系的廣義SWCC概念平面圖,如圖1所示。
2.2 雙應(yīng)力變量廣義SWCC模型
地球表層土壤因處于大氣干濕交替、地質(zhì)營力及人類生產(chǎn)建設(shè)活動中,其結(jié)構(gòu)隨機(jī)、組分多相、應(yīng)力場耦合,水力-力學(xué)性質(zhì)復(fù)雜多樣。為便于處理,將應(yīng)力對土體結(jié)構(gòu)的影響歸為:1)應(yīng)力歷史(stress history),如初始固結(jié)壓力造成的密度、孔隙比的不同的影響,用初始孔隙比0表征;2)應(yīng)力狀態(tài)(stress state),即吸力與凈法向應(yīng)力的影響,用孔隙比表征,刻畫試驗(yàn)過程應(yīng)力耦合對土壤結(jié)構(gòu)狀態(tài)的影響。定義相對體積含水比為
式中為相對體積含水比,無量綱;V為某級吸力平衡時試樣含水體積,mL;0為試樣初始體積,mL;為廣義殘余含水體積,mL;當(dāng)≤時,(為大孔隙及微孔隙粒組SWCC交匯點(diǎn)含水體積,mL),當(dāng)>時為多峰土-水方程吸力最大段殘余含水體積,mL;k為相對比容,k=v/v,其中為比容(1),v為廣義殘余含水量對應(yīng)的比容(1+e),e為廣義殘余含水量對應(yīng)的孔隙比。
van Genuchten土-水表征方程是最經(jīng)典的SWCC之一,得到了廣泛的理論和試驗(yàn)驗(yàn)證[8-10,13,28,35],其歸一化含水量為[11]
變化規(guī)律用形如sigmoidal函數(shù)的曲線方程[11]表示為
(5)
式中為與進(jìn)氣值相關(guān)的土性參數(shù),kPa-1;為>時土體脫濕速率相關(guān)的土性參數(shù),無量綱;為與殘余含水量相關(guān)的土性參數(shù),無量綱。
可在坐標(biāo)系∈[,]中進(jìn)行表征。一般-SWCC、-SWCC、S-SWCC均具有S形變化的規(guī)律;還可以表示為以及(為殘余飽和度,%;w為殘余含水率,%;w為飽和含水率,%)。-SWCC最常用于土壤科學(xué),其本身包含了孔隙變化的因素,因而特別適用于雙應(yīng)力變量的情形,本文采用-SWCC進(jìn)行推導(dǎo)。-SWCC及S-SWCC可由=·(1+)/G與S=·(1+)/換算得到。式(5)僅考慮吸力單應(yīng)力狀態(tài)變量影響,沒有考慮及多峰SWCC情形,其應(yīng)用受到較大的限制。
定義相對變動體積含水量為
據(jù)土壤固-液-氣三相關(guān)系,由式(3)及式(6)得
(7)
式中0為初始比容。
將式(7)代入式(4)及式(5),得到的另一種表達(dá)式
由圖1雙應(yīng)力廣義SWCC概念圖示,結(jié)合式(3)、式(6)、式(7)得到圖2所示全吸力范圍雙對數(shù)?lg()?lg()平面圖,不同特征吸力域劃分對應(yīng)圖1。對應(yīng)的特征吸力域的?lg()?lg()平面曲線最小二乘法擬合表明,?lg()?lg()在相應(yīng)的特征吸力域內(nèi)具有很好的線性關(guān)系(相關(guān)系數(shù)>0.90,<0.05)。
注:1~5分別為第1~5段擬合直線的相對體積含水比;1,1,2,2表示相鄰2個特征吸力域交界點(diǎn)的吸力,kPa。
Note:1-5are relative volumetric water ratio corresponding to the first to the fifth fitting line segment, respectively;1,1,2and2are matric suction corresponding to jointing point between adjacent suction domains, kPa.
圖2 雙對數(shù)坐標(biāo)下廣義SWCC的相對體積含水比概念圖
Fig.2 Concept map of relative volumetric water ratio of generalized SWCC in log-log coordinate
(9)
當(dāng)?∞時,由=10,=?·,及式(8)得
(11)
(13)
式(13)為單峰SWCC情形;針對復(fù)雜多孔隙尺度集群分布的土體雙應(yīng)力變量條件下的土-水關(guān)系的多峰SWCC,可用式(13)對各孔隙尺度集群的SWCC單獨(dú)表征,即
式中角標(biāo)表示第個SWCC。多峰SWCC還可以表示為多個SWCC的不同權(quán)重下的線性疊加,即
(15)
式中表示第個SWCC的權(quán)重因子,且0<≤1、。
通常,邊界效應(yīng)區(qū)及非飽和殘余區(qū)內(nèi)SWCC隨吸力的變化并不明顯,過渡區(qū)SWCC隨吸力變化劇烈,三者構(gòu)成形如S形的變化規(guī)律。利用過渡區(qū)至少2個土-水?dāng)?shù)據(jù)點(diǎn)代入式(6)和式(7),并結(jié)合圖2計算得到參數(shù)及;利用這2個已知土-水?dāng)?shù)據(jù)點(diǎn)以及參數(shù)和,再增加同條單峰SWCC邊界效應(yīng)區(qū)至少1個土-水?dāng)?shù)據(jù)點(diǎn)(這個點(diǎn)可以是初始已知土-水?dāng)?shù)據(jù)點(diǎn)),共至少3個土-水?dāng)?shù)據(jù)點(diǎn),代入式(13)即可繪制出具有適宜精度的整條單峰SWCC。對于多峰SWCC,可采用式(14)分多段SWCC計算得到,也可以采用式(15)不同權(quán)重的方式得到。對于全吸力范圍SWCC,即具有明顯非飽和殘余區(qū)的SWCC,增加至少1個該區(qū)域的數(shù)據(jù)(其中1個點(diǎn)可以在最大吸力106kPa處含水量為0時獲得)應(yīng)用式(13)擬合,即可得到具有適宜精度的全吸力范圍SWCC。這樣,使得新SWCC方程對試驗(yàn)數(shù)據(jù)量的依賴性大為降低,可節(jié)省試驗(yàn)時間。
當(dāng)土體孔隙比隨吸力變化很小或是不考慮其變化時,式(13)退化為van Genuchten形式
為避免擬合的主觀性,采用最小二乘法[36]進(jìn)行擬合。在?lg()?lg()平面,令,,則
式中角標(biāo)表示在某特征吸力域內(nèi)第個吸力平衡時的數(shù)據(jù),下同。
(19)
(21)
式中(,)為吸力及相應(yīng)的凈法向應(yīng)力下的試驗(yàn)體積含水量;為對應(yīng)應(yīng)力狀態(tài)曲線上的預(yù)測體積含水量。
隨之,一個完整的雙應(yīng)力變量廣義SWCC預(yù)測-擬合方程求解過程可用圖3表示。由圖3可見,式(13)廣義SWCC方程形似復(fù)雜,但應(yīng)用Matlab、Origin及1stOpt等軟件,即可實(shí)現(xiàn)自動化、高精度的擬合及預(yù)測,操作起來十分簡便。由于其函數(shù)構(gòu)造符合SWCC的S形變化規(guī)律,其預(yù)測及擬合效果將較為理想。
論文基于Tarantino[25]方程,創(chuàng)新與不同在于:1)Tarantino的土-水表征方程在基于van Genuchten[11]方程推導(dǎo)時,利用飽和度導(dǎo)出土-水表征方程(為相關(guān)擬合參數(shù))。形式上,該方程表征的情形是S∈[0,1],但確切說是有效飽和度∈[0,1]。由于一般土壤都具有明顯的殘余飽和度或殘余含水量,含水量變化區(qū)間為S∈[,1]。為此,Tarantino方程擬合容易出現(xiàn)擬合性差、不收斂等問題。應(yīng)用Tarantino表征式可潛在地將SWCC向下平移個單位,因而其應(yīng)用會受到限制。以∈[,](或S∈[,1])作為其含水量變化區(qū)間,能真實(shí)地反映SWCC變化規(guī)律。Fredlund等[27]的方程能夠解決這個擬合不收斂問題,具有較好的靈活性,但試驗(yàn)數(shù)據(jù)的多少決定著SWCC的形狀和走勢,且存在不能用于預(yù)測土-水關(guān)系的缺點(diǎn)。本文定義了“相對體積含水比”,針對非飽和土構(gòu)建?lg()?lg(w)平面,將普通SWCC方程擴(kuò)展到考慮多峰效應(yīng)、應(yīng)力影響以及體變量測的廣義方程。相較于2個參數(shù)Brooks等方程[18]、3個參數(shù)van Genuchten方程[11]以及4個參數(shù)Fredlund等方程[27],本文的廣義SWCC方程僅3個參數(shù),表征了考慮孔隙概率分布函數(shù)的影響的雙應(yīng)力變量廣義SWCC。參數(shù)從?lg()?lg()平面進(jìn)行線性擬合得到,分別為該平面直線在相應(yīng)特征吸力域的斜率和截距,廣義殘余含水量相關(guān)參數(shù)需要在SWCC方程擬合得到,非常方便。SWCC雖具有較大的工程價值,但其試驗(yàn)動輒數(shù)月,每個吸力點(diǎn)平衡需要2~30 d不等,特別是低含水量時需要時日更長,僅1條脫濕SWCC可能就需要數(shù)月時間;?lg()?lg()平面吸力域內(nèi)的曲線具有良好線性關(guān)系,由最小二乘法特征可知,參數(shù)、的獲取并不需要太多的SWCC試驗(yàn)數(shù)據(jù),理論上在特征吸力域獲取至少3個以上的試驗(yàn)點(diǎn)即可較好地預(yù)測該區(qū)域SWCC其他點(diǎn)。可利用壓力膜法、壓力板法[38]、濾紙法[35]、蒸汽平衡法[39]及冷鏡露點(diǎn)技術(shù)(chilled mirror dew point technique)[40]等對SWCC特征吸力域分段測量,特別是過渡區(qū)的量測,可在較短的時間內(nèi)獲得完整SWCC,滿足工程需要。
評價了各種經(jīng)典土-水特征曲線(soil-water characteristic curve, SWCC)表征方程的適用范圍及局限,基于Fredlund等的雙應(yīng)力變量理論及van Genuchten土-水方程,定義了廣義土-水特征曲線及“相對體積含水比”概念,構(gòu)建了考慮土體孔隙分布形態(tài)及雙應(yīng)力變量影響的廣義SWCC方程,結(jié)論如下:
1)當(dāng)前眾多SWCC模型不具有包容復(fù)雜因素的能力,參數(shù)對試驗(yàn)數(shù)據(jù)量依賴性大,不能同時刻畫不同類型土壤不同孔隙結(jié)構(gòu)、雙應(yīng)力狀態(tài)及土體變形的情況,特別是眾多SWCC需要較多試驗(yàn)數(shù)據(jù),這是限制其應(yīng)用的重要原因。
2)應(yīng)力對SWCC的影響可歸納為應(yīng)力歷史(固結(jié)壓力、初始孔隙比等)及應(yīng)力狀態(tài)(吸力及凈法向應(yīng)力)2種模式,均在本廣義SWCC中得到反映。
3)本文導(dǎo)出的廣義SWCC方程僅3個參數(shù),能夠包容各種孔隙分布情況雙應(yīng)力狀態(tài)的復(fù)雜土-水關(guān)系。不僅能夠用以擬合SWCC,還能結(jié)合SWCC試驗(yàn),用至少3個試驗(yàn)數(shù)據(jù)點(diǎn),應(yīng)用Matlab、Origin及1stOpt等軟件預(yù)測更大吸力范圍的土-水關(guān)系,大大節(jié)省試驗(yàn)時間。研究可為土壤的節(jié)水灌溉、水土保持、邊坡失穩(wěn)機(jī)理以及滑坡災(zāi)害的防治提供理論參考;新方程的精確性及實(shí)用性將在進(jìn)一步的試驗(yàn)研究中進(jìn)行檢驗(yàn)。
[1] Salager S, Nuth M, Ferrari A, et al. Investigation into water retention behaviour of deformable soils[J]. Canadian Geotechnical Journal, 2013, 50(2): 200-208.
[2] Keller T, Lamandé M, Peth S, et al. An interdisciplinary approach towards improved understanding of soil deformation during compaction[J]. Soil and Tillage Research, 2013, 128: 61-80.
[3] 程明書,汪時機(jī),張雅倩,等. 膨脹土損傷變量不同表征方法評價的試驗(yàn)研究[J]. 巖土力學(xué),2015,36(10):2892-2898.
Cheng Mingshu, Wang Shiji, Zhang Yaqian, et al. Experimental study of assessment of different damage variable characterizations of expansive soil based on CT-triaxial tests[J]. Rock and Soil Mechanics, 2015, 36(10): 2892-2898. (in Chinese with English abstract)
[4] 程明書,汪時機(jī),毛新,等. 結(jié)構(gòu)性損傷膨脹土三軸加載下的裂隙形態(tài)及力學(xué)表征[J]. 巖土工程學(xué)報,2016,38(增刊2):73-78.
Cheng Mingshu, Wang Shiji, Mao Xin, et al. Fissure morphology and corresponding mechanical behavior modeling for virgin structure-damaged expansive soil under triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Supp. 2): 73-78. (in Chinese with English abstract)
[5] 汪時機(jī),陳正漢,李賢,等. 土體孔洞損傷結(jié)構(gòu)演化及其力學(xué)特性的CT-三軸試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(7):150-154.
Wang Shiji, Chen Zhenghan, Li Xian, et al. Pore-damage evolution and mechanical properties of remolded soil by CT-triaxial test[J]. Transactions of the Chinese Society of Agricultural Engineering Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(7): 150-154. (in Chinese with English abstract)
[6] 俞培基,陳愈炯. 非飽和土的水-氣形態(tài)及其與力學(xué)性質(zhì)的關(guān)系[J]. 水利學(xué)報,1965(1):16-24.
Yu Peiji, Chen Yujiong. The pore air-water configurations and their effects on the mechanical properties of partially saturated soils[J]. Journal of Hydraulic Engineering, 1965(1): 16-24.(in Chinese with English abstract)
[7] Chen Rui, Liu Jian, Li Jinhui, et al. An integrated high-capacity tensiometer for measuring water retention curves continuously[J]. Soil Science Society of America Journal, 2015, 79(3): 943-947.
[8] Minasny B, McBratney A B, Bristow K L. Comparison of different approaches to the development of pedotransfer functions for water-retention curves[J]. Geoderma, 1999, 93(3/4): 225-253.
[9] Hardie M A, Lisson S, Doyle R B, et al. Evaluation of rapid approaches for determining the soil water retention function and saturated hydraulic conductivity in a hydrologically complex soil[J]. Soil & Tillage Research, 2013, 130: 99-108.
[10] Hallema D W, Periard Y, Lafond J A, et al. Characterization of water retention curves for a series of cultivated histosols[J]. Vadose Zone Journal, 2015, 14(6): 1-8.
[11] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[12] Barlow K, Nash D. Investigating structural stability using the soil water characteristic curve[J]. Australian Journal of Experimental Agriculture, 2002, 42(3): 291-296.
[13] 劉建立,徐紹輝,劉慧,等. 參數(shù)模型在壤土類土壤顆粒大小分布中的應(yīng)用[J]. 土壤學(xué)報,2004,41(3):375-379.
Liu Jianli, Xu Shaohui, Liu Hui, et al. Application of parametric models to description of particle-size distribution in loamy soils[J]. Acta Pedologica Sinica, 2004, 41(3): 375-379. (in Chinese with English abstract)
[14] Lee I M, Sung S G, Cho G C. Effect of stress state on the unsaturated shear strength of a weathered granite[J]. Canadian Geotechnical Journal, 2005, 42(2): 624-631.
[15] Ng C W W, Leung A K, Wong H N, et al. A field study of stress-dependent soil-water characteristic curves and permeability of a saprolitic slope in Hong Kong[J]. Géotechnique, 2011, 61(6): 511-521.
[16] Vanapalli S K, Fredlund D G, Pufahl D E. The influence of soil structure and stress history on the soil-water characteristics of a compacted till[J]. Géotechnique, 1999, 49(2): 143-159.
[17] Fredlund D G, Morgenstern N R. Stress state variables for unsaturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1977, 103(5): 447-466.
[18] Brooks R H, Corey A T. Hydraulic Properties of Porous Media: Hydrology Papers[M]. Fort Collins: Colorado State University, 1964.
[19] Alonso E E, Gens A, Josa A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430.
[20] Gallipoli D, Wheeler S J, Karstunen M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(53): 105-112.
[21] Ciervo F, Casini F, Papa M N, et al. Some remarks on bimodality effects of the hydraulic properties on shear strength of unsaturated soils[J/OL]. Vadose Zone Journal, 2015, 14(9): 1-12. doi:10.2136/vzj2014.10.0152
[22] Rahardjo H, Satyanaga A, D’Amore G A R, et al. Soil-water characteristic curves of gap-graded soils[J]. Engineering Geology, 2012, 125(1): 102-107.
[23] Mbonimpa M, Aubertin M, Maqsoud A, et al. Predictive model for the water retention curve of deformable clayey soils[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2006, 132(9): 1121-1132.
[24] 孫德安,孫文靜,孟德林. 膨脹性非飽和土水力和力學(xué)性質(zhì)的彈塑性模擬[J]. 巖土工程學(xué)報,2010,32(10):1505-1512.
Sun De’an, Sun Wenjing, Meng Delin. Elastoplastic modelling of hydraulic and mechan ical behaviour of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1505-1512. (in Chinese with English abstract)
[25] Tarantino A. A water retention model for deformable soils[J]. Géotechnique, 2009, 59(9): 751-762.
[26] Gardner W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science, 1958, 85(4): 228-232.
[27] Fredlund D G, Xing A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(6): 1026.
[28] Zhang Limin, Chen Qun. Predicting bimodal soil-water characteristic curves[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 666-670.
[29] Burger C A, Shackelford C D. Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil-water characteristic curve functions[J]. Canadian Geotechnical Journal, 2001,38(1): 53-66.
[30] 包承綱. 非飽和土的性狀及膨脹土邊坡穩(wěn)定問題[J]. 巖土工程學(xué)報,2004,26(1):1-15.
Bao Chenggang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1-15. (in Chinese with English abstract)
[31] 黃海,陳正漢,李剛. 非飽和土在p-s平面上屈服軌跡及土-水特征曲線的探討[J]. 巖土力學(xué),2000,21(4):316-321.
Huang Hai, Chen Zhenghan, Li Gang. A study on yield locus of unsaturated soil on p-s plane and soil-water characteristic curve[J]. Rock and Soil Mechanics, 2000, 21(4): 316-321. (in Chinese with English abstract)
[32] 周葆春,孔令偉. 考慮體積變化的非飽和膨脹土土水特征[J]. 水利學(xué)報,2011,42(10):1152-1160.
Zhou Baochun, Kong Lingwei. Effect of volume changes on soil-water characteristics of unsaturated expansive soil[J]. Journal of Hydraulic Engineering, 2011, 42(10): 1152-1160. (in Chinese with English abstract)
[33] Durner W. Hydraulic conductivity estimation for soils with heterogeneous pore structure[J]. Water Resources Research, 1994, 30(2): 211-223.
[34] Li Xu, Li Jinhui, Zhang Limin. Predicting bimodal soil-water characteristic curves and permeability functions using physically based parameters[J]. Computers and Geotechnics, 2014, 57: 85-96.
[35] Leong E C, He Liangcai, Rahardjo H. Factors affecting the filter paper method for total and matric suction measurements[J]. ASTM Geotechnical Testing Journal, 2002, 25(3): 322-333.
[36] York D. Least-squares fitting of a straight line[J]. Canadian Journal of Physics, 1966, 44(5): 1079-1086.
[37] Wijaya M, Leong E C. Equation for unimodal and bimodal soil-water characteristic curves[J]. Soils and Foundations, 2016, 56(2): 291-300.
[38] Ng C W W, Pang Y W. Influence of stress state on soil-water characteristics and slope stability[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(2): 157-166.
[39] Nam S, Gutierrez M, Diplas P, et al. Comparison of testing techniques and models for establishing the SWCC of riverbank soils[J]. Engineering Geology, 2010, 110(1/2): 1-10.
[40] Bulut R, Leong E C. Indirect measurement of suction[J]. Geotechnical and Geological Engineering, 2008, 26(6): 633-644.
Establishment of generalized soil-water characteristic curve theoretical model considering two stress state variables for unsaturated soils
Wang Shiji1, Cheng Mingshu1,Li Xian1,2, Wang Xiaoqi1, Mao Xin1, Yang Huidi3
(1.400715;2.;3.410082,)
As one of the fundamental soil-water modeling equations, soil water characteristic curve (SWCC) equation is widely employed to study soil-water retention, permeability and strength characteristics in the fields of agricultural engineering, environmental engineering, geotechnical engineering, etc. In this study, we evaluated the current classic SWCC equations and proposed a generalized SWCC model. By summarizing the current models, we found that the current model considered only a single or two influential factors, the forms of the current equations were complex, they were sensitive to experimental data and the fitness accuracy was highly dependent on the numbers of the experimental points. And most of them couldn’t deal with the conditions of multimodal pore-size density probability function and hydro-mechanical coupling effects for the solid-liquid-gas materials in soil. Based on Fredlund et al’s two stress variables theory and van Genuchten’s soil-water characteristic equation, the concept of generalized SWCC was defined. Three characteristic suction zones included boundary-effect zone, transition zone and residual zone of unsaturation. We defined the generalized SWCC as spatial curves reflecting relationship between matric suction and soil water content under the condition affected by multiple factors such as pore structure, stress history and stress state. The relative volumetric water ratio was proposed. The stress history was expressed with initial void ratio and the stress state was described with void ratio. Thus, the relative volumetric water ratio was defined as a ratio of water content-related function and initial volume. Relative fluctuated volumetric water content was defined as the difference of volumetric water content and residual volumetric water content. Based on the relative fluctuated volumetric water content, the relative volumetric water ratio was expressed as the other form. Then, the figure of net normal stress-logarithm of matric suction-logarithm of relative volumetric water ratio corresponding to the characteristic suction zones was plotted. A good linear relationship (>0.90,<0.05) was found among the net normal stress, logarithm of matric suction and logarithm of relative volumetric water ratio. Thus, the generalized two stress state bimodal SWCC model was derived, which considered the multimodal pore-size density probability distribution function and soil deformation. Compared with the 2-parameter Brooks et al’s equation, 3-parameter van Genuchten equation as well as the 4-parameter Fredlund et al’s equation, the proposed generalized SWCC only had 3 parameters, 2 of which could be obtained by least-square linear fitting method in the plane of log-log coordinate system of relative volumetric water ratio versus matric suction and only one of which would be achieved by the nonlinear least-square fitting method. The model fitness needs at least 3 experimental points. The model provides with a new way to predict the soil-water retention, permeability, strength of soil quantitatively in an easier and timesaving process.
soil moisture; stresses; models; water retention property; unsaturated soil; soil-water characteristic curve; bimodal SWCC
10.11975/j.issn.1002-6819.2017.06.001
TU411; S152
A
1002-6819(2017)-06-0001-07
2016-07-04
2016-11-20
國家自然科學(xué)基金項(xiàng)目資助(11572262);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助(XDJK2016D016, XDJK2016B006)
汪時機(jī),男,安徽安慶人,教授,博士,主要從事農(nóng)業(yè)水土工程和巖土力學(xué)方面的教學(xué)和研究。重慶西南大學(xué)工程技術(shù)學(xué)院,400715。Email:shjwang@swu.edu.cn