楊苑儒 周 璇 張若辰 李麗英 楊 樂(lè)*
(1.首都醫(yī)科大學(xué)2013級(jí)醫(yī)學(xué)實(shí)驗(yàn)技術(shù)專業(yè), 北京 100069;2.首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院細(xì)胞生物學(xué)系,北京 100069)
·基礎(chǔ)研究 ·
S1PR1/3介導(dǎo)骨髓間充質(zhì)干細(xì)胞向肌成纖維細(xì)胞分化的信號(hào)通路探討
楊苑儒1周 璇1張若辰1李麗英2楊 樂(lè)2*
(1.首都醫(yī)科大學(xué)2013級(jí)醫(yī)學(xué)實(shí)驗(yàn)技術(shù)專業(yè), 北京 100069;2.首都醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院細(xì)胞生物學(xué)系,北京 100069)
目的 在轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor β1, TGFβ1)誘導(dǎo)的分化模型中探討RhoA信號(hào)對(duì)于磷酸鞘氨醇受體1/3(sphingosine 1-phosphate receptor 1/3, S1PR1/3)介導(dǎo)骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cell, BMSC)向肌成纖維細(xì)胞(myofibroblast, MF)分化的影響及其機(jī)制。方法 分離并培養(yǎng)小鼠原代BMSC,TGFβ1誘導(dǎo)其分化。采用qRT-PCR檢測(cè)分化標(biāo)志物平滑肌肌動(dòng)蛋白α(α-smooth muscle actin, αSMA)、Ⅰ型膠原[procollagen α1(Ⅰ),Col α1(Ⅰ)]和Ⅲ型膠原[Col α1(Ⅲ)]的mRNA表達(dá);采用Pull-down試劑盒檢測(cè)RhoA的活化。結(jié)果 TGFβ1能夠顯著上調(diào)BMSC細(xì)胞中分化標(biāo)志物αSMA、Col α1(Ⅰ)和Col α1(Ⅲ)的mRNA表達(dá),呈現(xiàn)劑量依賴效應(yīng)。TGFβ1能夠激活小G蛋白R(shí)hoA,該作用可以被S1PR1或S1PR3拮抗劑所阻斷。RhoA抑制劑C3轉(zhuǎn)移酶能夠阻斷TGFβ1誘導(dǎo)的αSMA、Col α1(Ⅰ)和Col α1(Ⅲ) mRNA水平的上調(diào)。結(jié)論 RhoA信號(hào)參與了S1PR1/3介導(dǎo)的BMSC向MF的分化。
小鼠;骨髓間充質(zhì)干細(xì)胞;磷酸鞘氨醇受體;RhoA
肝纖維化時(shí)骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cell, BMSC)可以遷移至受損傷肝臟,分化為肌成纖維細(xì)胞(myofibroblast, MF),從而參與肝纖維化的發(fā)生[1-2]。研究顯示[3-5],磷酸鞘氨醇受體(sphingosine 1-phosphate receptor 1/3, S1PR1/3)參與了肝纖維化時(shí)BMSC向MF的分化;并且S1PR1/3和轉(zhuǎn)化生長(zhǎng)因子β1(transforming growth factor β1, TGFβ1)信號(hào)通路之間存在cross-talk,TGFβ1通過(guò)上調(diào)BMSC中S1PR1和S1PR3的表達(dá),誘導(dǎo)BMSC向MF的分化。但S1PR下游參與BMSC分化的信號(hào)通路尚不清楚。本實(shí)驗(yàn)以原代培養(yǎng)的小鼠BMSC為研究對(duì)象,以S1PR1/3和RhoA為靶分子,擬在TGFβ1誘導(dǎo)的分化模型中探討RhoA信號(hào)對(duì)于S1PR1/3介導(dǎo)的BMSC向MF分化的影響及其機(jī)制。本研究有助于闡明S1PR1/3在肝纖維化治療中的具體作用機(jī)制,為肝纖維化以S1PR1/3為靶位點(diǎn)進(jìn)行治療,提供新的思路和理論依據(jù),具有重要的理論意義和應(yīng)用價(jià)值。
1.1 實(shí)驗(yàn)材料
1)動(dòng)物:普通ICR雄性小鼠,體質(zhì)量28~30 g,SPF級(jí),周齡6周左右,購(gòu)于首都醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物部。實(shí)驗(yàn)動(dòng)物許可證號(hào):SYXK(京)2015-0012。
2)細(xì)胞:原代培養(yǎng)的小鼠骨髓間充質(zhì)干細(xì)胞,本實(shí)驗(yàn)室已建立其分離與培養(yǎng)方法。
3)主要儀器:細(xì)胞培養(yǎng)箱(Thermo公司,美國(guó)),離心機(jī)(5810R,Eppendorf 公司,美國(guó)),Real-time PCR儀(ABI 7300,ABI公司,美國(guó)),垂直電泳裝置(Bio-Rad公司,美國(guó)),蛋白轉(zhuǎn)印裝置(Biometra公司,德國(guó)),Odyssey 紅外熒光掃描成像系統(tǒng)(LI-COR公司,美國(guó)),熒光顯微鏡(Leica公司,日本)。
4)主要試劑:a-MEM培養(yǎng)基(Gibco公司,美國(guó)),胎牛血清(Biochrom公司,美國(guó)),TGFβ1(PeproTech公司,美國(guó)),抗平滑肌肌動(dòng)蛋白α(α-smooth muscle αctin, aSMA),單克隆抗體(Sigma公司,美國(guó)),Cy3羊抗鼠二抗(Jackson Immunoresearch公司,美國(guó)),紅外熒光染料標(biāo)記的二抗(LI-COR公司,美國(guó)),RNeasy Mini Kit(Qiagen公司,德國(guó)),M-MLV反轉(zhuǎn)錄試劑盒(Invitrogen公司,美國(guó)),SYBR Green PCR Master Mix(ABI公司,美國(guó)),Pull-down檢測(cè)試劑盒(Thermo Scientific公司,美國(guó))。
1.2 方法
1)小鼠BMSC的分離與培養(yǎng):無(wú)菌條件下取出小鼠四肢長(zhǎng)骨,浸入預(yù)熱的PBS溶液中,去除肌肉筋膜和骨骺,以a-MEM培養(yǎng)基作為骨髓沖洗液,用1 mL的一次性注射器將骨髓細(xì)胞沖至細(xì)胞培養(yǎng)皿中。細(xì)胞懸液過(guò)400目篩網(wǎng)后用完全培養(yǎng)基[20% (體積分?jǐn)?shù))胎牛血清的a-MEM]懸浮細(xì)胞,接種到新的細(xì)胞培養(yǎng)皿中置于37 ℃,5% (體積分?jǐn)?shù)) CO2培養(yǎng)。24 h后全量換液,之后每3 d半量換液1次,去除未貼壁細(xì)胞,待細(xì)胞長(zhǎng)滿后進(jìn)行傳代,即為P1代。傳代后采用15%(體積分?jǐn)?shù)) 胎牛血清的a-MEM培養(yǎng)基繼續(xù)培養(yǎng)。
所有動(dòng)物實(shí)驗(yàn)均遵循2006年國(guó)家科技部頒發(fā)的《關(guān)于善待實(shí)驗(yàn)動(dòng)物的指導(dǎo)性意見(jiàn)》和相關(guān)倫理學(xué)規(guī)范。
2)小鼠BMSC的分化:BMSC匯合度達(dá)到80%~90%后,PBS沖洗1次,更換無(wú)血清培養(yǎng)基培養(yǎng)24 h,然后加入0.2、1、2、10 ng/mL TGF-β1,同時(shí)設(shè)置對(duì)照組,處理細(xì)胞24 h后收集細(xì)胞,提取總RNA進(jìn)行實(shí)時(shí)熒光定量聚合酶鏈反應(yīng),檢測(cè)平滑肌肌動(dòng)蛋白α(α-smooth muscle actin,αSMA)、Ⅰ型膠原[procollagen α1(Ⅰ) ,Col α1(Ⅰ)] 和Ⅲ型膠原[Col α1(Ⅲ)]的mRNA水平。
3)實(shí)時(shí)熒光定量聚合酶鏈反應(yīng):處理后的細(xì)胞用預(yù)冷PBS清洗,加入350 μL裂解液,收集裂解底物提取全細(xì)胞RNA,定量后取0.5g反轉(zhuǎn)錄(不加反轉(zhuǎn)錄酶作為陰性對(duì)照,即NO-RT),cDNA稀釋后進(jìn)行PCR反應(yīng)(引物序列詳見(jiàn)表1)。檢測(cè)的臨界點(diǎn)設(shè)定在PCR擴(kuò)增過(guò)程中,熒光信號(hào)由本底進(jìn)入指數(shù)增長(zhǎng)階段的拐點(diǎn)所對(duì)應(yīng)的循環(huán)數(shù)(Ct)作為模板初始濃度的間接指標(biāo),溶解曲線分析采用默認(rèn)條件。結(jié)果以18S rRNA進(jìn)行校正,用ΔΔCt法計(jì)算相對(duì)基因表達(dá)量。
表1 PCR引物序列
Col α1Ⅰ: procollagen α1Ⅰ; αSMA:smooth muscle actin.
4)蛋白質(zhì)印跡實(shí)驗(yàn)(Western blotting):在4 ℃條件下加入裂解液,提取小鼠BMSC中的蛋白質(zhì),用BCA Protein Assay Kit測(cè)定樣品蛋白質(zhì)的量。每個(gè)樣本取30 μg蛋白質(zhì)進(jìn)行SDS聚丙烯酰胺凝膠電泳并轉(zhuǎn)至PVDF膜上,用含5%(質(zhì)量分?jǐn)?shù))脫脂奶粉的TBST溶液室溫1 h,加入1∶500稀釋倍數(shù)的αSMA抗體于4 ℃孵育過(guò)夜,TBST漂洗3次,每次10 min,加入二抗,室溫孵育1 h后,TBST漂洗3次,每次10 min,直接用Odyssey紅外熒光掃描成像系統(tǒng)進(jìn)行掃描成像。內(nèi)參采用相同步驟。
5)活化的RhoA Pull-down分析:BMSC細(xì)胞經(jīng)過(guò)相應(yīng)的處理之后,經(jīng)裂解液裂解,檢測(cè)RhoA的GTP結(jié)合形式,最后用Western blotting展示條帶。
1.3 統(tǒng)計(jì)學(xué)方法
2.1 TGFβ1誘導(dǎo)小鼠BMSC分化,呈劑量依賴效應(yīng)
不同濃度TGFβ1刺激BMSC 24 h后,分化標(biāo)志物aSMA、Col α1(Ⅰ)和Col α1(Ⅲ)的mRNA表達(dá)顯著上調(diào),其中在10 ng/mL TGFβ1處理下表達(dá)量達(dá)到最大,呈現(xiàn)劑量依賴效應(yīng)。詳見(jiàn)圖1。
圖1 不同濃度TGFβ1處理BMSC 24 h后 mRNA表達(dá)
A:αSMA; B:Col α1(Ⅰ); C:Col α1(Ⅲ); BMSC:bone marrow mesenchymal stem cell; αSMA:α-smooth muscle actin; Col α1: procollagen α1; TBFβ1: transforming growth factor β1;*P<0.05vs0 ng·mg-1TGFβ1.
2.2 TGFβ1激活小G蛋白R(shí)hoA
10 ng/mL TGFβ1分別刺激BMSC 5、15和30 min,然后通過(guò)Pull-down分析實(shí)驗(yàn)檢測(cè)與GTP結(jié)合的RhoA蛋白。結(jié)果顯示,TGFβ1能夠快速激活RhoA,且其活化水平在30 min時(shí)達(dá)到最大。詳見(jiàn)圖2。
2.3 阻斷S1PR1或S1PR3抑制活化的RhoA
預(yù)先用S1PR1拮抗劑W146或S1PR3拮抗劑CAY10444預(yù)孵育BMSC 1 h,然后使用10 ng/mL TGFβ1刺激細(xì)胞30 min,觀察GTP-RhoA的蛋白變化。結(jié)果顯示,TGFβ1誘導(dǎo)的RhoA活化能夠被S1PR1或S1PR3拮抗劑所抑制(P<0.05)。詳見(jiàn)圖3。
2.4 BMSC的分化依賴于RhoA信號(hào)通路
用RhoA 抑制劑C3轉(zhuǎn)移酶預(yù)孵育BMSC 1 h,然后使用10 ng/mL TGFβ1刺激細(xì)胞24 h,檢測(cè)分化標(biāo)志物aSMA、Col α1(Ⅰ)和Col α1(Ⅲ)的mRNA表達(dá)。結(jié)果顯示C3轉(zhuǎn)移酶可以阻斷TGFβ1誘導(dǎo)BMSC分化。詳見(jiàn)圖4。
圖2 TGFβ1刺激能夠激活小G蛋白R(shí)hoA
BMSCs were exposed to 10 ng/mL TGFβ1 at 5, 15 and 30 minutes. Total and activated RhoA in BMSCs were determined by pull-down assay.*P<0.05vs0 min; TBFβ1: transforming growth factor β1; BMSC:bone marrow mesenchymal stem cell.
圖3 S1PR1/3拮抗劑對(duì)于RhoA活化的影響
BMSCs were incubated with S1PR1 antagonist W146 (10 mmol/L) or S1PR3 antagonist CAY10444 (10 mmol/L) prior to TGFβ1 treatment (10 ng/mL, 30 min). Total and activated RhoA in BMSCs were determined by pull-down assay.*P<0.05vscontrol cells;#P<0.05vsTGFβ1-treated cells alone;TBFβ1: transforming growth factor β1; S1PR1/3: sphingosine 1-phosphate receptor 1/3; BMSC: bone marrow mesenchymal stem cell.
肝纖維化是多種病因所致的慢性肝病共有的病理過(guò)程,肝臟肌成纖維細(xì)胞在肝纖維化發(fā)生和發(fā)展過(guò)程中起著決定性作用[6-7]。MF異源性的觀點(diǎn)已被學(xué)者普遍接受。前期工作[3-5]已證實(shí),在肝纖維化發(fā)生過(guò)程中BMSC是MF的重要來(lái)源,且S1PR1和S1PR3參與了BMSC向MF的分化,然而與受體S1PR1和S1PR3結(jié)合后的下游信號(hào)通路,如MAPK、PI-3K、Akt、Rho、cAMP、和Ca2+等相關(guān)的信號(hào)途徑在BMSC分化中的作用,尚不清楚。Rho蛋白屬于小G蛋白超家族的亞家族成員,具有GTP酶活性,在信號(hào)傳導(dǎo)過(guò)程中起到分子開(kāi)關(guān)的作用[8-9]。其家族內(nèi)的代表性成員RhoA及其效應(yīng)物ROCK的激活可以影響細(xì)胞的分化命運(yùn)。當(dāng)抑制RhoA/ROCK活性時(shí),干細(xì)胞可以向軟骨細(xì)胞或脂肪細(xì)胞分化,而當(dāng)激活它時(shí),則促進(jìn)了成骨分化[10]。本研究首次證實(shí)RhoA信號(hào)參與S1PR1/3介導(dǎo)的BMSC向MF的分化。本課題組的結(jié)果表明TGFβ1刺激(5、15和30 min)能夠上調(diào)活化形式RhoA的表達(dá)。并且,用拮抗劑把S1PR1或S1PR3特異性抑制以后能夠阻斷TGFβ1誘導(dǎo)的RhoA活化。此外,RhoA抑制劑C3轉(zhuǎn)移酶可以阻斷TGFβ1誘導(dǎo)的aSMA、Col α1(Ⅰ)和Col α1(Ⅲ) mRNA表達(dá)上調(diào),從而抑制BMSC分化。
圖4 TGFβ1通過(guò)RhoA信號(hào)通路誘導(dǎo)BMSC分化
A:expression of aSMA mRNA; B: expression of Col α1(Ⅰ) mRNA; C: expression of Col α1 (Ⅲ) mRNA; The effect of C3 transferase (Rho A inhibitor) on BMSC differentiation was examined by qRT-PCR. TBFβ1: transforming growth factor β1; BMSC: bone marrow mesenchymal stem cell;Col α1: procollagen α1;*P<0.05vsuntreated control cells;#P<0.05vsTGFβ1-treated cells alone.
已有文獻(xiàn)[11]報(bào)道在不同細(xì)胞中S1P/S1PR和TGFβ1之間存在某種 cross-talk,但是它們?cè)贐MSC分化過(guò)程中的相互作用還不清楚。本研究在體外培養(yǎng)小鼠原代BMSC,然后用TGFβ1誘導(dǎo)分化,通過(guò)qRT-PCR檢測(cè)MF標(biāo)志物——αSMA、Col α1(Ⅰ)和Col α1(Ⅲ)的mRNA表達(dá),證明TGFβ1能夠誘導(dǎo)BMSCs向MF的分化。進(jìn)而使用S1PR拮抗劑,進(jìn)一步證實(shí)TGFβ1誘導(dǎo)BMSC分化為MF這一過(guò)程依賴于S1PR1和S1PR3。這與已發(fā)表的研究[11-12]結(jié)果相一致,有文獻(xiàn)[13]報(bào)道TGFβ1誘導(dǎo)成纖維細(xì)胞和肌原細(xì)胞的分化也依賴于S1P/S1PR信號(hào)軸,從而進(jìn)一步確證S1P/S1PR和TGFβ1信號(hào)通路之間的cross-talk。
國(guó)內(nèi)外對(duì)于骨髓干細(xì)胞的治療潛能進(jìn)行了廣泛的研究并取得了長(zhǎng)足的進(jìn)展,在臨床肝硬化病人進(jìn)行骨髓干細(xì)胞移植治療嘗試也取得了令人鼓舞的效果[14-15]。但是,實(shí)驗(yàn)[1]表明,肝纖維化發(fā)生過(guò)程中產(chǎn)生細(xì)胞外基質(zhì)的主要細(xì)胞MF,除了肝星狀細(xì)胞和成纖維細(xì)胞激活以及上皮細(xì)胞間質(zhì)轉(zhuǎn)化外,至少還有部分來(lái)自于骨髓干細(xì)胞。本研究也證實(shí)了BMSC可以分化為MF從而參與肝纖維化的發(fā)生。因此,本課題組的研究結(jié)果提示在BMSC應(yīng)用于治療肝硬化等疾病時(shí)不應(yīng)低估它可能會(huì)分化為MF,從而促進(jìn)纖維化發(fā)生的潛能。
總之,本研究探討了RhoA信號(hào)在S1PR1/S1PR3介導(dǎo)BMSC向MF分化過(guò)程中的重要作用,這可能是S1PR1/3發(fā)揮促炎和促纖維化作用的主要機(jī)制。闡明這一機(jī)制將有助于制定新的特異的抗纖維化治療方案,具有重要的理論意義和應(yīng)用價(jià)值。
[1] Forbes S J, Russo F P, Rey V, et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis[J]. Gastroenterology,2004, 126(4):955-963.
[2] Lyra A C, Soares M B, Dos S R, et al. Bone marrow stem cells and liver disease[J]. Gut, 2007, 56(11):1640, 1640-1641.
[3] Yang L, Chang N, Liu X, et al. Bone marrow-derived mesenchymal stem cells differentiate to hepatic myofibroblasts by transforming growth factor-beta1 via sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis[J]. Am J Pathol,2012, 181(1):85-97.
[4] Li C, Kong Y, Wang H, et al. Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis[J]. J Hepatol,2009, 50(6):1174-1183.
[5] Li C, Jiang X, Yang L, et al. Involvement of sphingosine 1-phosphate (SIP)/S1P3 signaling in cholestasis-induced liver fibrosis[J]. Am J Pathol,2009, 175(4):1464-1472.
[6] Robinson M W, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis[J]. Cell Mol Immunol,2016, 13(3):267-276.
[7] Friedman S L. Mechanisms of hepatic fibrogenesis[J]. Gastroenterology,2008, 134(6):1655-1669.
[8] Mali R S, Kapur S, Kapur R. Role of Rho kinases in abnormal and normal hematopoiesis[J]. Curr Opin Hematol,2014, 21(4):271-275.
[9] Hoon J L, Tan M H, Koh C G. The regulation of cellular responses to mechanical cues by Rho GTPases[J]. Cells,2016, 5(2):E17.
[10]Xu T, Wu M, Feng J, et al. RhoA/Rho kinase signaling regulates transforming growth factor-beta1-induced chondrogenesis and actin organization of synovium-derived mesenchymal stem cells through interaction with the Smad pathway[J]. Int J Mol Med,2012, 30(5):1119-1125.
[11]Kono Y, Nishiuma T, Nishimura Y, et al. Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta1[J]. Am J Respir Cell Mol Biol,2007,37(4):395-404.
[12]Gellings Lowe N, Swaney J S, Moreno K M, et al. Sphingosine-1-phosphate and sphingosine kinase are critical for transforming growth factor-beta-stimulated collagen production by cardiac fibroblasts[J]. Cardiovasc Res,2009, 82(2):303-312.
[13]Cencetti F, Bernacchioni C, Nincheri P, et al. Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis[J]. Mol Biol Cell,2010, 21(6):1111-1124.
[14]Terai S, Ishikawa T, Omori K, et al. Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy[J]. Stem Cells,2006, 24(10):2292-2298.
[15]Cho K A, Lim G W, Joo S Y, et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice[J]. Liver Int,2011, 31(7):932-939.
編輯 孫超淵
Signaling of bone marrow mesenchymal stem cell differentiation to myofibroblasts mediated by S1PR1/3
Yang Yuanru1, Zhou Xuan1, Zhang Ruochen1, Li Liying2, Yang Le2*
(1.Grade2013MedicalLaboratoryAnimalScience,CapitalMedicalUniversity,Beijing100069; 2.DepartmentofCellBiology,SchoolofBasicMedicalSciences,CapitalMedicalUniversity,Beijing100069,China)
Objective Aim of this study is to explore the role of RhoA in transforming growth factor β1 (TGFβ1)-induced bone marrow mesenchymal stem cell (BMSC) differentiation to myofibroblast (MF) mediated by sphingosine 1-phosphate receptor 1/3 (S1PR1/3). Methods Serum-starved primary cultured mouse BMSCs were stimulated by a series dose of TGFβ1. Expression of α-smooth muscle actin (αSMA), procollagen α1(Ⅰ) [Col α1(Ⅰ)] and procollagen α1(Ⅲ) [Col α1(Ⅲ)] was measured by qRT-PCR. Activated RhoA induced by TGFβ1 in BMSCs was determined by Pull-down assay. Results TGFβ1 induced an up-regulation of αSMA, Col α1(Ⅰ) and Col α1(Ⅲ) mRNA levels in BMSCs. TGFβ1 triggered the activation of RhoA, which can be blocked by S1PR1/3 antagonists. RhoA inhibitor C3 Transferase reversed the up-regulation of αSMA, Col α1(Ⅰ) and Col α1(Ⅲ) mRNA expression induced by TGFβ1. Conclusion RhoA is involved in the differentiation of BMSC to MF induced by TGFβ1.
mouse; bone marrow mesenchymal stem cell; sphingosine 1-phosphate receptor; RhoA
北京市自然科學(xué)基金(7164237),北京市優(yōu)秀人才培養(yǎng)資助(2014000020124G156)。This study was supported by Natural Science Foundation of Beijing (7164237),Beijing Municipal Foundation for the Excellent Talents (2014000020124G156).
時(shí)間:2017-04-13 19∶54
http://kns.cnki.net/kcms/detail/11.3662.R.20170413.1954.030.html
10.3969/j.issn.1006-7795.2017.02.022]
Q2
2016-06-02)
*Corresponding author, E-mail:yangle@ccmu.edu.cn
首都醫(yī)科大學(xué)學(xué)報(bào)2017年2期