王小燕蔡崇法李 鴻謝德體
(1 西南大學(xué)資源環(huán)境學(xué)院三峽庫(kù)區(qū)生態(tài)環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,重慶 400715)
(2 華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院水土保持研究中心,武漢 430070)
三峽庫(kù)區(qū)碎石含量對(duì)紫色土容重和孔隙特征的影響*
王小燕1蔡崇法2?李 鴻1謝德體1
(1 西南大學(xué)資源環(huán)境學(xué)院三峽庫(kù)區(qū)生態(tài)環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,重慶 400715)
(2 華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院水土保持研究中心,武漢 430070)
土壤容重和孔隙分布特征是土壤重要的基本物理性質(zhì),但有關(guān)含碎石土壤的物理性質(zhì)以及碎石含量對(duì)土壤結(jié)構(gòu)影響的研究尚不多見(jiàn)。三峽庫(kù)區(qū)紫色土中存在大量的碎石,為了深刻了解和評(píng)價(jià)土壤中碎石對(duì)容重與大孔隙形成的可能作用,通過(guò)野外調(diào)查、典型土樣采集和室內(nèi)分析實(shí)驗(yàn),探討了三峽庫(kù)區(qū)典型土地利用類(lèi)型下土壤中的碎石體積含量以及不同粒徑碎石的基本物理性質(zhì)及其對(duì)土壤容重和孔隙特征的影響。結(jié)果表明:土壤中碎石的孔隙度和飽和含水率隨著碎石粒徑的減小而增大,小碎石本身具有一定的持水、供水性能;碎石含量對(duì)土壤的總?cè)葜?、?xì)土容重有顯著影響,隨著碎石含量的增加,土壤的總?cè)葜刂饾u增加,而細(xì)土容重與碎石含量呈線(xiàn)性負(fù)相關(guān)關(guān)系,土壤中碎石的存在有利于改善土壤的結(jié)構(gòu);土壤孔隙分布特征與碎石含量密切相關(guān),隨著碎石含量的提高,土壤總孔隙度和毛管孔隙度呈減少趨勢(shì),而非毛管孔隙度即大孔隙呈增加趨勢(shì),碎石的存在有利于改善土壤的透水性能。本研究為山區(qū)農(nóng)用地灌溉與水分管理提供了科學(xué)依據(jù)。
紫色土;碎石;容重;孔隙;三峽庫(kù)區(qū)
受成土過(guò)程和人為活動(dòng)的影響,碎石(>2 mm)在土壤中有著廣泛的分布。碎石的分布對(duì)土壤的化學(xué)風(fēng)化速率[1]、養(yǎng)分供給[2]、水文響應(yīng)[3-4]以及表土侵蝕速率[5]等均有重要影響。土壤中碎石通過(guò)各種方式影響土壤水蝕過(guò)程,Poesen等[6]將這些影響方式分為直接影響和間接影響。碎石對(duì)土壤侵蝕的直接影響包括保護(hù)表土免受雨滴擊濺和徑流沖刷的分散,或阻截濺散的泥沙;碎石間接影響土壤侵蝕的方式多種多樣,主要包括以下幾個(gè)方面:(1)改變會(huì)影響土壤侵蝕過(guò)程中土壤物理性質(zhì)(如容重、孔隙度等),(2)影響表層土壤的物理退化過(guò)程(如表土結(jié)皮等),(3)影響與徑流產(chǎn)生及流量等有關(guān)的水文過(guò)程(如入滲和滲透),(4)徑流的水力特性。同時(shí)是否考慮土壤中碎石,土壤中的有效含水量、土壤水滲漏到地下水中的量以及植物能吸收的有效水含量存在很大的差異[7-8],在研究含碎石土壤的各種性質(zhì)時(shí)不能忽略碎石的存在。以往研究很少有對(duì)碎石與容重和土壤孔隙之間關(guān)系做出直接的解釋?zhuān)乙酝耐寥来罂紫堆芯恳捕嗍窃谕寥蕾|(zhì)地相對(duì)均一的條件下進(jìn)行的,對(duì)以物理風(fēng)化為主、土壤發(fā)育程度不深、碎石含量很高的坡地紫色土中碎石在土壤大孔隙形成中作用的研究還相當(dāng)缺乏。本研究旨在了解三峽庫(kù)區(qū)紫色土中的碎石對(duì)土壤容重和孔隙特征的影響及其可能的作用機(jī)制,為建立準(zhǔn)確預(yù)報(bào)、模擬徑流和土壤侵蝕的時(shí)空變化規(guī)律的模型提供土壤空間分布的基本參數(shù),也為流域治理和土壤保護(hù)提供理論依據(jù)。
1.1 研究區(qū)概況
本文的研究對(duì)象是三峽庫(kù)區(qū)的紫色土,試驗(yàn)區(qū)位于三峽庫(kù)區(qū)秭歸縣王家橋小流域。王家橋小流域位于31°05′~31°15′N(xiāo),110°40′~110°47′E,屬于長(zhǎng)江二級(jí)支流,距長(zhǎng)江約9 km。流域總面積16.7 km2,自北偏東向南偏西呈窄條狀,南北長(zhǎng)7 km,東西寬3.5 km。三峽庫(kù)區(qū)年平均氣溫為17~19℃,年降水量1 000~1 250 mm,降雨集中在4—10月,特別是5—9月常有暴雨出現(xiàn)。流域海拔為184~1 180 m。流域坡度較陡,25°~35°的坡地占35%,大于35°的坡地占50%,以柑橘種植為主,屬典型的山區(qū)小流域。該流域出露地層為侏羅系蓬萊鎮(zhèn)組紫灰色石英砂巖、棕紫色灰質(zhì)砂巖與棕紫色泥巖互層,含透鏡狀礫巖及硅化木,土壤為中性和石灰性紫色土[9]。紫色母巖一經(jīng)出露地表,在光、熱、水等自然因素的作用下,迅速發(fā)生物理風(fēng)化。據(jù)觀(guān)測(cè),一般可發(fā)現(xiàn)需經(jīng)歷以下幾個(gè)物理風(fēng)化特征階段:巖層—崩解—碎屑化—成壤(土)—化泥[10]。紫色土在發(fā)生分類(lèi)上稱(chēng)初育土,在系統(tǒng)分類(lèi)上分屬新成土和雛形土。在土壤性質(zhì)上是一種特殊的土壤類(lèi)型,快速風(fēng)化是其中的一大特殊性質(zhì)之一。蓬萊鎮(zhèn)組的成土速率較大,可達(dá)12 000 t km-2a-1[11]。該區(qū)紫色土表現(xiàn)出土層薄、碎石含量高等特點(diǎn),具有坡地紫色土的典型特點(diǎn)。
1.2 土壤與碎石基本物理性質(zhì)的測(cè)定
關(guān)于樣點(diǎn)的布設(shè)與樣品采集以及碎石體積含量測(cè)定詳見(jiàn)筆者已發(fā)表論文《三峽庫(kù)區(qū)紫色土碎石分布特征》[12]。
在分析含碎石土壤特性時(shí),需要區(qū)別兩個(gè)容重概念:總?cè)葜睾图?xì)土容重???cè)葜睾图?xì)土容重的測(cè)定:將采取土樣(30 cm×30 cm×20 cm)(V總)烘干稱(chēng)重獲得含碎石土壤總質(zhì)量m總;將通過(guò)水洗法獲得的碎石采用排水法獲得碎石體積V碎石;將碎石烘干稱(chēng)重獲得碎石質(zhì)量m碎石,最后通過(guò)式(1)和式(2)計(jì)算含碎石土壤的總?cè)葜睾图?xì)土容重:
總?cè)葜谺Dt=土壤總質(zhì)量m總/土壤總體積V總(1)
細(xì)土容量δf=(土壤總質(zhì)量m總-碎石質(zhì)量m碎石)/(土壤總體積V總=碎石體積V碎石) (2)
碎石基本物理性質(zhì)的測(cè)定:隨機(jī)選取不同粒徑級(jí)別的碎石各10顆,放入溫度設(shè)定為105°的烘箱內(nèi),24 h后取出稱(chēng)重獲得碎石烘干質(zhì)量m0;常溫下將碎石浸泡于純凈水中24 h,使碎石充分吸水稱(chēng)重,獲得碎石飽和含水質(zhì)量m1;在碎石表面涂抹一薄層防水的石蠟,再通過(guò)排水法獲得碎石的體積v,最后通過(guò)下列各式計(jì)算碎石的密度、孔隙度和飽和含水率:
碎石密度BDrf=碎石烘干質(zhì)量m0/碎石體積V碎石(3)
碎石孔隙度Prf=(碎石飽和含水質(zhì)量m1-碎石烘干質(zhì)量m0)/純水密度ρ/碎石體積V碎石(4)
碎石飽和含水率SWrf=(碎石飽和含水質(zhì)量m1-碎石烘干質(zhì)量m0)/碎石烘干質(zhì)量m0(5)
2.1 碎石的基本物理性質(zhì)
紫色土中的碎石一般為紫色泥巖、頁(yè)巖或砂巖、泥砂巖風(fēng)化的產(chǎn)物,形狀以不規(guī)則塊狀為主,少量為長(zhǎng)棱形、片狀。紫色母巖的礦物組成一般較為復(fù)雜,在干濕交替、冷熱循環(huán)條件下,不同的導(dǎo)熱率和脹縮性加劇了紫色母巖的物理風(fēng)化速度。巖石首先從大塊狀龜裂風(fēng)化為大于2 mm的碎屑(碎石)成為疏松多孔的土壤母質(zhì),具備了一定的水貯存運(yùn)移能力。紫色巖碎石繼承了紫色母巖的性質(zhì),風(fēng)化程度的差異,導(dǎo)致其密度、孔隙度和飽和含水率的差異。圖1顯示了小、中、大三種粒徑碎石的密度、孔隙度和飽和含水率,不同粒徑碎石的密度、孔隙度和飽和含水率有顯著差異。不同粒徑碎石的風(fēng)化程度不同,隨著碎石粒徑的增大,碎石的風(fēng)化程度降低,其密度逐漸增大,依次為1.9、2.2、2.3 g cm-3(圖1a),而碎石的孔隙度和飽和含水率逐漸減少,小碎石、中碎石和大碎石的孔隙度依次為0.16、0.10、0.06 cm3cm-3(圖1b),三種粒徑碎石的飽和含水率依次為8.0%、4.5%、3.2%(圖1c),這與李燕等[13]的研究結(jié)果相一致。在分析土壤水分性質(zhì)與預(yù)測(cè)土壤有效水分含量時(shí),碎石所持有的水分常常被忽略不計(jì),但在含碎石土壤中,特別是當(dāng)碎石含量較高時(shí),這部分水分具有重要的作用。在石質(zhì)山區(qū),植物吸收的水分以及蒸騰所需水分大部分來(lái)自巖石裂縫滲水。干旱條件下,植物所吸收的水分大部分來(lái)自深度風(fēng)化的巖石[14]。有研究進(jìn)一步指出,與表層土壤相比,底層的風(fēng)化巖石能為作物生長(zhǎng)提供更多的有效水分[15-16]。Hubbert等[17]的研究也表明,在含碎石土壤中,土壤中的碎石為植物生長(zhǎng)提供了70%的水分。
2.2 含碎石土壤的容重
分析含碎石土壤A(0~20cm)、B(20~40cm)、C(40~60cm)、D(60~80cm)各土層的容重,結(jié)果顯示,隨著土層加深,土壤總?cè)葜睾图?xì)土容重提高(圖2)。大量研究結(jié)果表明,隨著土層深度的增加,由于土壤愈加緊實(shí),土壤有機(jī)質(zhì)含量降低,團(tuán)聚體減少,且植物根系量顯著降低等原因,土壤容重逐漸加大[18-19]。
圖2 不同土層含碎石土壤的總?cè)葜睾图?xì)土容重Fig. 2 Total bulk density and fine earth bulk density of soils containing rock fragments for different soil layers
從圖3可以看出,在各土層,隨著碎石含量的增加,含碎石土壤的總?cè)葜刂饾u增加(圖3a),而含碎石土壤的細(xì)土容重逐漸減少(圖3b)。碎石與細(xì)土容重呈負(fù)相關(guān)關(guān)系可歸因于以下幾個(gè)方面:(1)當(dāng)碎石含量較高時(shí),可能會(huì)出現(xiàn)細(xì)土物質(zhì)未完全充填碎石之間空隙的情況,從而降低細(xì)土容重;(2)在兩種級(jí)別粒徑顆粒的混合體中,小部分大顆粒體的出現(xiàn)均能減少細(xì)顆粒組成部分的容重,因?yàn)樾☆w粒體與大顆粒體之間不可能像它們自身那樣緊密結(jié)合[20];(3)在干濕交替或凍融與解凍交互的過(guò)程中,細(xì)土和碎石反應(yīng)方式不同,這也可能引起碎石和細(xì)土之間形成孔隙[21];(4)土壤中碎石的存在改變了細(xì)土部分的性質(zhì),隨著碎石含量的增加,腐爛的有機(jī)質(zhì)、肥料投入和雨水等集中分布在逐漸減少的細(xì)土中[22]。而單位細(xì)土的投入物質(zhì)增加將會(huì)影響其他的土壤性質(zhì),如土壤結(jié)構(gòu)等。特別是細(xì)土部分有機(jī)質(zhì)含量的增加(與碎石含量增加相對(duì)應(yīng))會(huì)導(dǎo)致細(xì)土容重的降低,因?yàn)橛袡C(jī)質(zhì)的平均密度較低,大約為224 kg m-3[23]。除了這個(gè)影響,有機(jī)質(zhì)含量的增加還常常會(huì)使細(xì)土部分形成一個(gè)更好(如更高的孔隙度)更穩(wěn)定的結(jié)構(gòu)。圖3說(shuō)明了,即便是在土壤總?cè)葜剌^高的條件下,細(xì)土容重也不會(huì)特別高,這對(duì)植物的生長(zhǎng)具有重要意義:如果植物生長(zhǎng)與細(xì)土部分的物理性質(zhì)有關(guān),那么礫質(zhì)土/石質(zhì)土較高的總?cè)葜夭⒉灰欢ㄒ馕吨鴲毫拥母瞪L(zhǎng)環(huán)境[24]。大量研究表明,無(wú)論是從經(jīng)驗(yàn)上還是理論上細(xì)土容重均隨著碎石含量的增加而降低[20,25-26]。Torri等[27]利用Stewart等[20]與Alberto[25]發(fā)表的有關(guān)森林與農(nóng)業(yè)土壤的調(diào)查數(shù)據(jù),建立了碎石質(zhì)量含量與細(xì)土容重的函數(shù)關(guān)系
式中,δf為含碎石土壤的細(xì)土容重;δ0f為不含碎石的土壤容重;Mr為土壤中的碎石質(zhì)量含量。式中關(guān)鍵參數(shù)δ0f可通過(guò)Rowls[23]提出的土壤轉(zhuǎn)換函數(shù),根據(jù)土壤的質(zhì)地及有機(jī)質(zhì)含量推算獲得。碎石的質(zhì)量含量和體積含量可以通過(guò)下列公式進(jìn)行換算[22]
圖3 不同土層碎石含量與總?cè)葜兀╝)和細(xì)土容重(b)的關(guān)系Fig. 3 Relationships of rock fragment content with total bulk density(a)and fine earth bulk density(b)in different soil layers
式中,Vr為土壤碎石體積含量,BDt為土壤總?cè)葜?,BDrf為碎石密度。
2.3 含碎石土壤孔隙分布特征
圖4顯示了A、B、C、D各土層的孔隙分布特征。從該圖可以看出,各土層的總孔隙、非毛管孔隙度、毛管孔隙度隨土層深度增加而降低。這與大量已發(fā)表的研究結(jié)果相一致,土層越深,土壤體積質(zhì)量越大,孔隙度降低[28-29]。
圖4 不同土層含碎石土壤的總空隙度、非毛管孔隙度和毛管孔隙度Fig. 4 Total porosity,non-capillary porosity and capillary porosity for different soil layers
下面將根據(jù)不同土層分析碎石含量與土壤孔隙分布特征的關(guān)系。圖5顯示了碎石體積含量與總孔隙度、非毛管孔隙度和毛管孔隙度的關(guān)系,從該圖可以看出,隨著碎石體積含量的提高,土壤總孔隙度和毛管孔隙度呈減少趨勢(shì)(圖5a、圖5c),而非毛管孔隙度呈增加趨勢(shì)(圖5b)。時(shí)忠杰等[30]在黃土區(qū)的研究也指出,碎石體積含量增加導(dǎo)致土壤大孔隙的平均半徑和體積增大,特別是導(dǎo)致半徑大于1.4 mm的大孔隙密度的增大。目前,有不少學(xué)者研究了土壤中碎石存在對(duì)水分入滲和滲透過(guò)程的影響,有研究結(jié)果指出土壤中碎石的存在減少了水分入滲[31-33]。Zhou等[34]的研究還得出碎石對(duì)土壤水分運(yùn)動(dòng)的影響存在一個(gè)閾值,當(dāng)碎石含量小于40%時(shí),入滲速率和飽和導(dǎo)水率隨著碎石含量的增加而降低,當(dāng)碎石含量超過(guò)40%時(shí),則隨碎石含量的增加而增加。王慧芳和邵明安[35]采用簡(jiǎn)單相關(guān)分析研究碎石粒徑對(duì)入滲過(guò)程的影響,得出粒徑2~3 mm碎石與入滲過(guò)程呈顯著負(fù)相關(guān)關(guān)系,而>25 mm碎石有利于入滲。這可歸因于土壤中碎石存在對(duì)土壤總孔隙度和非毛管孔隙度的不同影響。隨著碎石含量的增加,土壤總孔隙度減少,這表明了土壤中碎石的存在將減少水分的過(guò)水?dāng)嗝?;同時(shí),非毛管孔隙度隨著碎石體積含量的增加而增加,而非毛管孔隙有利于水分運(yùn)動(dòng),還會(huì)促進(jìn)優(yōu)先流的形成,從而提高土壤的入滲速率和滲透速率,土壤中碎石的存在是促進(jìn)入滲還是降低入滲最終取決于這兩種相反影響的交互作用。
圖5 不同土層碎石含量與總孔隙度(a)、非毛管孔隙度(b)和毛管孔隙度(c)的關(guān)系Fig. 5 Relationships of rock fragment content with total porosity(a),non-capillary porosity(b)and capillary porosity(c)in different soil layers
土壤中碎石的性質(zhì)及其對(duì)土壤性質(zhì)的影響,是碎石對(duì)水文過(guò)程和侵蝕過(guò)程產(chǎn)生作用的基礎(chǔ)。通過(guò)對(duì)三峽庫(kù)區(qū)典型山地紫色土含碎石原狀土的基本物理性質(zhì)進(jìn)行調(diào)查研究,得出了以下結(jié)論:碎石的粒徑越小,其風(fēng)化程度越高,碎石孔隙度和飽和含水率隨著粒徑的減小而增大。碎石和細(xì)土兩種不同數(shù)量級(jí)粒徑顆粒的混合,改變了土壤的結(jié)構(gòu),碎石含量對(duì)土壤的總?cè)葜亍⒓?xì)土容重有顯著影響。隨著碎石含量的增加,土壤的總?cè)葜刂饾u增加,而細(xì)土容重與碎石含量呈線(xiàn)性負(fù)相關(guān)關(guān)系。土壤孔隙分布與碎石含量有關(guān)。隨著碎石含量的提高,土壤總孔隙度和毛管孔隙度呈減少趨勢(shì),而非毛管孔隙度呈增加趨勢(shì)。
[1]Yoo K,Mudd S M. Discrepancy between mineral residence time and soil age:Implications for the interpretation of chemical weathering rates. Geology,2008,36(1):35—38
[2]Vitousek P,Chadwick O,Matson P,et al. Erosion and the rejuvenation of weathering-derived nutrient supply in an old tropical landscape. Ecosystems,2003,6 (8):762—772
[3]Wang X Y,Li Z X,Cai C F,et al. Hydrological response of sloping farmlands with different rock fragment covers in the purple soil area of China. Journal of Hydrologic Engineering,2013,18(4):446—456
[4]王小燕,李朝霞,蔡崇法. 礫石覆蓋紫色土坡耕地水文過(guò)程. 水科學(xué)進(jìn)展,2012,23(1):38—45
Wang X Y,Li Z X,Cai C F. Hydrological processes on sloped farmland in purple soil regions with rock fragmentcover(In Chinese). Advances in Water Science,2012,23(1):38—45
[5]Wang X Y,Li Z X,Cai C F,et al. Effects of rock fragment cover on hydrological response and soil loss from regosols in a semi-humid environment in Southwest China. Geomorphology,2012,151/152:234—242
[6]Poesen J W,Torri D,Bunte K. Effects of rock fragments on soil erosion by water at different spatial scales:A review. Catena,1994,23(1/2):141—166
[7]Cousin I,Nicoullaud B,Coutadeur C. Influence of rock fragments on the water retention and water percolation in a calcareous soil. Catena,2003,53(2):97—114
[8]馬東豪,邵明安. 含碎石土壤的含水量測(cè)定誤差分析.土壤學(xué)報(bào),2008,45(2):201—206
Ma D H,Shao M A. Determination error of water content in stony soil(In Chinese). Acta Pedologica Sinica,2008,45(2):201—206
[9]丁樹(shù)文,蔡崇法,黃麗,等. 三峽庫(kù)區(qū)秭歸盆地巖性構(gòu)造對(duì)坡地紫色土某些特性影響. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2000,19(2):129—133
Ding S W,Cai C F,Huang L,et al. Influence of rock feather and structure on some properties of purple soil of slope land in Zigui Basin(In Chinese). Journal of Huazhong Agricultural University,2000,19(2):129—133
[10]何毓蓉,等. 中國(guó)紫色土:下篇. 北京:科學(xué)出版社,2003
He Y R,et al. Purple soils in China(Ⅱ)(In Chinese). Beijing:Science Press,2003
[11]李蘭,周忠浩,杜樹(shù)漢,等. 紫色土成土速率的估算與田間測(cè)定. 土壤學(xué)報(bào),2010,47(3):393—400
Li L,Zhou Z H,Du S H,et al. Model-based estimation and field measurement of purple soil formation rate(In Chinese). Acta Pedologica Sinica,2010,47(3):393—400
[12]王小燕,王天巍,蔡崇法,等. 三峽庫(kù)區(qū)紫色土的碎石分布特征. 土壤學(xué)報(bào),2015,52(2):293—302
Wang X Y,Wang T W,Cai C F,et al. Spatial distribution of rock fragments in purple soil in Three Gorges Reservoir Area(In Chinese). Acta Pedologica Sinica,2015,52(2):293—302
[13]李燕,魏朝富,劉吉振,等. 丘陵紫色土礫石的性質(zhì)及其空間分布. 西南農(nóng)業(yè)學(xué)報(bào),2008,21(5):1320—1325
Li Y,Wei C F,Liu J Z,et al. Characteristics and spatial distribution of rock fragments in hilly purple soils of Sichuan Basin(In Chinese). Southwest China Journal of Agricultural Sciences,2008,21(5):1320—1325
[14]Arkley R J. Soil moisture use by mixed conifer forest in a summer-dry climate. Soil Science Society of America Journal,1981,45(2):423—427
[15]Jones D P,Graham R C. Water-holding characteristics of weathered granitic rock in chaparral and forest ecosystems. Soil Science Society of America Journal,1993,57(1):256—261
[16]Zwieniecki M A,Newton M. Water-holding characteristics of metasedimentary rock in selected forest ecosystems in southwestern oregon. Soil Science Society of America Journal,1996,60(5):1578—1582
[17]Hubbert K R,Graham R C,Anderson M A. Soil and weathered bedrock:Components of a jeffrey pine plantation substrate. Soil Science Society of America Journal,2001,65(4):1255—1262
[18]韓光中,王德彩,謝賢健. 中國(guó)主要土壤類(lèi)型的土壤容重傳遞函數(shù)研究. 土壤學(xué)報(bào),2016,53(1):93—102
Han G Z,Wang D C,Xie X J. Pedotransfer functions for prediction of soil bulk density for major types of soils in China(In Chinese). Acta Pedologica Sinica,2016,53(1):93—102
[19]劉窯軍,王天巍,蔡崇法,等. 植被恢復(fù)對(duì)三峽庫(kù)區(qū)土質(zhì)道路邊坡抗剪強(qiáng)度的影響. 土壤學(xué)報(bào),2013,50 (2):396—404
Liu Y J,Wang T W,CaiC F,et al. Effect of vegetation restoration on soil shear strength of road side slopes of unpaved roads in the Three-Gorges Reservoir Area(In Chinese). Acta Pedologica Sinica,2013,50(2):396—404
[20]Stewart V I,Adams W A,Abdulla H H. Quantitative pedological studies on soils derived from silurian mudstones ii. The relationship between stone content and the apparent density of the fine earth. European Journal of Soil Science,1970,21(2):248—255
[21]Gargiulo L,Mele G,Terribile F. The role of rock fragments in crack and soil structure development:A laboratory experiment with a vertisol. European Journal of Soil Science,2015,66(4):757—766
[22]Childs S W,F(xiàn)lintAL. Physical properties of forest soils containing rock fragments//Gessel S P,et al. Sustained productivity of forests soils. Faculty of Forestry,University of British Columbia,Vancouver,BC,Canada,1990:95—121
[23]Rawls W J. Estimating soil bulk-density from particlesize analysis and organic-matter content. Soil Science,1983,135(2):123—125
[24]Kosmas C,Moustakas N,Danalatos N G,et al. The effect of rock fragments on wheat biomass production under highly variable moisture conditions in mediterranean environments. Catena,1994,23 (1/2):191—198
[25]Alberto F. Considerations sur la pierrosite des sols bruns a crouite calcaire du bassin de l’ebre. Bulletin des Recherches Agronomiques de Gembloux,1971,6:180—185
[26]Flint A L,Childs S. Physical properties of rock fragments and their effect on available water in skeletal soils//Nichols J D ,Brown P L,Grant W J.Erosion and productivity of soils containing rock fragments. Simplified Spelling Society of America Special Publication,1984:91—103
[27]Torri D,Poesen J,Monaci F,et al. Rock fragment content and fine soil bulk density. Catena,1994,23 (1/2):65—71
[28]付同剛,陳洪松,王克林.喀斯特小流域土壤飽和導(dǎo)水率垂直分布特征. 土壤學(xué)報(bào),2015,52(3):538—546
Fu T G,Chen H S,Wang K L. Vertical distribution of soil saturated hydraulic conductivity in a small karst catchment(In Chinese). Acta Pedologica Sinica,2015,52(3):538—546
[29]李宗超,胡霞. 小葉錦雞兒灌叢化對(duì)退化沙質(zhì)草地土壤孔隙特征的影響. 土壤學(xué)報(bào),2015,52(1):242—248
Li Z C,Hu X. Effects of shrub(Caraganamicrophylla Lam)encroachment on soil porosity of degraded sandy grassland(In Chinese).Acta Pedologica Sinica,2015,52(1):242—248
[30]時(shí)忠杰,王彥輝,熊偉,等. 六盤(pán)山典型植被類(lèi)型土壤中石礫對(duì)大孔隙形成的影響. 山地學(xué)報(bào),2007,25 (5):541—547
Shi Z J,Wang Y H,Xiong W,et al. Effect of rock fragments on the formation of soil macro porosity of typical vegetation in Liupan Mountains of Westnorth,China(In Chinese). Journal of Mountain Science,2007,25(5):541—547
[31]Ma D H,Shao M A. Simulating infiltration into stony soils with a dual-porosity model. European Journal of Soil Science,2008,59(5):950—959
[32]李燕,劉吉振,魏朝富,等. 礫石對(duì)土壤水分入滲(擴(kuò)散)的影響研究. 土壤學(xué)報(bào),2011,48(2):435—439
Li Y,Liu J Z,Wei C F,et al. Effect of rock fragment content on water infiltration(diffusion)in purple soils (In Chinese). Acta Pedologica Sinica,2011,48 (2):435—439
[33]周蓓蓓,邵明安. 不同碎石含量及直徑對(duì)土壤水分入滲過(guò)程的影響. 土壤學(xué)報(bào),2007,44(5):801—807
Zhou B B,Shao M A. Effect of content and size of rock detritus on infiltration(In Chinese). Acta Pedologica Sinica,2007,44(5):801—807
[34]Zhou B B,Shao M A,Shao H B. Effects of rock fragments on water movement and solute transport in a Loess Plateau soil. Comptes Rendus Geoscience,2009,341(6):462—472
[35]王慧芳,邵明安. 含碎石土壤水分入滲試驗(yàn)研究. 水科學(xué)進(jìn)展,2006,17(5):604—609
Wang H F,Shao M A. Experimental study on water infiltration of soils containing rock fragments(In Chinese). Advances in Water Science,2006,17 (5):604—609
Infl uence of Rock Fragments on Bulk Density and Pore Characteristics of Purple Soil in Three-Gorge Reservoir Area
WANG Xiaoyan1CAI Chongfa2?LI Hong1XIE Deti1
(1 Key Laboratory of Eco-environments in Three Gorges Reservoir Region,Ministry of Education,College of Resources and Environment,Southwest University,Chongqing 400715,China)
(2 Soil and Water Conservation Center,College of Resources and Environment,Huazhong Agricultural University,Wuhan 430070,China)
【Objective】Bulk density and pore distribution characteristics are two fundamental soil properties. However,not much has been reported about physical properties of soils containing rock fragments and influences of rock fragments in soil on bulk density and formation of non-capillary porosity of thesoil. Purple soil is the major type of soil in the Three-Gorge Reservoir Region and the high content of rock fragments is one of the important characteristics of the purple soil. The existence of plentiful rock fragments in the soil will sure affect the formation of bulk density and porosity characteristics. The purpose of this study is to understand how rock fragments affect bulk density and porosity characteristics and its possible mechanism in the purple soil of the region. It is expected that the findings in this study may help collect some basic parameters of soil spatial distribution for building models to be used to predict spatio-temporal variation of surface runoff and soil erosion,while providing some scientific bases for irrigation and water management of agricultural land in mountainous areas. 【Method】In order to explore in depth and evaluate potential effects of rock fragments on bulk density and porosity characteristics,soil samples typical of the soil were collected during field surveys for in-lab analysis of contents and fractions of rock fragments in particle size,soil physical properties,bulk density and porosity. 【Result】(1)Rock fragments varied sharply in density,porosity,saturated water content,and weathering degree. The larger in size,the lower in weathering degree,the higher in density,and the lower in porosity and saturated water content. The three fractions of rock fragments,small,medium and large,were 1.9,2.2 and 2.3 g cm-3in density,0.16,0.10 and 0.06 cm3cm-3in porosity and 8.0%,4.5% and 3.2% in saturated water content(mass moisture content),respectively.(2)Content of rock fragments was closely related to total bulk density and bulk density of fine earth. With increasing rock fragment content,total bulk density increased while bulk density of fine earth decreased,showing a linear negative relationship.(3)Soil pore distribution was closely related to content of rock fragments. With increasing content of rock fragments,total porosity and capillary porosity of the soil decreased while non-capillary porosity,i.e. macrospore,increased.【Conclusion】The sum up,rock fragments,especially those small in size,have certain water holding and supplying capacities. In farmlands under water stress,rock fragments can also release some water available for plant growth. The existence of rock fragments in the soil helps improve soil structure and soil water permeability.
Purple soil;Rock fragment;Bulk density;Porosity;Three-Gorge Reservoir Area
S152.5
A
10.11766/trxb201601050569
(責(zé)任編輯:檀滿(mǎn)枝)
* 國(guó)家自然科學(xué)基金項(xiàng)目(41401298)、中央高校基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)(XDJK2013C152)和高等學(xué)校博士學(xué)科點(diǎn)專(zhuān)項(xiàng)科研基金新教師類(lèi)課題(20130182120015)共同資助Supported by the National Natural Science Foundation of China(No. 41401298),F(xiàn)undamental Research Funds for the Central Universities(No.XDJK2013C152)and Research Fund for the Doctoral Program of Higher Education of China(No. 20130182120015)
? 通訊作者 Corresponding author,E-mail:cfcai@mail.hzau.edu.cn
王小燕(1983—),女,四川岳池人,博士,講師,主要從事水文土壤學(xué)、土壤侵蝕與水土保持方面研究。E-mail:wxy8388@gmail.com
2016-01-05;
2016-10-17;優(yōu)先數(shù)字出版日期(www.cnki.net):2016-12-29