戴百章 任朝鳳 鄭勤玲 楊艷霞 李梅華
不同慢性阻塞性肺疾病大鼠模型體內調節(jié)性T細胞變化
戴百章 任朝鳳 鄭勤玲 楊艷霞 李梅華
目的 通過對比不同大鼠模型體內調節(jié)性T細胞變化,探討適于進行模擬研究慢阻肺患者體內調節(jié)性T細胞變化大鼠模型。方法 大鼠隨機分為3組,空白對照組,氣道滴入脂多糖+煙熏建立慢阻肺模型組(脂多糖+煙熏組)、持續(xù)煙熏建立慢阻肺模型組(持續(xù)煙熏組),比較不同建模方案大鼠病理改變,研究不同建模方案大鼠體內T細胞變化。結果 空白對照組與慢阻肺模型組平均內襯間隔之間結果有顯著性差異;空白對照組與脂多糖+煙熏組平均肺泡數(shù)結果有顯著性差異;持續(xù)煙熏組大鼠外周血Treg流式細胞檢測計數(shù)低于空白對照組。結論 持續(xù)煙熏組大鼠外周血Treg下降明顯,炎癥反應輕于脂多糖+煙熏組。持續(xù)煙熏大鼠可能更適于進行模擬研究慢阻肺患者體內調節(jié)性T細胞變化。
慢性阻塞性;大鼠;調節(jié)性T細胞
慢性阻塞性肺疾病(慢阻肺)目前定義為一種以持續(xù)氣流受限為特征的可以預防和治療的疾病,多呈進行性發(fā)展,與氣道和肺組織對香煙煙霧或有害顆粒的慢性炎癥反應增強有關[1]。目前國內大鼠慢阻肺造模方案主要有氣道滴入脂多糖、氣道滴入脂多糖+煙熏造模方案和單純煙熏造模方案[2-3]等。本實驗擬比較不同慢阻肺建模方案大鼠體內調節(jié)性T細胞(Treg)變化,探討更適于進行模擬研究慢阻肺患者體內調節(jié)性T細胞變化大鼠動物模型。
一、動物與分組
7周齡雄性清潔級SD大鼠30只,質量190-220g,由昆明醫(yī)科大學附屬動物實驗中心提供。30只大鼠隨機分為3組,每組10只大鼠。分別為空白對照組,氣道滴入脂多糖+煙熏建立慢阻肺模型組(脂多糖+煙熏組)、持續(xù)煙熏建立慢阻肺模型組(持續(xù)煙熏組)。
二、模型的建立
脂多糖+煙熏組建立慢阻肺模型組建立方法為雄性SD大鼠,第1天、14天氣管內注入脂多糖200ug/200uL,其余時間每日上午在35cm x 40cm×50cm(容積70 L)的密閉箱內暴露于10支香煙煙霧中,箱中煙霧濃度約為5%0.5h(香煙焦油含量23 mg/支,上海卷煙廠),持續(xù)6月[3]。持續(xù)煙熏組為:每次被動吸煙30-45 min,每周6天,持續(xù)6個月。每天定時計算進食量,每2周測量身長、尾長、體質量。所有大鼠均給予普通飲食飼養(yǎng),自由進食、進水。空白組僅每天給予普通飲食飼養(yǎng),自由進食、進水。
三、流式細胞儀檢測
四、CRP采用ELISA試劑盒進行檢測,血常規(guī)采用顯微下計數(shù)器計數(shù),肺平均內襯間隔及肺泡計數(shù)采用病理切片常規(guī)染色后檢測。肺平均內襯間隔(Lm):檢測方式為通過顯微鏡視野中央“十”字交叉線的肺間隔數(shù)(NS)。測出十字線的總長度(L),以L/NS即得Lm,其數(shù)值反映肺泡平均直徑。測量時應盡量避開支氣管及血管。每張切片測8個視野,然后取平均值。平均肺泡數(shù)(MAN):計數(shù)每個視野內的肺泡數(shù),除此視野的面積,即得MAN,其數(shù)值反應肺泡密度。測量時應盡量避開支氣管及血管。每張切片同樣測8個視野,求平均值[4]。
一、大鼠采用不同建模方案顯示,持續(xù)煙熏組肺平均內襯間隔較大,脂多糖+煙熏組平均肺泡數(shù)較小,可能炎癥反應較劇,致肺泡破壞明顯。其中空白對照組與慢阻肺模型組平均內襯間隔之間結果有顯著性差異??瞻讓φ战M與脂多糖+煙熏組平均肺泡數(shù)結果有顯著性差異(見表1)。
二、大鼠建模第6月空白對照組、脂多糖+煙熏組及持續(xù)煙熏組血常規(guī)及炎性因子C反應蛋白檢測示持續(xù)煙熏組紅細胞增加比較明顯,但可能樣本量小,結果無統(tǒng)計學意義,C反應蛋白結果顯示三組間有組間差異(F=8.93,P<0.001,見表2)
三、空白對照組、脂多糖+煙熏組及持續(xù)煙熏組不同時間大鼠外周血Treg流式檢測計數(shù)顯示在第6月,持續(xù)煙熏組大鼠外周血Treg流式細胞檢測計數(shù)與空白對照組結果之間有顯著性差異,結果提示持續(xù)煙熏組存在外周血Treg細胞數(shù)目下降。(見表3)。
表1 第6月空白對照組、脂多糖+煙熏組及
注:*P<0.01
表2 第6月大鼠空白對照組、脂多糖+煙熏組及持續(xù)煙熏組
表3 空白對照組、脂多糖+煙熏組及持續(xù)煙熏組建模
注:*P<0.01
由于Treg是一種免疫調節(jié)細胞,不同大鼠模型中其炎癥細胞表達可能存在差異,從而影響體內Treg細胞的表達。劉君波在氣管滴入脂多糖建立慢阻肺模型中發(fā)現(xiàn),模型組及對照組灌洗液中中性粒細胞數(shù)量分別為93.4147.57×109/L,10.21±6.75×109/L.淋巴細胞數(shù)量分別為92.71±31.56×109/L,19.41±11.47×109/L。灌洗液中中性粒細胞及淋巴細胞數(shù)量均明顯高于對照組[4],表明脂多糖能引起大鼠肺泡灌洗液中炎癥細胞變化,可能導致慢阻肺模型中大鼠炎癥反應較重,也可能影響大鼠體內Treg細胞的表達。陳茜等通過煙薰法建立大鼠模型,研究了煙薰法建立的大鼠慢性阻塞性模型的肺功能動態(tài)變化,研究表明煙薰時間對大鼠肺功能和炎癥反癥有顯著的影響[12],表明煙薰時間對大鼠體內炎癥有一定的影響。
本研究采用成熟的大鼠慢阻肺建模方案,比較了不同的大鼠模型,脂多糖+煙熏組及持續(xù)煙熏組體內病理變化、血常規(guī)、炎性因子及調節(jié)性T細胞變化,結果顯示:持續(xù)煙熏組肺平均內襯間隔較大,脂多糖+煙熏組平均肺泡數(shù)較小,脂多糖+煙熏組及持續(xù)煙熏組C反應蛋白檢測示脂多糖+煙熏組C反應蛋白較高,可能與脂多糖引起機體炎癥反應較劇,致肺泡破壞明顯有關。持續(xù)煙熏組大鼠外周血Treg流式細胞檢測計數(shù)與空白對照組結果之間有顯著性差異,Lee SH, Goswami S研究也表明具有和肺氣腫的吸煙人群中,其體內的Treg和FOXP3信使RNA數(shù)量比肺功能正常的吸煙人群少[13]。
本研究提示持續(xù)煙熏組大鼠外周血Treg下降明顯,炎癥反應輕于脂多糖+煙熏組。持續(xù)煙熏組可能更適于進行模擬研究慢阻肺患者體內調節(jié)性T細胞變化。
[1] 葛均波,徐永健.內科學第八版[M].北京:人民衛(wèi)生出版社,2013.21.
[2] Carol A. Heckman WED.Pathogenesis of Lesions Induced in Rat Lung by Chronic Tobacco Smoke Inhalation[J].JNCI,1982,69(1):117-129.
[3] 宋一平,崔德健,茅培英,等.慢性阻塞性肺疾病大鼠模型的建立及藥物干預的影響[J].中華內科雜志,2000, 39(8), 556-557.
[4] 劉君波,黃夢珊,余晨曦,等.氣管內反復滴人脂多糖法建立大鼠慢性阻塞性肺疾病模型[J].中國實驗動物學報,2011,19(2),129-133.
[5] Rabe KF, Hurd S, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary[J]. Am J Respir Crit Care Med,2007,187(176):532-555.
[6] Turato G, Di Stefano A, Maestrelli P, et al. Effect of smoking cessation on airway inflammation in chronic bronchitis[J]. Am J Respir Crit Care Med,1995,152(4 Pt 1):1262-1267.
[7] Rutgers SR, Postma DS, ten Hacken NH, et al. Ongoing airway inflammation in patients with COPD who do not currently smoke[J].Chest,2000,117(5 Suppl 1):12-18.
[8] Retamales I, Elliot MW, Meshi B, et al. Amplification of inflammation in emphysema and its association with latent adenoviral infection[J].Am J Respir Crit Care Med,2001,164(3):469-473.
[9] Agustí A,MacNee W,Donaldson K,et al.Hypothesis:does COPD have an autoimmune component[J].Thorax,2003,58(10):832-834.
[10] Sakaguchi S, Yamaguchi T, Nomura T,et al.Regulatory T cells and immune tolerance[J].Cell,2008,133:775-787.
[11] Jiang H, Chess L. An integrated view of suppressor T cell subsets in immunoregulation[J]. J Clin Invest,2004,114:1198-1208.
[12] 陳茜,郭雪君,管小俊.煙薰法建立的慢性阻塞性肺疾病鼠肺功能和病理的動態(tài)變化[J].國際呼吸雜志,2013,6,33(11):825-828.
[13] Lee SH, Goswami S, Grudo A, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema[J]. Nat Med 2007,13(5):567-569.
Variation of regulatory T cell of different rat model with chronic obstructive pulmonary disease
DAIBai-zhang,RENCao-feng,ZHENGQin-ling,YANGYan-xia,LIMei-hua
theFirstPeople'sHospitalofKunming,Kunming,Yunnan650000,China
Objective To compare the variation of regulatory T cell (Treg) of different rat model with chronic obstructive pulmonary disease (COPD) to choose appropriate COPD rat model studying change of Treg in vivo. Methods Rats were randomly divided into the control group, the lipopolysaccharide into airway group, and the continuous smoking group respectively. The pathology and the variation of regulatory T cell (Treg) of different rat model with COPD were compared. Results There was significant difference in pulmonary mean linear intercept (MLI ) between the control group and the COPD group. Mean alveolus number was significantly different between the control group and the lipopolysaccharide and smoking group. Treg of peripheral blood counting by flow cytometry in the smoking group was lower than in the control group. Conclusion There is lower Treg of peripheral blood in the smoking group and lighter inflammation comparing with the lipopolysaccharide and smoking group. Smoking rat may be more suitable for stimulate studying the variation of regulatory T cell in patients with COPD.
chronic obstructive pulmonary; rat; regulatory T cell
10.3969/j.issn.1009-6663.2017.05.026
云南省應用基礎研究計劃項目(No 2013ZF223)
650000 云南 昆明,昆明市第一人民醫(yī)院,呼吸內科
李梅華,E-mail:376678508@qq.com
2016-08-30]