景鵬成,王樹林,陳乙實(shí),魯為華,馬春暉
(石河子大學(xué)動(dòng)物科技學(xué)院,新疆石河子 832000)
不同劑量連作障礙調(diào)控肥對(duì)土壤物理性質(zhì)和制種玉米經(jīng)濟(jì)效益的影響
景鵬成,王樹林,陳乙實(shí),魯為華,馬春暉
(石河子大學(xué)動(dòng)物科技學(xué)院,新疆石河子 832000)
【目的】研究不同劑量連作障礙調(diào)控肥對(duì)土壤物理性質(zhì)和玉米經(jīng)濟(jì)效益的影響。【方法】在連作13 a的制種玉米土壤上,采用田間試驗(yàn)方法,以制種玉米連作障礙調(diào)控肥施用量為梯度設(shè)計(jì)7個(gè)處理,分別為:CK,0.85、1.70、2.55、3.40、4.25和5.10 t/hm2。以不施肥為對(duì)照,每個(gè)試驗(yàn)處理重復(fù)3次,隨機(jī)區(qū)組排列?!窘Y(jié)果】隨著連作障礙調(diào)控肥施用量由0.85增加到5.10 t/hm2時(shí),與對(duì)照比較,土壤總孔隙度、團(tuán)聚體、飽和持水量分別增加了6.42%、14.63%和17.91%,土壤容重降低了11.11%,差異極顯著(P<0.01);制種玉米株高、莖粗、生長(zhǎng)速度、地上部分鮮重和地上部分干重分別增加了26.06%、32.12%、26.05%、48.05%和48.06%,差異極顯著(P<0.01);制種玉米穗粒數(shù)、穗粒重和百粒重分別增加52.24%、46.06%和20.70%,差異極顯著(P<0.01);制種玉米產(chǎn)量增加了46.04%,差異極顯著(P<0.01);但1 kg連作障礙調(diào)控肥的增產(chǎn)量則隨著連作障礙調(diào)控肥施用量的增加而遞減為63.64%?!窘Y(jié)論】連作障礙調(diào)控肥施用量大于3.40 t/hm2時(shí),施肥利潤(rùn)出現(xiàn)了負(fù)值,連作障礙調(diào)控肥適宜用量一般為3.40 t/hm2,此施用量下,制種玉米的理論產(chǎn)量為6.91 t/hm2,經(jīng)濟(jì)效益最好。
連作障礙調(diào)控肥;物理性質(zhì);制種玉米;經(jīng)濟(jì)效益
【研究意義】近10年來,甘肅河西內(nèi)陸灌區(qū)建立了玉米制種生產(chǎn)基地1×105hm2,產(chǎn)種量達(dá)6.5×109kg[1],玉米制種產(chǎn)業(yè)在增加農(nóng)民收入方面作用極大。玉米制種產(chǎn)業(yè)已發(fā)展成為河西內(nèi)陸灌區(qū)農(nóng)民增收和農(nóng)業(yè)增效的重要支柱產(chǎn)業(yè)之一。但制種玉米種植面積大、連作年限長(zhǎng)、化學(xué)肥料投入量較大和有機(jī)肥料投入量嚴(yán)重不足。市場(chǎng)上流通的復(fù)合肥有效成分和比例不符合甘肅河西內(nèi)陸灌區(qū)風(fēng)沙土養(yǎng)分現(xiàn)狀和玉米對(duì)養(yǎng)分的吸收比例,導(dǎo)致土壤養(yǎng)分比例失衡,制種玉米品質(zhì)和產(chǎn)量嚴(yán)重下降,影響了該區(qū)制種玉米產(chǎn)業(yè)的可持續(xù)發(fā)展[2]。因此,研究和開發(fā)制種玉米連作障礙調(diào)控肥,對(duì)玉米種肥研發(fā)有重要意義?!厩叭搜芯窟M(jìn)展】在連作障礙的形成機(jī)制方面,最早提出的理論是“毒素學(xué)說”[3],該學(xué)說后期被認(rèn)為是生物間的“相生相克”現(xiàn)象。1983年,日本學(xué)者瀧島又提出了植物連作障礙的“五大因子學(xué)說”[4]。植物連作障礙成為困擾現(xiàn)代種植業(yè)發(fā)展的瓶頸,得到了國(guó)內(nèi)外學(xué)者的廣泛關(guān)注。通過多年努力,目前已有良好的研究基礎(chǔ),業(yè)已取得豐碩的研究成果,尤其是在連作障礙的形成機(jī)理方面的研究進(jìn)展較快[5]。目前國(guó)內(nèi)對(duì)作物連作障礙機(jī)理方面的研究大多集中在馬鈴薯[6]、西瓜[7]和烤煙[8]等作物上,對(duì)于制種玉米的連作障礙調(diào)控肥的研究鮮有報(bào)道。【本研究切入點(diǎn)】近年來,有關(guān)復(fù)混肥研究受到了廣泛的關(guān)注[9-12],但關(guān)于不同劑量連作障礙調(diào)控肥對(duì)土壤物理性質(zhì)和玉米經(jīng)濟(jì)效益影響的研究未見文獻(xiàn)報(bào)道。研究應(yīng)用連作障礙調(diào)控肥理論,以連作障礙調(diào)控肥為原料,采用田間試驗(yàn)方法確定連作障礙調(diào)控肥配方,合成連作障礙調(diào)控肥,并進(jìn)行驗(yàn)證試驗(yàn)。【擬解決的關(guān)鍵問題】通過分析連作土壤增施連作障礙調(diào)控肥后的物理性質(zhì)和制種玉米經(jīng)濟(jì)效益的變化,確定連作障礙調(diào)控肥的肥效和最佳用量。
1.1 材 料
1.1.1 試驗(yàn)地概況
在連作13 a的制種玉米土壤上,海拔高度為1 501 m,E100°28′36″,N38°51′47″,年均溫度7.50℃,年均降水量116 mm,年均蒸發(fā)量1 900 mm,無霜期160 d,土壤類型是灌漠土[13],0~20 cm耕作層有機(jī)質(zhì)含量16.21 g/kg,土壤容重1.70 g/m3,總孔隙度35.84%,土壤質(zhì)地為輕壤質(zhì)土。
1.1.2 試驗(yàn)材料
供試材料除了生物有機(jī)肥、玉米多元復(fù)混肥、殺菌劑和連作障礙調(diào)控肥是自制的,其他材料都是從各生產(chǎn)廠家購得,牛糞:粒徑為2~5 mm,含有機(jī)質(zhì)(OM)14.50%,全氮(TN)0.52%,全磷(TP)0.28%,全鉀(TK)0.16%。油菜籽渣:含OM 73.8%,TN 5.25%,TP 0.8%,TK 1.04%;玉米專用肥:含TN 35%,TP 11%。生物有機(jī)肥:牛糞∶油菜籽渣∶生物菌肥=0.77∶0.20∶0.03,含OM 25.54%,TN 1.45%,全磷0.37%,全鉀0.33%。玉米多元復(fù)混肥:CO(NH2)2∶(NH4)2HPO4∶ZnSO4·7H2O∶PVA=0.569∶0.391∶0.03∶0.01混;N=33%;P2O5=18%,Zn=0.69%。殺菌劑:CuSO4∶C42H84N14O36S3=1∶1。連任障礙調(diào)控肥:生物有機(jī)肥∶殺菌劑∶玉米多元復(fù)混肥=0.706 7∶0.010 6∶0.282 7,OM=18.05%,N=9.33%,P2O5=5.09%,Zn=0.20%,列出具體來源和價(jià)格。表1
表1 試驗(yàn)材料
Table 1 Test material
材料生產(chǎn)廠家價(jià)格(元/t)牛糞前進(jìn)奶牛場(chǎng)60油菜籽渣榨油廠800玉米專用肥中農(nóng)集團(tuán)股份有限公司60005406抗生菌肥華遠(yuǎn)豐農(nóng)生物科技有限公司4000CuSO4上海程欣實(shí)業(yè)有限公司25000農(nóng)用硫酸鏈霉素(C42H84N14O36S3)成都普惠生物工程有限公司28000ZnSO4·7H2O甘肅劉家峽化工廠4000聚乙烯醇(PVA)甘肅蘭維新材料有限公司26000生物有機(jī)肥自制/玉米多元復(fù)混肥自制/殺菌劑自制/連作障礙調(diào)控肥自制/玉米品系甘肅敦煌種業(yè)股份有限公司5000
1.2 方 法
1.2.1 試驗(yàn)設(shè)計(jì)
以制種玉米連作障礙調(diào)控肥施用量為梯度設(shè)計(jì)7個(gè)處理,分別為:CK(不施肥),0.85、1.70、2.55、3.40、4.25和5.10 t/hm2。以不施肥為對(duì)照,每個(gè)試驗(yàn)處理重復(fù)3次,隨機(jī)區(qū)組排列。
小區(qū)面積為32 m2(4 m×8 m),連作障礙調(diào)控肥在播種前施入0~20 cm耕作層做肥底,播種深度為4~5 cm,株距為22 cm,行距為50 cm,父母本行比為1∶7,再配置滿天星父本,株距為50 cm。分別在玉米拔節(jié)期、大喇叭口期、開花期、灌漿期、乳熟期各灌水1次,每個(gè)小區(qū)灌水量相等。
1.2.2 測(cè)定項(xiàng)目
玉米收獲時(shí)測(cè)定玉米植物學(xué)性狀,莖粗采用游標(biāo)卡尺法;地上部分干重采用105℃烘箱殺青30 min,80℃烘干至恒重。玉米收獲時(shí),在試驗(yàn)小區(qū)內(nèi)隨機(jī)采集30個(gè)果穗,風(fēng)干30 d后,測(cè)定玉米經(jīng)濟(jì)性狀,每個(gè)試驗(yàn)小區(qū)單獨(dú)收獲,將小區(qū)產(chǎn)量折合成公頃產(chǎn)量進(jìn)行統(tǒng)計(jì)分析。玉米收獲后,分別在試驗(yàn)小區(qū)內(nèi)按“S”形路線布點(diǎn),采集0~20 cm耕作層土樣4 kg,用四分法帶回1 kg混合土樣,風(fēng)干后過1 mm篩供室內(nèi)化驗(yàn)分析,其中土壤容重、土壤團(tuán)聚體用環(huán)刀采集原狀土,未進(jìn)行風(fēng)干,大于0.25 mm團(tuán)聚體采用干篩法[14-15]。
1.3 數(shù)據(jù)統(tǒng)計(jì)
采用DPS13.0軟件進(jìn)行數(shù)據(jù)分析,LSR法進(jìn)行多重比較。根據(jù)最佳施肥量計(jì)算公式X0=[(Px/Py)-b]/2c求得連作障礙調(diào)控肥最佳施肥量(X0)。
2.1 施用連作障礙調(diào)控肥對(duì)土壤物理性質(zhì)的影響
2.1.1 對(duì)土壤容重的影響
土壤容重是土壤重要的物理性質(zhì),是計(jì)算土壤孔隙度的重要參數(shù)[16-21]。玉米收獲后測(cè)定數(shù)據(jù)可知,連作障礙調(diào)控肥施用量由0.85增加到1.70、2.55、3.40、4.25和5.10 t/hm2時(shí),土壤容重隨著連作障礙調(diào)控肥施用量的增加而降低。其中,連作障礙調(diào)控肥施用量為5.10 t/hm2時(shí),容重為1.53 g/cm3,與連作障礙調(diào)控肥施用量4.25 t/hm2比較,容重降低了0.07 g/cm3,差異顯著(P<0.05);與對(duì)照比較,容重降低了0.17 g/cm3,差異極顯著(P<0.01)。將連作障礙調(diào)控肥施用量與土壤容重進(jìn)行回歸方程擬合,得到的回歸方程為:y=-0.028 9x+1.701 1,相關(guān)系數(shù)R=-0.968 1,說明連作障礙調(diào)控肥施用量與土壤容重之間呈顯著的負(fù)相關(guān)關(guān)系。表2
2.1.2 對(duì)土壤總孔隙度、毛管孔隙度、非毛管孔隙度和團(tuán)聚體的影響
研究表明,連作障礙調(diào)控肥施用量由0.85增加到1.70、2.55、3.40、4.25和5.10 t/hm2時(shí),總孔隙度、毛管孔隙度、非毛管孔隙度和團(tuán)聚體隨著連作障礙調(diào)控肥施用量的增加而增大。其中,連作障礙調(diào)控肥施用量為5.10 t/hm2時(shí),與對(duì)照比較,總孔隙度、毛管孔隙度、非毛管孔隙度和團(tuán)聚體分別增加了6.42%、3.86%、2.56%和14.63%,差異極顯著(P<0.01)。將連作障礙調(diào)控肥施用量與土壤進(jìn)行回歸方程擬合,得到的回歸方程相關(guān)系數(shù)(R)分別為0.968 2、0.967 9、0.967 9和0.994 8,說明連作障礙調(diào)控肥施用量與土壤總孔隙度、毛管孔隙度、非毛管孔隙度和團(tuán)聚體之間呈顯著的正相關(guān)關(guān)系。表2
表2 不同劑量連作障礙調(diào)控肥下土壤物理性質(zhì)變化
Table 2 Effects of different doses of continuous cropping obstacle on soil physical properties
施用量(t/hm2)Fertilizeramoun容重(g/cm3)Unitweight總孔隙度(%)Totalporosity毛管孔隙度(%)Capillaryporosity非毛管孔隙度Noncapillary團(tuán)聚體(%)CoacervateCK1.70aA35.84fB21.50dB14.34cC26.07gG0.851.67bB36.98eB22.19cB14.79cC28.73fF1.701.65cB37.74dB22.64cB15.10bB30.58eE2.551.63bB38.49cB23.09bB14.40bB32.34dD3.401.61eB39.25bB23.55bB15.70bB35.38cC4.251.60fB39.62bB23.77bB15.85bB38.95bB5.101.53gB42.26aA25.36aA16.90aA40.70aA
注:同列不同小寫字母表示差異顯著(P<0.05),不同大寫字母表示差異極顯著(P<0.01)。下同
Note: The different lowercase letters indicate significant difference(P<0.05), different capital letters indicate significant difference (P<0.01). The same as below
2.2 施用連作障礙調(diào)控肥對(duì)土壤持水量的影響
研究表明,連作障礙調(diào)控肥施用量由0.85增加到1.70、2.55、3.40、4.25和5.10 t/hm2時(shí),土壤飽和持水量、毛管持水量、非毛管持水量隨著連作障礙調(diào)控肥施用量的增加而增大,其中,連作障礙調(diào)控肥施用量5.10 t/hm2時(shí),與對(duì)照比較,土壤飽和持水量、毛管持水量、非毛管持水量分別增加了128.40、77.2和51.20 t/hm2,差異極顯著(P<0.01)。將連作障礙調(diào)控肥施用量與土壤飽和持水量、毛管持水量和非毛管持水量進(jìn)行回歸方程擬合,得到回歸方程的相關(guān)系數(shù)(R)分別為0.968 2、0.968 0和0.968 6,說明連作障礙調(diào)控肥施用量與土壤飽和持水量、毛管持水量和非毛管持水量之間呈顯著的正相關(guān)關(guān)系。表3
表3 不同劑量連作障礙調(diào)控肥下土壤持水量變化
Table 3 Effects of different doses of continuous cropping obstacle on soil water holding capacity
施用量(t/hm2)Fertlizeramoun飽和持水量(t/hm2)Aaturationmoisturecapacity毛管持水量(t/hm2)Capilarymoisturecapacity非毛管持水量(t/hm2)ThenoncapillarywatercapacityCK716.80fB430.00dB286.80cC0.85739.60cB443.80cB296.80cC1.70754.80dB452.80cB302.00bB2.55769.80cB461.80bB308.00bB3.40785.00bB471.00bB314.00bB4.25792.40bB475.40bB317.00bB5.10845.20aA507.20aA338.00aA
2.3 施用連作障礙調(diào)控肥對(duì)制種玉米植物學(xué)性狀的影響
研究表明,連作障礙調(diào)控肥施用量由0.85增加到1.70、2.55、3.40、4.25和5.10 t/hm2時(shí),制種玉米的株高、莖粗、生長(zhǎng)速度、地上部分鮮重和地上部分干重隨著連作障礙調(diào)控肥施用量的增加而增大,其中,連作障礙調(diào)控肥施用量5.10 t/hm2時(shí),與對(duì)照比較,制種玉米株高、莖粗、生長(zhǎng)速度、地上部分鮮重和地上部分干重分別增加了0.43 m、5.30 mm、3.23 mm/d、94.96 g/株和33.24 g/株,差異極顯著(P<0.01)。將連作障礙調(diào)控肥施用量與制種玉米株高、莖粗、生長(zhǎng)速度、地上部分鮮重和地上部分干重進(jìn)行回歸方程擬合,得到的回歸方程相關(guān)系數(shù)R分別為0.960 2、0.975 8、0.961 4、0.965 9和0.966 6,說明連作障礙調(diào)控肥施用量與制種玉米株高、莖粗、生長(zhǎng)速度、地上部分鮮重和地上部分干重之間呈顯著的正相關(guān)關(guān)系。表4
表4 不同劑量連作障礙調(diào)控肥下玉米植物學(xué)性狀變化
Table 4 Effects of different doses of continuous cropping obstacle on plant characteristics of Maize
施用量(t/hm2)Fertlizeramoun株高(m)Plantheight莖粗(mm)Stemdiameter生長(zhǎng)速度(mm/d)Growthvelocity地上部鮮重(g/株)Freshweightofground地上部干重(g/株)DryweightofgroundCK1.65eD16.50fC12.40dD197.64gD69.17dD0.851.79dC17.50eB13.45cC238.41fC83.44cC1.701.83cB18.00dB13.75cC245.12eC85.79cC2.551.86cB19.60bB13.98cC255.36dC89.38cC3.401.88bA19.90bB14.14bB271.04cB94.86bB4.251.95bA20.00bA14.66bB283.52bA99.23bB5.102.08aA21.80aA15.63aA292.60aA102.41aA
2.4 施用連作障礙調(diào)控肥對(duì)制種玉米經(jīng)濟(jì)性狀的影響
研究表明,連作障礙調(diào)控肥施用量由0.85增加到1.70、2.55、3.40、4.25和5.10 t/hm2時(shí),制種玉米穗粒數(shù)、穗粒重和百粒重隨著連作障礙調(diào)控肥施用量的增加而增大,其中,連作障礙調(diào)控肥施用量為5.10 t/hm2時(shí),與對(duì)照比較,制種玉米穗粒數(shù)、穗粒重和百粒重分別增加了105粒,24.98 g,5.57 g,差異極顯著(P<0.01)。將連作障礙調(diào)控肥施用量與制種玉米穗粒數(shù)、穗粒重和百粒重進(jìn)行回歸方程擬合,得到的回歸方程相關(guān)系數(shù)R分別為0.968 7、0.940 9和0.908 8,說明連作障礙調(diào)控肥施用量與制種玉米穗粒數(shù)、穗粒重和百粒重之間呈顯著的正相關(guān)關(guān)系。表5
表5 不同劑量連作障礙調(diào)控肥下玉米經(jīng)濟(jì)性狀變化
Table 5 Effects of different doses of continuous cropping obstacle on economic traits of Maize
施用量(t/hm2)Fertlizeramoun穗粒數(shù)(粒)Kernelnumberperear(grain)穗粒重(g)Kernelweightperear百粒重(g)100grainweightCK201.00eE54.23fF26.91eC0.85235.00dD65.56eE29.87dB1.70237.00dD69.31dD30.22cB2.55251.00cB72.94cC30.58cB3.40255.00cB76.02bB30.91cB4.25282.00bB78.33aA31.39bA5.10306.00aA79.21aA32.48aA
2.5 施用連作障礙調(diào)控肥對(duì)制種玉米增產(chǎn)量的影響
研究表明,連作障礙調(diào)控肥施用量由0.85增加到1.70、2.55、3.40、4.25和5.10 t/hm2時(shí),玉米產(chǎn)量隨著連作障礙調(diào)控肥施用量的增加而增大,其中,連作障礙調(diào)控肥施用量5.10 t/hm2時(shí),玉米產(chǎn)量為7.20 t/hm2,與連作障礙調(diào)控肥施用量4.25 t/hm2比較,玉米產(chǎn)量增加了0.08 t/hm2,差異不顯著(P>0.05);與連作障礙調(diào)控肥施用量3.40 t/hm2比較,玉米產(chǎn)量增加了0.29 t/hm2,差異顯著(P<0.05);與對(duì)照比較,玉米產(chǎn)量增加了2.27 t/hm2,差異極顯著(P<0.01)。將連作障礙調(diào)控肥施用量與玉米產(chǎn)量進(jìn)行回歸方程擬合,得到的回歸方程分別為:y=5.392 1+0.409 2x,相關(guān)系數(shù)R=0.940 9,說明連作障礙調(diào)控肥施用量與玉米產(chǎn)量之間呈顯著的正相關(guān)關(guān)系。表6
2.6 施用連作障礙調(diào)控肥對(duì)制種玉米單位肥料增產(chǎn)量的影響
研究表明,隨著連作障礙調(diào)控肥施用量梯度的增加,玉米產(chǎn)量在增加,但單位(kg)連作障礙調(diào)控肥的增產(chǎn)量則隨著連作障礙調(diào)控肥施用量的增加而遞減,將連作障礙調(diào)控肥施用量與單位連作障礙調(diào)控肥增產(chǎn)量進(jìn)行回歸方程擬合,得到的回歸方程分別為:y=1.184 7-0.162 32x,相關(guān)系數(shù)R=-0.922 1,說明連作障礙調(diào)控肥施用量與玉米產(chǎn)量之間呈顯著的負(fù)相關(guān)關(guān)系。表6
表6 不同劑量連作障礙調(diào)控肥下玉米產(chǎn)量變化
Table 6 Effects of different doses of continuous cropping obstacle on yield of Maize
施用量(t/hm2)Fertlizeramoun產(chǎn)量(t/hm2)Yield增產(chǎn)量(t/hm2)Yieldincrease每千克肥料增產(chǎn)(kg/kg)KgfertilizerproductionCK4.93fB//0.855.96eA1.031.211.706.30dA1.370.812.556.63cA1.700.663.406.91bA1.980.584.257.12aA2.190.515.107.20aA2.270.44
2.7 施用連作障礙調(diào)控肥對(duì)制種玉米施肥利潤(rùn)的影響
連作障礙調(diào)控肥施用量由0.85 t/hm2增加到2.55 t/hm2時(shí),施肥利潤(rùn)隨著連作障礙調(diào)控肥施用量的增加而遞增,連作障礙調(diào)控肥施用量大于3.40 t/hm2時(shí),施肥利潤(rùn)出現(xiàn)了負(fù)值,由此可見,連作障礙調(diào)控肥最佳用量為3.40 t/hm2。表7
2.8 連作障礙調(diào)控肥經(jīng)濟(jì)效益最佳施用量的確定
不同劑量連作障礙調(diào)控肥與玉米產(chǎn)量運(yùn)用肥料效應(yīng)回歸方程y=a+bx+cx2擬合,得出回歸方程為:
y=4.93+0.480 0x-0.030 0x2
(1)
通過回歸方程顯著性測(cè)驗(yàn),回歸方程擬合良好。連作障礙調(diào)控肥價(jià)格Px為1 380.16 元/t,制種玉米價(jià)格Py為5 000 元/t,將Px、Py、回歸方程的參數(shù)b和c,代入經(jīng)濟(jì)效益最佳施用量計(jì)算公式x0=[(Px/Py)-b]/2c,求得連作障礙調(diào)控肥經(jīng)濟(jì)效益最佳施用量(x0)為3.40 t/hm2。表7
表7 不同劑量連作障礙調(diào)控肥下玉米增產(chǎn)效應(yīng)和經(jīng)濟(jì)效益變化
Table 7 Effects of different doses of continuous cropping obstacle on Yield and economic benefit of Maize
施用量(t/hm2)Fertlizeramoun產(chǎn)量(t/hm2)Yield增產(chǎn)量(t/hm2)Yieldincrease邊際產(chǎn)量(t/hm2)Marginalproduct邊際產(chǎn)值(元/hm2)Marginalproduct邊際成本(元/hm2)Marginalcost邊際利潤(rùn)(元/hm2)ContributionmarginCK4.93fB/////0.855.96eA1.031.0351501173.143976.861.706.30dA1.370.3417001173.14526.862.556.63cA1.700.3316501173.14476.863.406.91bA1.980.2814001173.14226.864.257.12aA2.190.2110501173.14-123.145.107.20aA2.270.08401173.14-1133.14
3.1 連作障礙調(diào)控肥對(duì)土壤物理性質(zhì)的響應(yīng)
作物的連作障礙現(xiàn)象普遍存在,但是導(dǎo)致作物連作障礙的原因并沒有完全查明[22]。容重是土壤主要的物理性質(zhì),與作物根系穿透阻力、土壤的含水量、土壤的通氣性和水肥的利用率有很大的關(guān)聯(lián),這些都是造成作物根系的生長(zhǎng)停滯的原因,所以土壤容重不同的地塊,其生產(chǎn)力也存在差異[23]。大量數(shù)據(jù)顯示,土壤容重較大的地方,土層堅(jiān)硬度也大,導(dǎo)致根系生長(zhǎng)受阻,生長(zhǎng)速率明顯小于容重小的土壤,使根系分布主要集中在上層[24-27]。通過増施連作障礙調(diào)控肥,可以使土壤容重降低,制種玉米的根系阻力也相對(duì)變小,增加生長(zhǎng)速率,促使其產(chǎn)量增加。土壤微生物區(qū)系經(jīng)過連作后致使有益微生物減少,有害微生物增多,土壤病害蔓延[28]。試驗(yàn)運(yùn)用連作障礙調(diào)控肥來處理制種玉米連作土壤,連作障礙調(diào)控肥能夠明顯改善連作土壤物理性狀,說明其對(duì)制種玉米連作障礙具有明顯的抑制作用。
3.2 連作障礙調(diào)控肥對(duì)制種玉米經(jīng)濟(jì)效益的影響
從經(jīng)濟(jì)學(xué)原理進(jìn)來看[29],隨著連作障礙調(diào)控肥施用量由0.85增加到5.10 t/hm2時(shí),邊際產(chǎn)量由最初的1.03遞減到1.03 t/hm2,符合報(bào)酬遞減律。從制種玉米的經(jīng)濟(jì)效益變化來看,邊際利潤(rùn)由3 976.86 元/hm2,遞減到-1 133.14 元/hm2,連作障礙調(diào)控肥施用量在3.40 t/hm2的基礎(chǔ)上,再增加0.85 t/hm2,收益出現(xiàn)負(fù)值,可以看出,連作障礙調(diào)控肥施用量在3.40 t/hm2時(shí),制種玉米增產(chǎn)效應(yīng)和經(jīng)濟(jì)效益較好。
4.1 使用連作障礙調(diào)控肥可以促進(jìn)制種玉米的生長(zhǎng)發(fā)育和提高制種玉米的產(chǎn)量。主要是因?yàn)檫B作障礙調(diào)控肥中含有較高的有機(jī)質(zhì),有機(jī)質(zhì)不但具備營(yíng)養(yǎng)作用,還具備改土作用,而且肥效較長(zhǎng),能有效促進(jìn)玉米生長(zhǎng),提高制種玉米的穗粒數(shù)和穗粒重。
4.2 連作障礙調(diào)控肥施用量與土壤總孔隙度、團(tuán)聚體、飽和持水量呈正相關(guān),土壤容重則隨著施用量的增加而遞減;制種玉米株高、莖粗、生長(zhǎng)速度、地上部分鮮重和地上部分干重和制種玉米穗粒數(shù)、穗粒重和百粒重與連作障礙調(diào)控肥呈正相關(guān),但1 kg連作障礙調(diào)控肥的增產(chǎn)量則隨著連作障礙調(diào)控肥施用量的增加而遞減,出現(xiàn)報(bào)酬遞減律。
4.3 從制種玉米的經(jīng)濟(jì)效益變化來分析,邊際利潤(rùn)由3 976.86 元/hm2,遞減到-1 133.14 元/hm2,連作障礙調(diào)控肥施用量在3.40 t/hm2的基礎(chǔ)上,再增加0.85 t/hm2,收益出現(xiàn)負(fù)值,可以看出,連作障礙調(diào)控肥施用量在3.40 t/hm2時(shí),制種玉米增產(chǎn)效應(yīng)和經(jīng)濟(jì)效益較好。
References)
[1] 佟屏亞.河西地區(qū)玉米制種基地考察報(bào)告[J].種子世界, 2005, (5):4-8.
TONG Ping-ya. (2005). Investigation report of corn seed production base in Hexi Region [J].SeedWorld, (5):4-8. (in Chinese)
[2] 張秀蘭,張建中,湯曉燕.甘州區(qū)玉米制種存在的問題及對(duì)策 [J]. 種子世界, 2010, (9): 12-13.
ZHANG Xiu-lan, ZHANG Jian-zhong, TANG Xiao-yan. (2010). Problems and Countermeasures of Ganzhou maize production area [J].SeedWorld, (9): 12-13. (in Chinese)
[3] 胡江春, 王書錦. 大豆連作障礙研究I.大豆連作土壤紫青霉菌的毒素作用研究[J]. 應(yīng)用生態(tài)學(xué)報(bào), 1996, 7(4):396-400.
HU Jiang-chun, WANG Shu-jin, (1996). Study on soil sickness by soybean continuous cropping I. effect of mycotoxin produced by Penicillium purpurogenum [J].ChineseJournalofAppliedEcology, 7(4):396-400. (in Chinese)
[4]于貴瑞, 陸欣來, 韓靜淑,等. 大豆、向日葵等作物連作障礙與輪作效應(yīng)機(jī)理的研究初報(bào)[J]. 生態(tài)學(xué)雜志, 1988, 7(2): 1-8.
YU Gui-rui, LU Xin-lai, HAN Jing-shu, et al. (1988). Soil Sickness due to Continuous Cropping and Mechanism of Rotational Effects of Sunflower, Soybean and Other Crops [J].JournalofEcology, 7(2): 1-8. (in Chinese)
[5] 張子龍, 王文全. 植物連作障礙的形成機(jī)制及其調(diào)控技術(shù)研究進(jìn)展[J]. 生物學(xué)雜志, 2010, 27(5): 69-72.
ZHANG Zi-long, WANG Wen-quan. (2010). Progress on formation mechanism and control measurem ents of continuous cropping obstacles in plants [J].JournalofBiology, 27(5): 69-72. (in Chinese)
[6] 汪春明. 馬鈴薯連作栽培與間作調(diào)控對(duì)根際土壤的影響[D]. 銀川:寧夏大學(xué)碩士論文, 2014.
WANG Chun-ming. (2014).Effectsofpotatocontinuouscroppingandintercroppingregulationonrhizospheresoil[D]. Master Dissertation. Ningxia University, Yinchuan. ( in Chinese )
[7] 呂衛(wèi)光. 上海市郊西瓜連作障礙成因及應(yīng)用生物有機(jī)肥進(jìn)行防治的研究[D]. 南京: 南京農(nóng)業(yè)大學(xué)博士論文, 2008.
Lü Wei-guang. (2008).InvestigationonthecoNntinuouslycroppingobstacleofwatermeloninshanghaisuburbandthecontrolbymicrobioorganicfertillzer[D]. PhD Dissertation. Nanjing Agricultural University,Nanjing. ( in Chinese )
[8] 趙松輝, 蔡凱旋, 劉洪源, 等. 烤煙連作障礙調(diào)控措施研究進(jìn)展[J]. 現(xiàn)代農(nóng)業(yè)科技, 2014(8): 199-201.
ZHAO Song-hui, Cai Kai-xuan, LIU Hong-yuan, et al. (2014). Advances in adjust and control measures of succession cropping obstacle of flue-cured tobacco [J].ModernAgriculturalScienceandTechnology, (8):199-201. ( in Chinese)
[9] 趙秉強(qiáng),張福鎖,廖宗文.我國(guó)新型肥料發(fā)展戰(zhàn)略研究[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2004,10(5):536-545.
ZHAO Bing-qiang, ZHANG Fu-suo, LIAO Zong-wen. (2004). Research on development strategies of fertilizer in China [J].JournalPlantNutritionandFertilizerScience, 10(5): 536-545. (in Chinese)
[10] 閆四群.功能性肥料的發(fā)展前景和存在問題[J].農(nóng)家參謀種業(yè)大觀,2011,(11):24-25.
YAN Si-qun. (2011). Development prospect and existing problems of functional fertilizer [J].AdviserofPeasantFamilies, (11): 24-25. (in Chinese)
[11] 劉秀梅,劉光榮,馮兆濱,等.新型肥料研制技術(shù)與產(chǎn)業(yè)化開發(fā)[J]. 江西農(nóng)業(yè)學(xué)報(bào), 2006, 18(2): 87-92.
LIU Xiu-mei, LIU Guang-rong, FENG Zhao-bin, et al.(2006). Development of productive technology and industrialization of new- type fertilizer [J].ActaAgriculturaeJiangxi, 18(2):87-92. (in Chinese)
[12] 陸建剛,周鶯.國(guó)內(nèi)外新型肥料的開發(fā)[J]. 化肥工業(yè), 1994, 21(3): 8-11.
LU Jian-gang, ZHOU Ying.(1994). Development of new type of fertilizer at home and abroad [J].ChemicalFertilizerIndustry, 21(3):8-11.(in Chinese)
[13] 趙良菊, 肖洪浪, 郭天文,等. 甘肅省河西灌漠土微量元素的空間變異特征[J]. 水土保持學(xué)報(bào), 2004, 18(5): 27-30.
ZHAO Liang-ju, XIAO Hong-lang, GUO Tian-wen, et al. (2004). Spatial Variabilitiy of Trace Elements of Irrigated Desert Soil in Zhangye and Wuwei, Gansu Prnvince [J].JournalofsoilandWaterConservation, 18(5):27-30. (in Chinese)
[14] 高飛, 賈志寬, 韓清芳,等. 有機(jī)肥不同施用量對(duì)寧南土壤團(tuán)聚體粒級(jí)分布和穩(wěn)定性的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2010, 28(3):100-106.
GAO Fei, JIA Zhi-kuan, HAN Qing-fang, et al. (2010). Effects of different organic fertilizer treatments on distribution and stability of soil aggregates in the semiarid area of South Ningxia [J].AgriculturalResearchintheAridAreas, 28(3):100-106. (in Chinese)
[15] 文倩, 趙小蓉, 陳煥偉,等. 半干旱地區(qū)不同土壤團(tuán)聚體中微生物量碳的分布特征[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2005, 37(2): 91-95.
WEN Qian, ZHAO Xiao-rong, CHEN Huan-wei, et al. (2005). Distribution Characteristics of Microbial Biomass Phosphorus in Different Soil Aggregates in Semi-arid Area [J].ScientiaAgriculturaSinica, 37(2): 91-95. (in Chinese)
[16] Mohawesh, O., Fukumura, K., Ishida, T., & Yoshino, K. (2005). Soil hydraulic properties in a cassava field as a function of soil dry bulk density.JournalofJapanSocietyofHydrology&WaterResources,18(2):156-166.
[17] 王燕,王兵,趙廣東,等.江西大崗山3種林型土壤水分物理性質(zhì)研究[J]. 水土保持學(xué)報(bào), 2008, 22(1): 151-153.
WANG Yan, WANG Bin, ZHAO Guang-dong, et al. (2008).Soil Moisture Physical Characteristics of Three Forest Types in Dagangshan Mountain in Jiangxi Province [J].JournalofSoilandWaterConservation, 22(1):151-153. (in Chinese)
[18] 李德生,張萍,張水龍,等.黃前庫區(qū)流域植被水源涵養(yǎng)功能及植被類型選擇的研究[J]. 水土保持學(xué)報(bào), 2003, 17(4): 128-131.
LI De-sheng, ZHANG Ping, ZHANG Shui-long, et al. (2003). Study on Water Resource Conservation Function of Vegetation and Its Selection in Huangqian Reservoir Area [J].JournalofSoilandWaterConservation, 17(4): 128-131. (in Chinese)
[19] Webster, R. (1985).Quantitativespatialanalysisofsoilinthefield. Advances in Soil Science. Springer New York.
[20] MartNez-Mena, M., Williams, A. G., Ternan, J. L., & Fitzjohn, C. (1998). Role of antecedent soil water content on aggregates stability in a semi-arid environment.Soil&TillageResearch, 48(1-2): 71-80.
[21] Nielsen, G. A., & Quimby, W. F. (1993). Spatial distribution of soil attributes on reconstructed minesoils.SoilScienceSocietyofAmericaJournal, 57(3):782-786.
[22] 王濤, 辛世杰, 喬衛(wèi)花,等. 幾種微生物菌肥對(duì)連作黃瓜生長(zhǎng)及土壤理化性狀的影響[J]. 中國(guó)蔬菜, 2011, 1(18):52-57.
WANG Tao, XIN Shi-jie, QIAO Wei-hua, et al. (2011). Effects of Different Microbial Fertilizers on Continuous Cropping Cucumber Growth and Soil Physiochemical Properties [J].ChineseVegetables, 1(18):52-57. (in Chinese)
[23] 宋日, 吳春勝, 牟金明,等. 深松土對(duì)玉米根系生長(zhǎng)發(fā)育的影響[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào), 2000, 22(4): 73-75.
SONG Ri, WU Chun-sheng, MU Jin-ming, et al. (2000). Effect of subsoiling on root growth of maize [J].JournalofJilinAgriculturalUniversity, 22(4):73-75. (in Chinese)
[24] Bengough, A. G., & Young, I. M. (1993). Root elongation of seedling peas through layered soil of different penetration resistances.PlantandSoil, 149(1):129-139.
[25] Coelho, E. F., & Or, D. (1999). Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation.PlantandSoil, 206(2):123-136.
[26] Shierlaw, J., & Alston, A. M. (1984). Effect of soil compaction on root growth and uptake of phosphorus.PlantandSoil, 77(1):15-28.
[27] Freitas, P. L. D., Zobel, R. W., & Synder, V. A. (1999). Corn root growth in soil columns with artificially constructed aggregates.CropScience,39(3):725-730.
[28] 吳鳳芝, 趙鳳艷, 谷思玉. 保護(hù)地黃瓜連作對(duì)土壤生物化學(xué)性質(zhì)的影響[J]. 農(nóng)業(yè)系統(tǒng)科學(xué)與綜合研究, 2002, 18(1): 20-22.
WU Feng-zhi, ZHAO Feng-yan, GU Si-yu, (2002). Effect of the continuous cultivating cucumber on the bio-chemical properties of soil in the plastic greenhouse [J].SystemSciencesandComprehensiveStudiesinAgriculture, 18(1): 20-22. (in Chinese)
[29] Husereau D, Drummond M, Petrou S, et al. (2013). Consolidated Health Economic Evaluation Reporting Standards (CHEERS)--explanation and elaboration: a report of the ISPOR Health Economic Evaluation Publication Guidelines Good Reporting Practices Task Force.[J].ValueinHealththeJournaloftheInternationalSocietyforPharmacoeconomics&OutcomesResearch, 16(2):231-250.
Supported by:Ministry of agriculture support project "National forage industry technical system, Tarim comprehensive experimental station" (CARS-35).
Effects of Different Doses of Control Fertilizer for Continuous Cropping Obstacle on Soil Physical Properties and Economic Benefits of Corn Seed
JING Peng-cheng, WANG Shu-lin, CHEN Yi-shi, LU Wei-hua, MA Chun-hui
(CollegeofAnimalScienceandTechnology,ShiheziUniversity,ShiheziXinjiang832000,China)
【Objective】 To study the effects of different doses of control fertilizer for continuous cropping obstacles on soil physical properties and the economic benefits of corn.【Method】Field test method was used in 13 years continuous cropping soil of maize seed. Using field experiment method, in order to control corn continuous cropping obstacle of Fertilizer Design 7 treatments for the gradient were: CK, 0.85, 1.70, 2.55,3.40,4.25 and 5.10 t/hm2. no fertilizer as CK, each treatment was repeated 3 times, randomized block design.【Result】Along with the increase of continuous cropping obstacle control fertilizer from 0.85 t/hm2to 5.10 t/hm2, compared with the control, the soil total porosity, aggregates, saturated water content were increased by 6.42%, 14.63% and 17.91%, and soil bulk density decreased by 11.11%, which was a significant difference (P< 0.01); Maize plant height, stem diameter, growth rate, fresh weight and dry weight on the ground were increased by 26.06%, 32.12%, 26.05%, 48.05% and 48.06%, respectively with significant differences (P< 0.01); Corn kernel number, kernel weight and 100 kernel weight were increased by 52.24%, 46.06% and 20.70% with significant differences (P< 0.01); The corn yield was increased by 46.04% with significant difference (P< 0.01); but the increased yield of fertilizer per kilogram for continuous cropping obstacle decreased by 63.64% with the increased amount of the fertilizer.【Conclusion】When the control fertilizer application amount of continuous cropping obstacle was more than 3.40 t/hm2, the negative value in profit of fertilization appeared, from which it is clear that the amount should be better below 3.40 t/hm2. Applying this amount, the theoretical corn yield is probably over 6.91 t/hm2, reaching the best economic benefit.
control fertilizer for continuous cropping obstacle;physical property;corn seed;economic benefits
10.6048/j.issn.1001-4330.2017.02.005
2016-11-07
農(nóng)業(yè)部支撐項(xiàng)目“國(guó)家牧草產(chǎn)業(yè)技術(shù)體系塔里木綜合試驗(yàn)站”(CARS-35)
景鵬成(1992-),甘肅民勤人,碩士研究生,研究方向?yàn)槿斯げ莸卦耘啵?E-mail)1107463928@qq.com
魯為華(1976-),新疆奇臺(tái)人,副教授,博士,研究方向?yàn)椴莸刭Y源與生態(tài),(E-mail)winnerlwh@sina.com
S154;S513
A
1001-4330(2017)02-0234-09