陳宗奎,田龍海,索曉霞,田景山,羅宏海
(石河子大學(xué)農(nóng)學(xué)院/新疆兵團綠洲生態(tài)農(nóng)業(yè)重點實驗室,新疆石河子 832000)
新陸早系列棉花品種更替中棉鈴發(fā)育特性及與產(chǎn)量和品質(zhì)的關(guān)系
陳宗奎,田龍海,索曉霞,田景山,羅宏海
(石河子大學(xué)農(nóng)學(xué)院/新疆兵團綠洲生態(tài)農(nóng)業(yè)重點實驗室,新疆石河子 832000)
【目的】明確不同年代新陸早系列棉花品種棉鈴發(fā)育特性及其與產(chǎn)量和品質(zhì)的關(guān)系?!痉椒ā恳?980~2010年推廣面積較大的10個新陸早系列棉花品種為材料,測定棉鈴發(fā)育過程中長度、直徑、體積、單鈴重、產(chǎn)量及纖維品質(zhì)?!窘Y(jié)果】隨品種更替,棉鈴鈴長、鈴直徑、鈴體積和單鈴重分別下降2.79%~16.92%,2.27%~13.28%,10.15%~35.9%和11.5%~18.9%;單株鈴數(shù)和產(chǎn)量分別增加了4.0%~45.29%和8.75%~28.04%。纖維長度和比強度從1980年代到2000年代分別提高了7.6%和11.6%,2000~2010年代沒有明顯的變化。相關(guān)分析表明,鈴長、鈴直徑和鈴體積與單株結(jié)鈴數(shù)、產(chǎn)量、整齊度和馬克隆值成極顯著負(fù)相關(guān),與單鈴重、纖維長度和比強度成顯著正相關(guān);通徑分析表明,增加棉鈴長度和直徑有利于提高纖維長度和比強度?!窘Y(jié)論】棉花品種演替過程中產(chǎn)量的增加主要歸因于單株鈴數(shù)的增加,鈴齡0~21 d鈴長和鈴直徑與產(chǎn)量和品質(zhì)形成關(guān)系密切。
棉花;品種更替;棉鈴發(fā)育特性;產(chǎn)量;品質(zhì)
【研究意義】新疆光熱資源豐富,具有發(fā)展棉花的光熱資源優(yōu)勢,也是我國最大的棉花生產(chǎn)基地,自20世紀(jì)80年代以來,伴隨品種的更替,棉花產(chǎn)量不斷提高。棉鈴是形成產(chǎn)量和品質(zhì)的基礎(chǔ),北疆棉區(qū)新陸早系列棉花品種的更替對棉鈴發(fā)育和產(chǎn)量品質(zhì)的影響研究較少,因此,探明不同年代新陸早系列棉花品種棉鈴發(fā)育規(guī)律及其與產(chǎn)量和品質(zhì)的關(guān)系,對棉花超高產(chǎn)栽培及新品種選育有重要意義?!厩叭搜芯窟M展】棉鈴是棉花產(chǎn)量和品質(zhì)形成的基本單位,直接影響棉花產(chǎn)量的提高。相吉山等[1]通過分析新陸早系列品種主要性狀,發(fā)現(xiàn)生育進程、鈴重和衣分是影響產(chǎn)量的主要因素。褚貴新等[2]研究發(fā)現(xiàn),在棉花品種更替過程中單株結(jié)鈴數(shù)呈顯著的增加趨勢,且單鈴的經(jīng)濟系數(shù)也在增大。棉鈴的生長發(fā)育變化對產(chǎn)量和纖維品質(zhì)的形成有很大影響,提高棉花單鈴重和單株結(jié)鈴數(shù)是棉花高產(chǎn)的重要實現(xiàn)途徑[3-4]。有研究表明棉鈴體積與單鈴重呈顯著正相關(guān)關(guān)系[5,6];單株鈴數(shù)與產(chǎn)量成極顯著正相關(guān),與單鈴重成正相關(guān)關(guān)系[1,6],但如果鈴殼所占比重太高,提高單鈴重并不能顯著提高產(chǎn)量[2]。棉鈴的正常發(fā)育是棉纖維發(fā)育的基礎(chǔ),也有利于纖維品質(zhì)的提高[7]。嚴(yán)重影響棉鈴生長發(fā)育,可導(dǎo)致棉花產(chǎn)量與纖維品質(zhì)大幅度降低[3],研究表明隨棉鈴的體積降低,纖維長度變短,馬克隆值增大[8]。【本研究切入點】關(guān)于棉鈴數(shù)量和質(zhì)量與籽棉產(chǎn)量和品質(zhì)關(guān)系的研究較多,但對棉鈴發(fā)育動態(tài)過程與產(chǎn)量和品質(zhì)關(guān)系研究較少,尤其是新陸早系列品種棉鈴發(fā)育動態(tài)過程及其與產(chǎn)量和品質(zhì)關(guān)系研究更少。研究不同年代新陸早系列棉花品種棉鈴發(fā)育特性及其與產(chǎn)量和品質(zhì)的關(guān)系。【擬解決的關(guān)鍵問題】研究新陸早系列品種更替中棉鈴發(fā)育動態(tài)過程中棉鈴長度、直徑、體積和單鈴重的變化規(guī)律,探討棉鈴發(fā)育特性與產(chǎn)量和品質(zhì)之間關(guān)系。
1.1 材 料
試驗于2014年在石河子大學(xué)農(nóng)學(xué)試驗站(45°19′N,86°03′E)進行,該地區(qū)棉花生長期(4~9月),平均氣溫 20.28℃,最低氣溫13.22℃,最高氣溫27.61℃,總?cè)照諘r數(shù)1 915.3 h,總降雨量97.2 mm,總蒸發(fā)量為850.4 mm,平均日蒸發(fā)量4.65 mm。選用北疆棉區(qū)種植面積較大的新陸早系列棉花品種,其中1980年代(80s)包括新陸早1號、新陸早2號;1990年代(90s)包括新陸早5號、新陸早7號;2000年代(00s)包括新陸早13號、新陸早24號、新陸早36號;2010年之后(10s)包括新陸早45號、新陸早53號。小區(qū)面積15 m2,隨機區(qū)組排列,重復(fù)3次。2014年4月24日布滴灌帶、鋪膜后,在膜上人工點播后補出苗水。田間種植方式及管道鋪設(shè)方法同大田膜下滴灌棉花,種植密度15×104株/hm2。生育期隨水滴施純氮260 kg/hm2,生育期滴水12次,滴水總量為4 500 m3/hm2。采用縮節(jié)胺化學(xué)調(diào)控6次,總用量為300 g/hm2。7月5日左右打頂,其他管理措施同一般大田。表1
表1 供試品種
Table 1 Tested Cultivars
品種Cultivars審定年份Dateofauthorized品種Cultivars審定年份Dateofauthorized新陸早1號Xinluzao1(Z1)1978新陸早13號Xinluzao13(Z13)2002新陸早2號Xinluzao2(Z2)1988新陸早24號Xinluzao24(Z24)2005新陸早5號Xinluzao5(Z5)1994新陸早36號Xinluzao36(Z36)2007新陸早7號Xinluzao7(Z7)1997新陸早45號Xinluzao45(Z45)2010新陸早10號Xinluzao10(Z10)1999新陸早53號Xinluzao53(Z3)2012
1.2 方 法
1.2.1 棉鈴生長發(fā)育
棉株開花后,對中部果枝(第5~6果枝)第1果節(jié)的當(dāng)日所開白花掛牌標(biāo)記,每7 d取大小相近棉鈴6個,直至棉鈴裂鈴。用游標(biāo)卡尺測定棉鈴長度、直徑,計算其平均值;用排水法測定棉鈴體積;將鮮樣105℃殺青,85℃烘干至恒重測定棉鈴重。
1.2.2 產(chǎn)量和品質(zhì)
收獲期每品種分別選取代表性棉株10 株,按縱向分為下部(1~3果枝)、中部(4~6果枝)、上部(7果枝以上)三個部位,統(tǒng)計成鈴數(shù)、計算單株產(chǎn)量,并收取各品種下部、中部、上部籽棉各20 g脫絨,測定衣分后取各品種棉纖維樣品,送至農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量監(jiān)督中心(烏魯木齊),測定棉纖維長度、整齊度、比強度和馬克隆值等品質(zhì)指標(biāo)。
1.3 數(shù)據(jù)統(tǒng)計
采用SPSS 16.0統(tǒng)計分析軟件進行相關(guān)性分析和通徑分析,多重比較用Duncan法(α=0.05);作圖采用Sigma Plot 10.0完成。
2.1 不同年代棉花品種鈴長、鈴直徑、鈴體積和單鈴重的變化
不同年代品種棉鈴長度和棉鈴直徑隨鈴齡呈先增加后穩(wěn)定趨勢,棉鈴體積和單鈴重均隨鈴齡增加而增加。棉鈴長度和棉鈴直徑在不同年代品種間均以80s品種較高,在鈴齡0~21 d快速增長期內(nèi),80s品種分別較90s、00s和10s品種高2.97%、15.88%、18.34% 和3.94%、17.36%、14.96%;在21~49 d的平穩(wěn)期間,80s品種分別較90s、00s和10s品種高2.6%、15.1%、15.5%和1.6%、9.2%、6.4%。棉鈴體積在齡0~28 d快速增長,80s品種分別較90s、00s和10s品種高9.6%、28%、35.3%;在35~49 d的平穩(wěn)期間,80s品種分別較90s、00s和10s品種高11.7%、31.9%、36.5%。單鈴重在鈴齡0~49 d呈快速上升趨勢,在鈴齡0~28 d各品種間差異不大;在35~49 d的平穩(wěn)期間,80s品種較90s、00s和10s品種分別高11.5%、36.3%、18.9%;說明品種更替過程中,棉鈴長度、直徑、體積和單鈴重均成下降趨勢,鈴長度、鈴直徑和鈴體積在鈴齡0~21 d,單鈴重在鈴齡28~49 d生長優(yōu)勢明顯。鈴體積和單鈴重品種間形成差異主要在鈴齡28~49 d。圖1
圖1 棉鈴發(fā)育變化動態(tài)
Fig.1 The developmental dynamics of cotton bolls
進一步分析棉鈴長度、直徑、體積和單鈴重相對增長量可以看出,棉鈴長度和直徑相對增長量在鈴齡0~21 d快速增長期內(nèi),80s品種分別較90s、00s和10s品種高3.94%、6.6%、9.14% 和3.04%、7.96%、7.22%;在21~49 d品種間無明顯差異。棉鈴體積相對增長量在鈴齡0~28 d,80s品種分別較90s、00s和10s品種高4.35%、11.16%、17.46%;在35~49 d的平穩(wěn)期間,品種間無明顯差異;單鈴重在鈴齡0~28 d各品種間差異不大;而在35~49 d的平穩(wěn)期間,80s品種分別較90s、00s和10s品種高11.5%、36.3%、18.9%。說明新陸早系列棉花品種更替過程中,棉鈴長度、直徑、體積和單鈴重的增長速率呈下降趨勢。圖2
圖2 棉鈴相對增長量的變化動態(tài)
Fig.2 The dynamic change of cotton bolls relative growth
2.2 不同年代棉花品種產(chǎn)量及品質(zhì)的變化
研究表明,不同年代棉花品種的籽棉產(chǎn)量和皮棉產(chǎn)量均隨著品種更替不斷增加,其中10s品種較80s、90s和00s品種分別高28%、15.97%、8.75%和28.1%、14.29%、3%。80s棉花品種單鈴重分別較90s、00s和10s高6.0%、18.76%、25.1%;以10s棉花品種單株結(jié)鈴數(shù)分別較80s、90s和00s高45.29%、26.18%、4.0%衣分00s分別較80s、90s和10s高3.77%、2.6%、3.71%。表2
表2 不同年代品種產(chǎn)量及其構(gòu)成因子變化
Table 2 Changes of yield factors of cultivars in different years
年代Data單鈴重Singlebollweight(g)單株鈴數(shù)Bollnumberperplant(ind)籽棉產(chǎn)量Seedcottonyield(g/plant)衣分Lintpercentage皮棉產(chǎn)量Lintyield(g/plant)10s51d99a4639a3818b1819a00s53c95a4273b392a1767a90s60b78b4000c385ab1592b80s63a68c3623d382b1420c
注:產(chǎn)量均為平均單株產(chǎn)量,同一列同一水分處理不同字母表示差異達(dá)5%顯著水平;下同
Note: The yield of all the mean single plant yield, datain same column and water treatment with different letters indicate significant difference (P<0.05); the same as below
研究表明,10s棉花品種纖維長度和比強度顯著高于80s、90s品種,但與00s品種無明顯差異;整齊度和馬克隆值在不同年代品種間無顯著差異。說明從80年代到00年代棉花纖維品質(zhì)有一定的改善,但2000~2010年,纖維品質(zhì)沒有明顯的變化。表3
表3 不同年代品種品質(zhì)性狀變化
Table 3 Change of quality characters of cultivars in different years
品種Cultivars整齊度Fiberuniformity纖維長度Fiberlength馬克隆值Micronaire比強度Fiberstrength10s850a313a38a351a00s848a312a38a337ab90s855a290b40a302b80s848a290b39a301b
2.3 棉鈴發(fā)育特性與產(chǎn)量和品質(zhì)的關(guān)系
鈴長、鈴直徑和鈴體積與單株結(jié)鈴數(shù)、籽棉產(chǎn)量和皮棉產(chǎn)量成極顯著負(fù)相關(guān),但與單鈴重成顯著正相關(guān)。棉鈴生長發(fā)育指標(biāo)與品質(zhì)性狀之間的相關(guān)性分析表明,鈴長、鈴直徑和鈴體積與比強度和纖維長度成顯著正相關(guān),與整齊度和馬克隆值成負(fù)相關(guān)。表4
表4 產(chǎn)量構(gòu)成因子與品質(zhì)性狀相關(guān)性
Table 4 Correlation analysis of yield constituting factor and quality characters
項目Items鈴長Bolllength鈴直徑Bolldiameter鈴體積Bollvolume單鈴重Bollweight單株鈴數(shù)Bollnumberperplant比強度Fiberstrength整齊度Fiberuniformity馬克隆值Micronaire纖維長度Fiberlength鈴長Bolllength—0906??0972??057?-900??0746??-0112-00770690?鈴直徑Bolldiameter0—0882??0555?-0787??0688?-0103-00040669?鈴體積Bollvolume00—0581?-0873??0731??-0109-00770684?單鈴重Bollweight00230025800114—-02630138-02060140246單株鈴數(shù)Bollnumberperplant0000200409—-0771??-018-0039-0680?比強度Fiberstrength0005001300070670003—-021-0430927??整齊度Fiberuniformity072907490737052105750513—799??-0389馬克隆值Micronaire081209908130665090401630002—-0457纖維長度Fiberlength0013001700140440015002120135—
注:左下角為Sig值,右上角為相關(guān)系數(shù),*表示顯著性在0.05水平,**表示顯著性在0.01水平
Note: Bottom left corner is significant value, top right is correlation coefficient,*significant at 5% level of significance,**significant at 1% level of significance
3.1 棉花品種演替過程中棉鈴發(fā)育動態(tài)及其與產(chǎn)量的關(guān)系
棉花產(chǎn)量由單位面積株數(shù)、單株鈴數(shù)、鈴重和衣分構(gòu)成。50多年來,新疆特早熟棉區(qū)隨著品種的更換,新育成品種產(chǎn)量的遺傳增益每年約為9.3 kg/hm2[4]。在產(chǎn)量構(gòu)成因素中單位面積株數(shù)主要由栽培因素決定,鈴重、單株鈴數(shù)和衣分由品種的遺傳決定[4]。一般認(rèn)為鈴重和生育期呈顯著的正相關(guān)[4]。孫杰等[9]研究表明,北疆棉區(qū)選育前期品種生育期最長,鈴重最大;品種更替過程中,生育期縮短,但單鈴重及衣分變化不大,單鈴重增長勢呈下降趨勢[1],而單株結(jié)鈴性有逐漸增加的趨勢,產(chǎn)量也呈逐年升高趨勢[2]。研究也發(fā)現(xiàn)隨著品種更替,單鈴重呈下降趨勢,單株鈴數(shù)和產(chǎn)量呈上升趨勢,表明產(chǎn)量的提高主要依賴于單株結(jié)鈴數(shù)的增加。
棉鈴體積[5]和棉鈴直徑[14]對單鈴重的影響很大,且棉鈴體積與產(chǎn)量成極顯著正相關(guān)[10]。棉鈴生長發(fā)育指標(biāo)與產(chǎn)量性狀相關(guān)分析表明,單株結(jié)鈴數(shù)和產(chǎn)量與鈴長、鈴直徑和鈴體積成極顯著負(fù)相關(guān)。通徑分析發(fā)現(xiàn),鈴長與單株鈴數(shù)和產(chǎn)量相關(guān)度較高,而鈴長在鈴齡0~21 d增長優(yōu)勢明顯,表明品種更替過程中產(chǎn)量的差異,可能是在鈴齡0~21 d,鈴長及其相對增長量逐年降低,進而降低了鈴體積和鈴重[11-12]。因此,通過棉花高產(chǎn)栽培調(diào)控與新品種選育技術(shù),在保證適宜單株鈴數(shù)的前提下,適度促進鈴齡0~21 d的鈴長相對增長量、提高鈴長,對進一步挖掘棉花產(chǎn)量潛力具有重要意義。
3.2 棉花品種演替過程中棉鈴發(fā)育動態(tài)過程與品質(zhì)的關(guān)系
棉纖維品質(zhì)的形成過程實質(zhì)上是纖維的伸長和胞壁纖維素的有效積累過程,因而受到生態(tài)因子和品種類型的顯著影響[13]。而Wanjura等[14]和Danforth等[15]認(rèn)為纖維長度主要由基因決定。田海燕等[16]研究表明新疆特早熟棉區(qū)棉花品種纖維長度遞增較明顯,纖維強度增強,與品種更替密切相關(guān)。研究發(fā)現(xiàn),新陸早系列棉花品種演替過程中,從1980年代到2000年代纖維品質(zhì)有一定的提高,但2000~2010年代,纖維品質(zhì)基本沒有明顯的變化。
隨著棉鈴的發(fā)育,纖維品質(zhì)成增強趨勢[17,18],并且纖維品質(zhì)與棉鈴長度關(guān)系密切[19,20]。進一步分析發(fā)現(xiàn)比強度和纖維長度與鈴長、鈴直徑和鈴體積呈顯著正相關(guān);通徑分析表明,比強度與鈴長關(guān)系更密切且呈正相關(guān)關(guān)系,纖維長度與鈴直徑關(guān)系更密切,而鈴長和鈴直徑在鈴齡0~21 d增長優(yōu)勢明顯;而隨品種更替纖維品質(zhì)有一定的改善,鈴長和鈴直徑在鈴齡0~21 d,呈逐年下降趨勢,進一步影響了棉鈴發(fā)育,但棉鈴儲存足夠的同化物可保證纖維品質(zhì)發(fā)育[21,22],而對不同年代品種間品質(zhì)的影響與棉鈴發(fā)育關(guān)系不大,可能與該階段的育種主攻產(chǎn)量或品質(zhì)的目標(biāo)有關(guān)[4]。
隨著勞動力成本的增加和農(nóng)業(yè)機械化進程的推進,在新疆棉區(qū)大力推進機械化采收已成為必然趨勢,而在機械化采收過程中,要求纖維長、斷裂比強度大棉花品種,以減弱棉花機械采收時機械拉力對棉纖維品質(zhì)的影響[23,24]。因此,在保證產(chǎn)量較高前提下,選育鈴齡0~21 d鈴長和鈴直徑較大或增長速率較快的品種,以提高纖維長和比強度,對新疆棉區(qū)棉花經(jīng)濟效益增加有重要意義。
1980~2010年代新陸早系列棉花品種演替過程中,鈴長、鈴直徑、鈴體積和單鈴重均呈降低趨勢,但單株鈴數(shù)的增加彌補了單鈴重降低的不足,從而保證了較高的棉花產(chǎn)量;1980~2000年代,新陸早系列棉花品種纖維長度和比強度有明顯提高,自2000年之后纖維品質(zhì)變化不明顯。此外,鈴齡0~21 d內(nèi)鈴長和鈴直徑與產(chǎn)量和品質(zhì)指標(biāo)呈顯著正相關(guān)關(guān)系。因此,選育棉鈴發(fā)育早期鈴長和鈴直徑較大或增長速率較快的品種或栽培措施,可進一步挖掘棉花優(yōu)質(zhì)高產(chǎn)潛力。
References)
[1] 相吉山,謝宗銘,田琴,等.北疆棉花"新陸早"系列品種主要性狀分析[J].新疆農(nóng)業(yè)科學(xué),2010,(8):1 535-1 540.
XIANG Ji-shan,XIE Zong-ming,TIAN Qin. (2010). Analysis on the main characters of"Xinluzao"series cotton cultivars in Northern Xinjiang [J].XinjiangAgriculturalSciences,(8):1,535-1,540. (in Chinese)
[2]褚貴新,孫杰,刁明,等.北疆特早熟棉區(qū)棉花品種更替過程中棉鈴發(fā)育特性的研究[J].棉花學(xué)報,2002,(1):17-21.
CHU Gui-xin,SUN Jie,DIAO Ming,et al. (2002). Study on characteristics of cotton boll development among cotton varieties from different areas in Northern Xinjiang [J].CottonScience,(1):17-21. (in Chinese)
[3]許玉璋,許萱,翁琴.花鈴期缺水對棉株成鈴空間分布規(guī)律的影響[J].干旱地區(qū)農(nóng)業(yè)研究,1994,(3):49-55.
XU Yu-zhang,XU Xuan,WENG Qin. (1994). Effeets of water defieiency on spatial distribution of cotton bolls in canpoy during flowering-fruiting period [J].AgriculturalResearchintheAridArea, (3):49-55. (in Chinese)
[4]孫杰,褚貴新,張文輝,等.新疆特早熟棉區(qū)棉花品種主要性狀演變趨勢研究[J].中國棉花,1999,26(7):14-16.
SUN Jie,CHU Gui-xin,ZHANG Wen-hui,et al. (1999). Succession of Cotton Variety in Northern and Main Characters Evolution Trend [J].ChinaCotton, 26(7):14-16. (in Chinese)
[5]陳源,王永慧,肖健,等.高品質(zhì)陸地棉棉鈴發(fā)育特點[J].作物學(xué)報,2010,(8):1 371-1 376.
CHEN Yuan,WANG Yong-hui,XIAO Jian,et al. (2010). Boll Development Characteristics for High-Quality Upland Cotton Cultivars [J].ActaAgronomicaSinica,(8):1,371-1,376. (in Chinese)
[6]馬曉梅,李保成,林海,等.早熟陸地棉高產(chǎn)型與優(yōu)質(zhì)型品種棉鈴發(fā)育的特點[J].江蘇農(nóng)業(yè)科學(xué),2013,41(2):84-88.
MA Xiao-mei,LI Bao-cheng,LIN Hai,et al. (2013). Upland precocious high-yielding varieties and quality characteristics of boll development [J].JiangsuAgriculturalSciences,41(2):84-88. (in Chinese)
[7]高云光,饒翠婷,賀海燕,等.鈴期溫度對不同棉花品種棉鈴發(fā)育過程及纖維比強度的影響[J].棉花學(xué)報,2010,(6):580-585.
GAO Yun-guang,RAO Cui-ting,HE Hai-yan,et al. (2010). Regulation effect of temperature on the boll dates for boll development and fiber strength [J].CottonScience,(6):580-585. (in Chinese)
[8]焦曉玲,巴圖爾,張巨松,等.非充分滴灌對棉花成鈴質(zhì)量的影響[J].西北農(nóng)業(yè)學(xué)報,2015,(1):84-90.
JIAO Xiao-ling,Batuer,ZHANG Ju-song,et al. (2015). Effect of non-sufficient irrigation on cotton bolls quality [J].ActaAgriculturaePoreali-occidentalisSinica,(1): 84-90. (in Chinese)
[9]刁明,褚貴新,李少昆,等.北疆50年來主栽棉花品種親緣關(guān)系的研究[J].中國農(nóng)業(yè)科學(xué),2002,(12):1 456-1 460.
DIAO Ming,CHU Gui-xin,LI Shao-kun,et al. (2002). Studies on the relationship of upland cotton varieties in the course of replacement of varieties in North Xinjiang over the past fifty years [J].ScientiaAgriculturaSinica,(12):1,456-1,460. (in Chinese)
[10]閆曼曼,鄭劍超,張巨松,等.蕾期調(diào)虧灌溉對海島棉棉鈴發(fā)育及產(chǎn)量的影響[J]. 棉花學(xué)報,2015,(4):354-361.
YAN Man-man,ZHENG Jian-chao,ZHANG Ju-song,et al. (2015). Regulated Deficit Irrigation and Boll Development and Yield in Island Cotton [J].CottonScience,(4):354-361. (in Chinese)
[11]田曉莉,何鐘佩,王保民.轉(zhuǎn)Bt基因棉中棉所30不同開花期棉鈴發(fā)育及產(chǎn)量構(gòu)成因素的研究[J].棉花學(xué)報,2000,(6):306-309.
TIAN Xiao-li, HE Zhong-pei,WANG Bao-min. (2000). Boll development and yield components of Bt cotton CCRI30 influenced by flowering date [J].CottonScience, (6):306-309. (in Chinese)
[12]周桂生,林巖,童晨,等. 氮素運籌對高品質(zhì)棉FZ-1品系生育特性、棉鈴發(fā)育以及皮棉產(chǎn)量的影響(英文)[J]. Agricultural Science & Technology,2011,(11):1 667-1 670.
ZHOU Gui-sheng,LIN Yan,TONG Chen,et al. (2011). Effects of nitrogen application amount on growth characteristics,boll development and lint yield of high quality cotton [J].AgriculturalScience&Technology,(11):1,667-1,670. (in Chinese)
[13]馬富裕,朱艷,曹衛(wèi)星,等.棉纖維品質(zhì)指標(biāo)形成的動態(tài)模擬[J].作物學(xué)報,2006,(3):442-448.
MA Fu-yu, ZHU Yan,CAO Wei-xing,et al. (2006). Modeling Fiber Quality Formation in Cotton [J].ActaAgronomicaSinica,(3):442-448. (in Chinese)
[14] Wanjura, D. F., & Barker, G. L. (1985). Cotton lint yield accumulation rate and quality development.FieldCropsResearch, 10(3):205-218.
[15] Danforth, D. M., Cochran, M. J., Phillips, J. R., Bernhardt, J., & Haney, J. (1990). An economic analysis of lint weight and fiber properties by fruiting position.BeltwideCottonProductionResearchConferences.
[16]田海燕,薛飛,李艷軍,等.北疆棉花品種主要經(jīng)濟性狀演替規(guī)律研究[J].西北農(nóng)業(yè)學(xué)報,2007,(5):96-99.
TIAN Hai-yan,XUE Fei,LI Yan-jun, et al. (2007). Research on main economical characteristics succession of cotton variety in Northern of Xinjiang [J].ActaAgriculturaePoreali-occidentalisSinica,(5): 96-99. (in Chinese)
[17]朱紹林,李大慶,華國雄,等.陸地棉不同纖維強度品種棉鈴與纖維發(fā)育研究[J].棉花學(xué)報,1990,(1):8-14.
ZHU Shao-lin,LI Da-qing,HUA Guo-xiong,et al. (1990).Boll and fiber development of cotton varieties (gossypium hirsutum) with different fiber strength [J].CottonScience,(1):8-14. (in Chinese)
[18]李秋蘭,周桂生,吳長清,等.施鉀量對泗雜3號棉鈴發(fā)育和纖維品質(zhì)的影響[J].安徽農(nóng)業(yè)科學(xué),2008,(1):177-178,181.
LI Qiu-lan,ZHOU Gui-sheng, WU Chang-qing, et al. (2008). Effects of potassium application amount on the boll development and fiber quality in Siza 3[J].JournalofAnhuiAgri.Sci. ,(1):177-178,181. (in Chinese)
[19]張文英,梅擁軍.陸地棉鈴形和纖維品質(zhì)的遺傳和相關(guān)研究[J]. 作物學(xué)報,2004,30(8):739-744.
ZHANG Wen-ying,MEI Yong-jun. (2004). Analysis of genetic correlation between boll shape traits and fiber quality traits in Upland Cotton [J].ActaAgronomicaSinica,30(8):739-744. (in Chinese)
[20]狄佳春,肖松華,劉劍光,等.不同鈴形的陸地棉棉鈴性狀研究[J]. 中國棉花,2002,29(5):12-14.
DI Jia-chun,XIAO Song-hua,LIU Jian-guang,et al. (2002). Traits of Upland Cotton Boll different bell [J].ChinaCotton,29(5):12-14. (in Chinese)
[21]卞海云,陳兵林,周治國,等.低溫條件下外源生理活性物質(zhì)對棉鈴發(fā)育的影響[J]. 西北植物學(xué)報,2005,25(9):1 785-1 790.
BIAN Hai-yun,CHEN Bing-lin,ZHOU Zhi-guo,et al. (2005). Effects of exogenous and physiologically active substanceson the development of cotton bolls at low temperature [J].ActaBotanicaBoreali-OccidentaliaSinica,25(9):1,785-1,790. (in Chinese)
[22]徐立華,李大慶,劉興民,等.陸地棉棉鈴發(fā)育機理及影響因素的研究[J].棉花學(xué)報,1994,6 (4):253-255.
XU Li-hua,LI Da-qing,LIU Xing-min,et al. (1994). Study on the developmental mechanism of cotton bolls (Gossypium lzirsutum L.)and the influencing factors[J].CottonScience,6(4):253-255. (in Chinese)
[23]王聰. 棉花機采模式下行距變化對植株生長發(fā)育和產(chǎn)量形成的影響[D].石河子: 石河子大學(xué)碩士論文,2015.
WANG Cong.(2015).AresearchofMachine-pickedcottongrowthandyieldformationunderdifferentrowspace[D]. Master Dissertation. Shihezi University, Shihezi. (in Chinese)
[24]宋敏,王海標(biāo),高文偉,等.新疆早熟植棉區(qū)機采棉和手摘棉纖維品質(zhì)比較[J].中國棉花,2015,(12):4-6.
SONG Min,WANG Hai-biao,GAO Wen-wei,et al. (2015).Xinjiang cotton area precocious picker machine and hand picking cotton fiber quality comparison [J].ChinaCotton, (12):4-6. (in Chinese)
Fund project:National science and technology support program (2014BAD09B03) and Shihezi University SRP project (SRP2014188)
On Characteristics of Boll Development of Xinluzao Series of Cotton Varieties and Their Relationship with the Yield and the Fiber Quality in Northern Xinjiang
CHEN Zong-kui, TIAN Long-hai, SUO Xiao-xia, TIAN Jing-shan, LUO Hong-hai
(CollegeofAgronomy,ShiheziUniversity/KeyLaboratoryofOasisEco-agricultureofXinjingProductionConstructionCorps,ShiheziXinjiang832000.China)
【Objective】 This experiment aims to explore the cotton boll development and the effect on fiber quality and yield of Xinluzao cotton varieties, which might be of great significance to construct high-yielding cultivation technique system and new variety cotton breeding in Xinjiang.【Method】Field experiments were carried out to study the characteristics of cotton boll development among 12 main cotton varieties used widely from 1980s to 2010s, and the boll length, diameter, volume, single boll weight, yield and fiber quality during development were determined.【Result】During the evolutional succession of Xinluzao cotton varieties, boll length, boll diameter, boll volume and boll weight decreased by 2.79%-16.92%, 2.27%-13.28%, 10.15%-35.9% and 11.5%-18.9%, respectively; Bolls number per plant and seed cotton yield increased by 4.0%-45.29% and 8.75%-28.04%, respectively. From 1980s to 2000s, fiber length and fiber strength increased; during the period from 2000 to 2010, there were no obvious changes. The correlation analysis showed that boll length, boll diameter and boll volume were significantly negatively correlated with the bolls number per plant, seed cotton yield, fiber uniformity and micronaire, and significantly positively correlated with single boll weight, fiber length and specific strength. The further path coefficient analysis showed that boll length and boll diameter went against increasing bolls number per plant, but both helped to improve fiber strength and fiber length.【Conclusion】The increase of yield was mainly attributed to the increase of boll number per plant during the evolutional succession of Xinluzao cotton cultivars, and the length and diameter of 0~21 d were closely related to the yield and quality.
cotton; evolutional succession of cotton varieties; cotton boll development characteristics; yield; fiber quality
10.6048/j.issn.1001-4330.2017.01.002
2016-04-26
國家科技支撐計劃課題(2014BAD09B03);石河子大學(xué)SRP項目(SRP2014188)
陳宗奎(1990-),男,甘肅人,碩士,研究方向為棉花栽培學(xué)與耕作學(xué),(E-mail)1643803948@qq.com
羅宏海(1979-),男,新疆人,博士,副教授,研究方向為作物生理生態(tài),(E-mail)luohonghai79@163.com
S562
A
1001-4330(2017)01-0010-10