趙忠紅,張乃明,扈學文,包 力,夏運生
(1:云南農(nóng)業(yè)大學資源與環(huán)境學院,昆明 650201)(2:中國環(huán)境科學研究院,環(huán)境基準與風險評估國家重點實驗室,北京 100012)(3:中國環(huán)境科學研究院國家環(huán)境保護湖泊污染控制重點實驗室,湖泊生態(tài)環(huán)境創(chuàng)新基地,北京 100012)
云南陽宗海表層沉積物有機質(zhì)組成結(jié)構(gòu)對磷賦存形態(tài)特征的影響*
趙忠紅1,張乃明1**,扈學文2,3,包 力1,夏運生1
(1:云南農(nóng)業(yè)大學資源與環(huán)境學院,昆明 650201)(2:中國環(huán)境科學研究院,環(huán)境基準與風險評估國家重點實驗室,北京 100012)(3:中國環(huán)境科學研究院國家環(huán)境保護湖泊污染控制重點實驗室,湖泊生態(tài)環(huán)境創(chuàng)新基地,北京 100012)
利用連續(xù)提取分級的方法定量分析陽宗海表層沉積物磷賦存形態(tài),闡明了沉積物C、N、H和O組成及溶解有機質(zhì)(DOM)紫外-可見光譜特征,探討沉積物元素組成及DOM組成結(jié)構(gòu)對不同形態(tài)磷含量的影響.結(jié)果表明:(1)沉積物潛在可移動磷含量在68.67~124.70 mg/kg之間變化,平均占總磷含量的9.81%,表現(xiàn)為BD-P > NaOH-nrP >NH4Cl-P;沉積物穩(wěn)定磷含量在496.73~908.28 mg/kg之間變化,平均占總磷含量的60.86%.(2)沉積物C、N含量和疏水性DOM光譜參數(shù)A240-400表現(xiàn)出北部高、南部低的變化趨勢,但H/C、O/C和(N+O)/C摩爾比和親水性DOM光譜參數(shù)A240-400變化趨勢則與之恰好相反.(3)沉積物NH4Cl-P含量與C、N和H含量之間呈顯著正相關(guān),但與H/C、O/C、(N+O)/C摩爾比和親水性DOM光譜參數(shù)E2/E3值之間呈顯著負相關(guān);NaOH-rP和BD-P+NaOH-rP含量均與O含量及O/H摩爾比呈顯著負相關(guān);NaOH-rP、BD-P+NaOH-rP和HCl-P均與疏水性DOM光譜參數(shù)A240-400值之間呈顯著正相關(guān).因此,天然有機質(zhì)元素組成及官能團結(jié)構(gòu)是影響沉積物磷賦存形態(tài)的重要因素.
陽宗海;沉積物;元素組成;溶解有機質(zhì);磷形態(tài)
沉積物磷釋放是湖泊水體中磷的重要來源之一,尤其在外源磷入湖負荷得到控制后,沉積物內(nèi)源磷釋放在一定程度上較長時間內(nèi)將影響著水體的富營養(yǎng)化水平[1-4].弱吸附態(tài)磷(NH4Cl-P)、氧化還原敏感磷(BD-P)和生物有機磷(NaOH-nrP)被認為是沉積物潛在可移動磷形態(tài)(Mobile-P),而鋁結(jié)合態(tài)磷(NaOH-rP)、鈣結(jié)合態(tài)磷(HCl-P)和殘渣磷(Res-P)則被認為是沉積物穩(wěn)定磷形態(tài)(Immobile-P)[5-6].Reitzel等[6]研究認為,Mobile-P在較短時間尺度即可周轉(zhuǎn)循環(huán),其半衰期大約為10 a,而Immobile-P則在較長時間尺度才能周轉(zhuǎn)循環(huán),其半衰期大約為100 a.很多研究表明,有機質(zhì)和金屬化合物均是影響沉積物磷賦存形態(tài)的重要因素,NH4Cl-P含量與沉積物有機質(zhì)和CaCO3密切相關(guān)[4,7-9],隨著鐵、鋁和鈣等金屬化合物和有機質(zhì)含量的提高,沉積物中Fe/Al-P和Ca-P含量也顯著增加[10-13].關(guān)于有機質(zhì)和金屬化合物對磷吸附/釋放特征的影響國際上已有較多報道[14-18].有機質(zhì)礦化降解過程中可使沉積物/水界面氧化還原電位降低,作為電子受體的MnO2和FeOOH-等被還原成溶解性的Mn2+和Fe2+,從而導(dǎo)致鐵錳結(jié)合的磷形態(tài)大量釋放出來[14-15].研究發(fā)現(xiàn),低分子量有機酸能夠活化結(jié)晶鐵鋁氧化物和阻礙無定形鐵鋁氧化物結(jié)晶,從而促進了磷的吸附作用[16],土壤中磷吸附能力的提高與有機質(zhì)分解產(chǎn)生低分子量有機化合物通過與金屬鍵合,形成具有穩(wěn)定化學結(jié)構(gòu)的有機-金屬螯合體有關(guān)[17].但也有研究報道,由于腐殖酸類物質(zhì)(HA)占據(jù)氧化鐵的表面吸附位點,從而降低了磷的吸附能力[18-19].Wang等[20-21]研究表明,沉積物粒度、有機質(zhì)和離子強度均顯著影響磷的吸附作用,沉積物輕組有機質(zhì)(LFOM)去除后,磷酸鹽吸附量的下降主要與羧基、羥基等官能團結(jié)構(gòu)減少有關(guān).可見,有機質(zhì)在沉積物磷賦存形態(tài)及吸附/釋放過程中扮演著非常重要的作用.然而,由于天然有機質(zhì)具有高度異質(zhì)性,有機質(zhì)含量及組成結(jié)構(gòu)不同,其對沉積物磷賦存特征的影響也明顯不同.闡明有機質(zhì)組成結(jié)構(gòu)對沉積物磷賦存特征影響,對揭示沉積物磷滯留及潛在的風險具有重要的指導(dǎo)意義.另外,溶解性有機質(zhì)的官能團能夠與砷酸鹽和亞砷酸鹽形成絡(luò)合物,可降低砷的遷移及生物有效性,而水體中高濃度磷酸鹽則會與砷產(chǎn)生競爭吸附,進而促進沉積物砷的釋放[22-23].因此,有機質(zhì)組成結(jié)構(gòu)與沉積物磷和砷賦存之間均具有密切關(guān)系.近年來,陽宗海砷污染事件廣泛受到世界各界人士關(guān)注[24],通過本項研究,對進一步揭示陽宗海沉積物砷的環(huán)境風險具有重要的借鑒作用.
1.1 樣品采集與流域特征
陽宗海(24°27′~24°54′N, 102°55′~103°2′E)位于宜良、呈貢、澄江三縣交界處,屬于珠江流域南盤江水系,流域面積286 km2,湖面面積31.9 km2,最大水深29.1 m,平均水深20.0 m. 南部靠近陽宗鎮(zhèn),入湖河流包括陽宗大河、七星河和魯溪沖河,北部靠近湯池鎮(zhèn),入湖河流為擺依河和湯池河. 陽宗海工礦企業(yè)主要分布在南岸和北岸,其中南岸有磷肥廠和耐火廠,北岸有磷肥廠、火電廠和粉煤灰堆場. 陽宗海是云南高原水質(zhì)相對較好的湖泊之一,水質(zhì)基本為Ⅱ類或Ⅲ類,但近年來呈現(xiàn)下降趨勢. 農(nóng)村農(nóng)業(yè)面源是陽宗海流域的主要污染源,有46%的氮磷污染來自于農(nóng)村農(nóng)業(yè)面源.
圖1 陽宗海采樣點分布
2014年9月采集陽宗海由北至南不同點位上覆水和表層沉積物樣品,同時采用水深測定儀和塞氏盤現(xiàn)場測定水深和透明度,采集的水樣和沉積物樣品立即帶回實驗室,水體中總氮(TN)和總磷(TP)等水質(zhì)指標采用過硫酸鉀-分光光度法測定,沉積物樣品冷凍干燥后,過100目篩后備用. 采樣點位置及水環(huán)境指標見圖1和表1.
1.2 分析及計算方法
沉積物TP含量采用歐洲標準測試委員會框架下發(fā)展的SMT法[25],沉積物磷形態(tài)提取方法采用Psenner[26]提出的連續(xù)提取法. 沉積物有機元素分析的前處理方法:將樣品中加入0.5 mol/L鹽酸,攪拌均勻后放置24 h,再加入去離子水清洗直至pH值達6~7,樣品在40℃以下烘干后研磨至200目備用. 沉積物樣品C、N、H和O含量采用德國Elementar公司Vario Micro cube型號元素分析儀分析測定,重復(fù)3次. 沉積物溶解
表1 陽宗海采樣點坐標及水質(zhì)指標
有機質(zhì)(DOM)分組采用XAD-8樹脂分離法[27],具體為:XAD-8樹脂在0.1 mol/L NaOH中浸泡24 h,用丙酮和正己烷各抽提12 h以除去有機物,然后浸泡于甲醇中裝柱. 樹脂柱高50 cm,直徑4.5 cm,樹脂粒徑50~250 μm,用甲醇洗去柱中的丙酮和正己烷,最后用超純水洗凈甲醇直至出水溶解性有機碳(DOC)濃度小于1 mol/L. 將提取的DOM以1 ml/min的流速過XAD-8樹脂柱,用1~2倍柱體積的超純水洗凈,收集通過樹脂柱的部分再用6 mol/L的HCl調(diào)pH至2,用1倍柱體積0.01 mol/L的HCl淋洗,即得到親水組分;再用0.25 倍柱體積,0.1 mol/L的NaOH溶液反洗樹脂柱,接著用1.5倍柱體積超純水洗,收集反洗液,即得到疏水組分.
1.3 數(shù)據(jù)統(tǒng)計分析
數(shù)據(jù)統(tǒng)計分析及制圖采用Origin 8.5和ArcGIS 10.0軟件.
2.1 表層沉積物磷賦存形態(tài)特征
陽宗海表層沉積物Mobile-P含量由北至南呈現(xiàn)下降趨勢(圖2),Mobile-P含量在68.67~124.70 mg/kg之間變化,平均為91.64 mg/kg. BD-P是沉積物潛在可移動磷的最重要組成部分,主要為鐵結(jié)合態(tài)磷,BD-P釋放主要受沉積物-水界面氧化還原條件影響,當水體厭氧時,沉積物BD-P大量釋放,進而顯著影響上覆水磷濃度[10,12-13]. NaOH-nrP主要來源于生物有機體的沉積,包括腐殖酸結(jié)合磷、磷酸單脂、磷酸二脂、焦磷酸和多聚磷酸等有機磷化合物. 通常情況下,NaOH-nrP能夠礦化為正磷酸鹽成為沉積物內(nèi)源磷負荷的潛在來源[28]. NH4Cl-P是沉積物最活躍的磷形態(tài)組分,盡管沉積物中NH4Cl-P含量較低,不足TP含量的1%,但由于它是沉積物-水界面磷循環(huán)的直接貢獻者,并且在環(huán)境條件變化時極容易重新進入水體,因此,這部分磷通常被認為沉積物-水界面磷釋放通量的重要指示指標. 本研究潛在可移動磷中BD-P含量最高,在50.59~81.24 mg/kg之間變化,平均占Mobile-P含量的66.73%;NaOH-nrP含量次之,在16.50~54.51 mg/kg之間變化,平均占Mobile-P含量的31.96%;NH4Cl-P含量最低,在0.32~1.83 mg/kg之間變化,平均占Mobile-P含量的1.31%. 總體而言,BD-P對Mobile-P的貢獻呈現(xiàn)南部高、北部低的變化趨勢,而NaOH-nrP則與之趨勢相反,表明北部站點沉積物磷釋放主要與有機磷的礦化降解有關(guān),而南部站點沉積物磷釋放則受氧化還原條件影響較大.
圖2 表層沉積物潛在可移動磷形態(tài)空間變化
陽宗海表層沉積物Immobile-P含量由北向南呈現(xiàn)下降趨勢(圖3),Immobile-P含量在496.73~908.28 mg/kg 之間變化,平均為639.71 mg/kg. NaOH-rP被公認為較為穩(wěn)定磷形態(tài)的組成部分,沉積物水合鋁氧化物膠體主要以結(jié)晶態(tài)和非結(jié)晶態(tài)兩種形式存在,其中Al(OH)3是主要存在形式,其不僅具有較高的吸附能力,而且可以在好氧和厭氧條件下穩(wěn)定存在,NaOH-rP主要與OH-或溶解的磷酸鹽復(fù)合物發(fā)生交換而釋放.由于Al(OH)3具有較強的吸附能力,厭氧條件下通常會阻礙Fe-P釋放,因此隨著NaOH-rP增加沉積物磷滯留越加明顯[10].作為穩(wěn)定態(tài)磷的重要組成部分HCl-P主要來源于陸源輸入的碎屑巖以及自生磷灰石,通常條件下不易釋放,也難以被生物利用,只有沉積物呈現(xiàn)弱酸性條件,HCl-P才逐漸被釋放,而Res-P則是最穩(wěn)定的磷形態(tài),也被稱為惰性磷,其中大部分為難溶解磷和穩(wěn)定的有機磷[4,7].本研究中NaOH-rP含量在159.45~246.23 mg/kg之間變化,平均占Immobile-P的31.80%;HCl-P含量在123.24~391.46 mg/kg之間變化,平均占Immobile-P含量的29.51%;Res-P含量在191.32~297.97 mg/kg之間變化,平均占Immobile-P含量的38.68%. 其中NaOH-rP和HCl-P對Immobile-P貢獻主要表現(xiàn)為南北高、中部低的特點,而Res-P貢獻則與其相反.表明北部和南部站點以NaOH-rP和HCl-P滯留為主,受pH值影響較大,而中部站點則以Res-P滯留為主.
圖3 表層沉積物穩(wěn)定磷形態(tài)空間變化
2.2 表層沉積物元素組成及DOM紫外-可見光譜特征
沉積物中C、N、H和O等元素是構(gòu)成天然有機質(zhì)的主要指標,通常可通過δ13C和δ15N穩(wěn)定同位素、C/N 比及C和N含量變化判斷沉積物有機質(zhì)的來源和豐富度[30].由于天然有機質(zhì)具有高度異質(zhì)性,不同來源的有機質(zhì)組成結(jié)構(gòu)差異較大.隨著H/C比的增大,有機質(zhì)中脂肪族化合物增加,反之,芳香族化合物則明顯增加[31].O/C和(O+N)/C比可有效反映有機質(zhì)的官能團結(jié)構(gòu),O/C和(O+N)/C比越大,有機質(zhì)芳香環(huán)上則包含有更多的羰基、羧基、羥基或氨基和硝基等官能團結(jié)構(gòu),O/H比可有效表征有機質(zhì)的氧化度,O/H比越大表明有機質(zhì)的含氧官能團越多,其氧化度越高,極性越強,疏水性則越弱[31-32].
不同樣點沉積物C和N含量分別變化在1.87%~5.66%和0.16%~0.33%之間,表現(xiàn)出北部高、南部低的變化趨勢;H和O含量分別在0.88%~1.15%和8.33%~15.86%之間變化,表現(xiàn)為中部高、南北低的變化趨勢;不同樣點沉積物H/C、O/C、(N+O)/C和O/H摩爾比分別在2.27~5.65、1.47~3.42、1.52~3.48和0.56~0.89之間變化,與C、N含量變化趨勢恰好相反.表明沉積物有機質(zhì)含量表現(xiàn)為北部較高、南部較低,脂肪族化合物及芳香環(huán)上具有羰基、羥基和羧基或氨基和硝基等官能團結(jié)構(gòu)的化合物則表現(xiàn)出南部高、北部低的變化趨勢(表2).
表2 表層沉積物C、N、H和O元素組成及DOM紫外-可見光譜參數(shù)
不同點位沉積物DOM疏水性組分和親水性組分紫外-可見光譜特征見圖4和表2.特征值E2/E3比是有機質(zhì)在250和365 nm處吸光度的比值,該參數(shù)能夠反映有機質(zhì)的腐殖化、團聚化程度和分子量大小.當E2/E3值<3.5時,有機質(zhì)組成以胡敏酸為主,而E2/E3值>3.5時,有機質(zhì)組成則以富里酸為主,并且E2/E3值與有機質(zhì)的分子量呈反比[33-34].A240~400值是DOM樣品在240~400 nm波段的積分面積,主要與電子傳遞帶有關(guān),電子傳遞的強度受極性官能團的影響較大,而不受苯環(huán)存在的影響.當有機質(zhì)芳香環(huán)上存在羧基、羰基和羥基等官能團時,其電子傳遞的強度增加,而苯環(huán)上有脂肪族結(jié)構(gòu)時,則不會提高其電子傳遞強度[33].不同點位沉積物疏水性DOM的E2/E3和A240-400分別變化在7.48~44.90和3.75~13.59之間,其中E2/E3則表現(xiàn)出南北高、中部低的變化趨勢,而A240-400呈現(xiàn)出北部高、南部低的變化趨勢(表2).不同點位沉積物親水性DOM的E2/E3和A240-400分別變化在7.33~97.32和8.68~33.69之間,二者均表現(xiàn)出南部高、北部低的變化趨勢.表明由北至南親水性DOM腐殖化水平和電子傳遞強度升高,分子量降低,但疏水性DOM的腐殖化水平和電子傳遞強度下降,分子量則表現(xiàn)出南北低、中間高的特點.相比較而言,北部點位S1和S2沉積物DOM的E2/E3和A240-400值均表現(xiàn)為:疏水性DOM>親水性DOM,而中部和南部點位S3~S8沉積物DOM的E2/E3和A240-400值則表現(xiàn)為疏水性DOM<親水性DOM.
圖4 沉積物疏水性和親水性DOM紫外-可見光譜特征
2.3 沉積物磷形態(tài)與有機質(zhì)組成結(jié)構(gòu)之間的關(guān)系
沉積物不同形態(tài)磷含量與C、N、H和O元素組成及DOM光譜特征參數(shù)密切相關(guān)(表3),不同點位沉積物NH4Cl-P含量與C、N和H含量之間呈顯著正相關(guān)(n=8,P<0.01或P<0.05),表明隨著沉積物有機質(zhì)含量的增加,NH4Cl-P含量顯著升高.NH4Cl-P是磷酸鹽通過靜電引力吸附在沉積物表面的磷形態(tài),主要包括間隙水中磷、CaCO3結(jié)合的磷,以及沉積的植物碎屑中菌體細胞降解析出的磷,這部分磷在沉積物-水界面是不穩(wěn)定的,通常在擾動等外力條件下很容易釋放到水體[4,29].前人研究表明[4,7-9],NH4Cl-P含量與沉積物有機質(zhì)及鈣含量密切相關(guān),隨著沉積物TOC和CaCO3含量的升高,NH4Cl-P含量顯著增加,這與本研究結(jié)果一致.本研究NH4Cl-P含量與H/C、O/C和(O+N)/C摩爾比則呈顯著負相關(guān)(n=8,P<0.01和P<0.05).由于H/C摩爾比能夠反映脂肪族和芳香族化合物的多少,而O/C和(O+N)/C摩爾比與芳香環(huán)上羥基、羧基和羰基等官能團結(jié)構(gòu)有關(guān).因此,沉積物NH4Cl-P不僅與有機質(zhì)含量有關(guān),還受有機質(zhì)組成結(jié)構(gòu)影響. 此外,NH4Cl-P 含量與親水性DOM光譜參數(shù)E2/E3之間呈顯著負相關(guān)(n=8,P<0.05),而與疏水性DOM相關(guān)性不顯著(n=8,P>0.05).由于E2/E3與DOM分子量呈反比,因此,沉積物NH4Cl-P含量隨著親水性DOM分子量的增大顯著增加,而疏水性DOM對NH4Cl-P含量的影響不大.由于親水性DOM通常含有更多的羥基、羧基和羰基等極性官能團結(jié)構(gòu),DOM親水性基團與磷酸鹽競爭吸附或陰離子替換作用很可能是導(dǎo)致NH4Cl-P 含量降低的主要原因[18-19].
很多研究認為,沉積物BD-P和NaOH-rP含量主要與鐵鋁氧化物或氫氧化物有關(guān)[10-12]. Kopacek等[10]研究發(fā)現(xiàn),當AlNaOH~25∶FeBD摩爾比>3,AlNaOH~25∶P(H2O+BD)摩爾比>25時,沉積物BD-P含量顯著下降,反之,沉積物BD-P含量顯著增加.盡管如此,當AlNaOH~25∶P(H2O+BD)摩爾比<25時,BD-P隨著溶解性有機碳含量 OC(BD+H2O)的增加呈現(xiàn)線性增加趨勢(R2=0.96,P<0.001),表明在氫氧化鋁含量較低的沉積物中,BD-P的增加顯著受沉積物有機質(zhì)增加的影響.本研究發(fā)現(xiàn)NaOH-rP和BD-P+NaOH-rP含量均與O含量及O/H摩爾比呈顯著負相關(guān),表明隨著沉積物有機質(zhì)氧化度升高、極性增強和疏水性減弱,沉積物鐵鋁氧化物對磷的吸附能力下降. 另外,NaOH-rP和BD-P+NaOH-rP和HCl-P含量均與疏水性DOM的A240-400呈顯著正相關(guān)(n=8,P<0.05),但與親水性DOM的A240-400之間相關(guān)性不顯著(n=8,P>0.05).表明沉積物BD-P、NaOH-rP和HCl-P含量主要與疏水性DOM苯環(huán)上羥基、羧基和羰基等官能團結(jié)構(gòu)有關(guān),而受親水性DOM影響較小.前人研究發(fā)現(xiàn),低分子量有機酸能夠活化結(jié)晶鐵鋁氧化物和阻礙無定形鐵鋁氧化物結(jié)晶,從而促進了磷的吸附作用[16],土壤中磷吸附能力的提高與有機質(zhì)分解產(chǎn)生低分子量有機化合物通過與金屬鍵合,形成具有穩(wěn)定化學結(jié)構(gòu)的有機-金屬螯合體有關(guān)[17].Sindelar等研究[36]發(fā)現(xiàn),隨著天然有機質(zhì)(NOM)含量的增加,磷在方解石表面的共沉淀最大表面積也顯著增大.因此,疏水性DOM基團與鐵、鋁和鈣礦物的鍵合作用增強了磷酸鹽在沉積物上的吸附和共沉淀作用,進而提高了BD-P、NaOH-rP和HCl-P含量.另外,NaOH-nrP與N含量呈顯著正相關(guān),但與O/C和(O+N)/C摩爾比呈顯著負相關(guān)(n=8,P<0.05),由于磷酸單酯、磷酸二酯焦磷酸和多聚磷酸等有機磷化合物是NaOH-nrP的主要來源[28],表明NaOH-nrP含量主要與有機質(zhì)中有機磷組成結(jié)構(gòu)有關(guān).
表3 表層沉積物磷形態(tài)與C、N、H和O元素組成及DOM紫外-可見光譜參數(shù)之間的關(guān)系
1)代表疏水性DOM,2)代表親水性DOM.
1)陽宗海表層沉積物不同形態(tài)磷含量總體呈現(xiàn)北部高、南部低的變化趨勢.其中沉積物Mobile-P含量在68.67~124.70 mg/kg之間變化,平均占TP含量的9.81%,表現(xiàn)為BD-P>NaOH-nrP>NH4Cl-P;沉積物Immobile-P 含量在496.73~908.28 mg/kg之間變化,平均占TP含量的60.86%.
2)陽宗海表層沉積物C、N含量和疏水性DOM光譜參數(shù)A240-400表現(xiàn)出北部高、南部低的變化趨勢,但H/C、O/C和(N+O)/C和親水性DOM光譜參數(shù)E2/E3和A240-400變化趨勢與之恰好相反.表明陽宗海由北至南沉積物有機質(zhì)含量下降,疏水性DOM官能團減弱,但沉積物脂肪族化合物及芳香環(huán)上具有羰基、羥基和羧基或氨基和硝基等官能團結(jié)構(gòu)化合物增多,親水性DOM官能團增強.
3)沉積物NH4Cl-P含量與C、N和H含量之間呈顯著正相關(guān),但與H/C、O/C、(N+O)/C和親水性DOM的E2/E3呈顯著負相關(guān);NaOH-rP和BD-P+NaOH-rP含量均與O含量及O/H摩爾比呈顯著負相關(guān);NaOH-rP、BD-P+NaOH-rP和HCl-P含量均與疏水性DOM的A240-400呈顯著正相關(guān),但與親水性DOM的A240-400相關(guān)性不顯著,表明天然有機質(zhì)組成結(jié)構(gòu)是影響沉積物磷賦存形態(tài)的重要因素.
[1] Wang Chao, Zou Limin, Wang Peifangetal. Fractionation of phosphorus in suspended matter and sediment.EnvironmentalScience, 2008, 29(5): 1303-1307.[王超, 鄒麗敏, 王沛芳等. 典型城市淺水湖泊沉積物磷形態(tài)的分布及與富營養(yǎng)化的關(guān)系. 環(huán)境科學, 2008, 29(5): 1303-1307.]
[2] Li Anding, Zhang Yi, Zhou Beihaietal. In-situ control technology of phosphorus in sediment of eutrophic lake.ActaHydrobiologicaSinica, 2014, 38(2): 370-374. [李安定, 張義, 周北海等. 富營養(yǎng)化湖泊沉積物磷原位控制技術(shù). 水生生物學報, 2014, 38(2): 370-374.]
[3] Huang Qinghui, Wang Donghong, Wang Chunxiaetal. Relation between phosphorus forms in the sediments and lake eutrophication.ChinaEnvironmentalScience, 2003, 23(6): 24-27. [黃清輝, 王東紅, 王春霞等. 沉積物中磷形態(tài)與湖泊富營養(yǎng)化的關(guān)系. 中國環(huán)境科學, 2003, 23(6): 24-27.]
[4] Wang SR, Jin XC, Zhao HCetal. Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in China.ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects, 2006, 273(1): 109-116.
[5] Meis S, Spears BM, Maberly SCetal. Assessing the mode of action of Phoslock? in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK).WaterResearch, 2013, 47(13): 4460-4473.
[6] Reitzel K, Hansen J, Andersen F?etal. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment.EnvironmentalScience&Technology, 2005, 39(11): 4134-4140.
[7] Wang SR, Jin XC, Pang Yetal. Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China.JournalofColloidandInterfaceScience, 2005, 289(2): 339-346.
[8] Herlihy M, McGrath D. Phosphorus fractions and adsorption characteristics in grassland soils of varied soil phosphorus status.NutrientCyclinginAgroecosystems, 2007, 77(1): 15-27.
[9] Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments—Lakes Volvi and Koronia, N. Greece.Chemosphere, 2002, 46(8): 1147-1155.
[10] Kopacek J, Borovec J, Hejzlar Jetal. Aluminum control of phosphorus sorption by lake sediments.EnvironmentalScience&Technology, 2005, 39(22): 8784-8789.
[11] Igwe CA, Zarei M, Stahr K. Fe and Al oxides distribution in some ultisols and inceptisols of southeastern Nigeria in relation to soil total phosphorus.EnvironmentalEarthSciences, 2010, 60(5): 1103-1111.
[12] Virtasalo JJ, Kotilainen AT. Phosphorus forms and reactive iron in lateglacial, postglacial and brackish-water sediments of the Archipelago Sea, northern Baltic Sea.MarineGeology, 2008, 252(1): 1-12.
[13] Kleeberg A, Herzog C, Hupfer M. Redox sensitivity of iron in phosphorus binding does not impede lake restoration.WaterResearch, 2013, 47(3): 1491-1502.
[14] Tessier A. Sorption of trace elements on natural particles in oxic environments.EnvironmentalParticles, 1992, (1): 425-453.
[15] Zhang H, Davison W, Miller Setal. In situ high resolution measurements of fluxes of Ni, Cu, Fe, and Mn and concentrations of Zn and Cd in porewaters by DGT.GeochimicaetCosmochimicaActa, 1995, 59(20): 4181-4192.
[16] Wang C, Wang Z, Lin Letal. Effect of low molecular weight organic acids on phosphorus adsorption by ferric-alum water treatment residuals.JournalofHazardousMaterials, 2012, 203: 145-150.
[17] Guppy CN, Menzies NW, Moody PWetal. Competitive sorption reactions between phosphorus and organic matter in soil: A review.SoilResearch, 2005, 43(2): 189-202.
[18] Sibanda HM, Young SD. Competitive adsorption of humus acids and phosphate on goethite, gibbsite and two tropical soils.JournalofSoilScience, 1986, 37(2): 197-204.
[19] Yan J, Jiang T, Yao Yetal. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes.JournalofEnvironmentalSciences, 2016, 42(6): 152-162.
[20] Wang SR, Jin XC, Bu Qetal. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments.JournalofHazardousMaterials, 2006, 128(2): 95-105.
[21] Wang SR, Yi WL, Yang SWetal. Effects of light fraction organic matter removal on phosphate adsorption by lake sediments.AppliedGeochemistry, 2011, 26(3): 286-292.
[22] Rubinos DA, Iglesias L, Díaz-Fierros Fetal. Interacting effect of pH, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain).AquaticGeochemistry, 2011, 17(3): 281-306.
[23] Li Shiyu, Liu Bin, Yang Changliangetal. Effect of pH and total phosphorus concentration of overlying water on arsenic mobilization in the sediments containing high arsenic and iron salts.JLakeSci, 2015, 27(6): 1101-1106. DOI: 10.18307/2015.0615. [李世玉, 劉彬, 楊常亮等. 上覆水pH值和總磷濃度對含鐵鹽的高砷沉積物中砷遷移轉(zhuǎn)化的影響. 湖泊科學, 2015, 27(6): 1101-1106.]
[24] Wang Zhenhua, He Bin, Pan Xuejunetal. The levels, trends and risk assessment of arsenic pollution in Lake Yangzonghai, Yunnan.ScientiaSinicaChimica, 2011, 41(3): 556-564. [王振華, 何濱, 潘學軍等. 云南陽宗海砷污染水平、變化趨勢及風險評估. 中國科學: 化學, 2011, 41(3): 556-564.]
[25] Ruban V, López-Sánchez JF, Pardo Petal. Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment.JournalofEnvironmentalMonitoring, 1999, 1(1): 51-56.
[26] Psenner R, Bostr?m B, Dinka Metal. Fractionation of phosphorus in suspended matter and sediment.ArchivfürHydrobiologieBeiheftErgebnissederLimnologie, 1988, 30: 98-103.
[27] Liu HZ, Jeong J, Gray Hetal. Algal uptake of hydrophobic and hydrophilic dissolved organic nitrogen in effluent from biological nutrient removal municipal wastewater treatment systems.EnvironmentScienceandTechnology, 2012, 46(2): 713-721.
[28] Bai X, Ding S, Fan Cetal. Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China.EnvironmentalPollution, 2009, 157(8): 2507-2513.
[29] He Jia, Chen Chunyu, Deng Weimingetal. Distribution and release characteristics of phosphorus in water-sediment interface of Lake Dianchi.JLakeSci, 2015, 27(5): 799-810. DOI: 10.18307/2015.0506. [何佳, 陳春瑜, 鄧偉明等. 滇池水-沉積物界面磷形態(tài)分布及潛在釋放特征. 湖泊科學, 2015, 27(5): 799-810.]
[30] Yu F, Zong Y, Lloyd JMetal. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China.Estuarine,CoastalandShelfScience, 2010, 87(4): 618-630.
[31] Liu Wenli, Wu Jinggui, Zhao Xinyuetal. Combined humus and elemental composition in orchards soils of different cultivation years.JournalofNorthestForestryUniversity, 2014, 42(6): 68-72. [劉文利, 吳景貴, 趙新宇等. 不同園齡果園土壤腐殖質(zhì)組分數(shù)量及其元素組成特征. 東北林業(yè)大學學報, 2014, 42(6): 68-72.]
[32] Steelink C. Implications of elemental characteristics of humic substances. In: Aiken GR, Mc Knight DM, Warshaw RL eds. Humic substances in soil, sediment, and water. New York: Johu Wiley Sons Inc, 1985: 457-476.
[33] Minero C, Lauri V, Falletti Getal. Spectrophotometric characterisation of surface lakewater samples: Implications for the quantification of nitrate and the properties of dissolved organic matter.AnnaliDiChimica, 2007, 97(10): 1107-1116.
[34] Wang FL, Bettany JR. Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil.JournalofEnvironmentalQuality, 1993, 22(4): 709-714.
[35] He X, Xi B, Wei Zetal. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste.Chemosphere, 2011, 82(4): 541-548.
[36] Sindelar HR, Brown MT, Boyer TH. Effects of natural organic matter on calcium and phosphorus co-precipitation.Chemosphere, 2015, 138: 218-224.
Effects of composition and structure of natural organic matter on phosphorus fractions in sediment from Lake Yangzonghai, Yunnan Province
ZHAO Zhonghong1, ZHANG Naiming1**, HU Xuewen2,3, BAO Li1& XIA Yunsheng1
(1:CollegeofResourcesandEnvironment,YunnanAgriculturalUniversity,Kunming650201,P.R.China)(2:StateKeyLaboratoryofEnvironmentalCriteriaandRiskAssessment,ChineseResearchAcademyofEnvironmentalSciences,Beijing100012,P.R.China)(3:ResearchCenterofLakeEco-Environment,StateEnvironmentalProtectionKeyLaboratoryforLakePollutionControl,ChineseResearchAcademyofEnvironmentalSciences,Beijing100012,P.R.China)
Characteristics of phosphorus fractions in surface sediments of the Lake Yangzonghai were studied applying the method of continuous extraction and classification. The element composition of C, N, H and O, UV-vis spectrum features of hydrophobic and hydrophilic dissolved organic matter (DOM), and their effects on P fractions in sediments were also clarified.The results indicated that the mobile-P contents in sediment ranged in 68.67-124.70 mg/kg and accounted for 9.81% of total phosphorus on average. The immobile-P contents in sediment ranged in 496.73-908.28 mg/kg, accounting for 60.86% of total phosphorus on average. The contents of different P forms decreased from north to south part, and the immobile-P content was significantly higher than that of mobile-P, indicating P retention in sediments. The contents of C, N and UV-vis spectrum integral area (A240-400) of hydrophilic DOM showed a decreasing trend from north to south of the lake, while the ratios of H/C, O/C, (O+N)/C and the A240-400value of hydrophobic DOM presented a reversing trend. Significantly positive correlations were found between NH4Cl-P and C, N and H contents, and the negative correlations were found between NH4Cl-P contents and H/C, O/C, (N+O)/C, UV-vis spectrum eigenratio (E2/E3) of hydrophilic DOM. In addition, NaOH-rP and BD-P+NaOH-rP have negative correlations with the O and O/H ratios, but all of the NaOH-rP, BD-P+NaOH-rP and HCl-P contents in sediments have positive correlations with the A240-400value of hydrophobic DOM. Therefore, element composition and functional groups structure of nature organic matter is the important factors influencing the P fractions.
Lake Yangzonghai; sediment; elements composition; dissolved organic matter; phosphorus fractions
*云南省科技創(chuàng)新人才計劃(2015HC018)項目資助. 2016-03-07收稿;2016-05-31收修改稿.趙忠紅(1979~),女,碩士研究生;E-mail: 79457748@qq.com.
J.LakeSci.(湖泊科學), 2017, 29(2): 308-316
DOI 10.18307/2017.0206
?2017 byJournalofLakeSciences
**通信作者;E-mail:zhangnaiming@sina.com.