王 瑾,向莉莉,李曉暉
(中南大學(xué)湘雅藥學(xué)院藥理學(xué)系,湖南長(zhǎng)沙 410078)
·前沿論壇·
骨形成蛋白Ⅱ型受體信號(hào)通路與肺動(dòng)脈高壓:新進(jìn)展與希望
王 瑾,向莉莉,李曉暉
(中南大學(xué)湘雅藥學(xué)院藥理學(xué)系,湖南長(zhǎng)沙 410078)
李曉暉,中南大學(xué)湘雅藥學(xué)院副教授,碩士生導(dǎo)師,院長(zhǎng)助理。英國(guó)劍橋大學(xué)與中南大學(xué)聯(lián)合培養(yǎng)博士。中南大學(xué)“升華育英”計(jì)劃入選者,中南大學(xué)“創(chuàng)新驅(qū)動(dòng)”計(jì)劃獲得者?,F(xiàn)為中國(guó)藥理學(xué)會(huì)心血管專業(yè)委員會(huì)委員、中國(guó)生物工程學(xué)會(huì)轉(zhuǎn)化醫(yī)學(xué)專業(yè)委員會(huì)委員、國(guó)際肺血管研究院成員、歐洲呼吸學(xué)會(huì)會(huì)員。主要研究領(lǐng)域?yàn)榉蝿?dòng)脈高壓分子機(jī)制與藥物防治及小分子RNA與心血管疾病。發(fā)表SCI論文近30篇,參與編著1部,申請(qǐng)專利6項(xiàng),主持國(guó)家自然科學(xué)基金、湖南省科技計(jì)劃和中國(guó)博士后基金特別資助等多項(xiàng)科研基金。
骨形成蛋白2型受體(BMPR2)基因突變與肺動(dòng)脈高壓(PAH)關(guān)系的揭示被認(rèn)為是21世紀(jì)該研究領(lǐng)域最重大的發(fā)現(xiàn)之一。BMPR2基因突變與大部分遺傳性PAH和部分特發(fā)性PAH患者的發(fā)病有關(guān)。臨床和動(dòng)物研究均表明,BMPR2介導(dǎo)的BMP信號(hào)通路在PAH發(fā)生發(fā)展過(guò)程中扮演重要角色。近年來(lái),不斷深入的研究逐步揭示了BMPR2信號(hào)通路參與PAH發(fā)病的重要機(jī)制,以該信號(hào)通路為治療靶點(diǎn)的可能性正被逐漸揭示。本文以BMPR2信號(hào)通路與PAH的關(guān)系為基礎(chǔ),從遺傳學(xué)、表觀遺傳學(xué)和炎癥反應(yīng)機(jī)制等角度進(jìn)行綜述,介紹PAH研究領(lǐng)域的最新進(jìn)展。
肺動(dòng)脈高壓;骨形成蛋白;遺傳學(xué);表觀遺傳學(xué);炎癥
肺動(dòng)脈高壓(pulmonary arterial hypertension,PAH)是一類以肺動(dòng)脈壓力持續(xù)升高為臨床特征的疾病,普通人群發(fā)病率約為百萬(wàn)分之二[1],其中年輕女性的發(fā)病率較高(男女比例大概為1∶2.3)[2]。肺血管收縮、血管重構(gòu)和原位血栓形成是PAH的三大病理基礎(chǔ)。肺血管阻力的持續(xù)增大加重右心室后負(fù)荷,最終引起右心室衰竭甚至死亡[3-4]。PAH的具體發(fā)病機(jī)制目前仍不清楚,遺傳因素和環(huán)境因素共同參與了疾病的發(fā)生發(fā)展。2000年,2個(gè)獨(dú)立研究小組均發(fā)現(xiàn),骨形成蛋白Ⅱ型受體(bone mor?phogenetic protein receptorⅡ,BMPR2)基因突變是家族性PAH發(fā)病的重要原因,首次揭示了PAH發(fā)病的遺傳學(xué)基礎(chǔ)。此后,有關(guān)BMPR2信號(hào)通路與PAH的研究成為該領(lǐng)域的研究熱點(diǎn)與焦點(diǎn)。近年來(lái),眾多研究者從遺傳學(xué)、表觀遺傳學(xué)和藥理學(xué)等多角度開展了系列研究,探索以BMPR2信號(hào)通路為靶點(diǎn)治療PAH的潛在可能性。這些發(fā)現(xiàn)為攻克這一“心血管系統(tǒng)腫瘤”提供了新證據(jù)和新思路。
1.1 BMPR2基因突變與肺動(dòng)脈高壓
BMP是轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF)超家族中一類重要的細(xì)胞因子。研究表明,BMP能調(diào)節(jié)多種細(xì)胞包括間葉細(xì)胞和表皮細(xì)胞的生長(zhǎng)、分化和凋亡,在胚胎發(fā)育中發(fā)揮關(guān)鍵作用,也廣泛參與成熟組織維護(hù)和修復(fù)等[5-6]。BMPR是位于細(xì)胞膜上的絲氨酸/蘇氨酸受體,一般由Ⅰ型和Ⅱ型2個(gè)亞型組成。通常認(rèn)為,BMPR如BMPR2被激活后,通過(guò)磷酸化激活胞質(zhì)內(nèi)Smad蛋白或絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)并入核,最終調(diào)節(jié)下游基因的轉(zhuǎn)錄與表達(dá)[7-8]。
自2000年以來(lái),BMPR2基因突變與PAH發(fā)生之間的密切關(guān)聯(lián)已經(jīng)被大量研究證實(shí)。研究提示,BMPR2基因突變主要引起B(yǎng)MPR2受體表達(dá)降低或缺失,BMP信號(hào)通路受損,進(jìn)而影響肺血管細(xì)胞增殖、遷移和凋亡等。目前研究發(fā)現(xiàn),55%~70%的遺傳性PAH和11%~40%的特發(fā)性PAH與BMPR2基因突變相關(guān)[9-12]。不僅如此,BMPR2基因突變及其介導(dǎo)的BMP信號(hào)通路受損也見(jiàn)于其他非遺傳性PAH患者和多種PAH動(dòng)物模型,如在系統(tǒng)性硬化病引起的PAH患者中發(fā)現(xiàn),BMPR2的蛋白水平顯著降低。除了BMPR2基因突變之外,BMPR2表達(dá)降低和功能紊亂的重要原因還包括蛋白泛素化水平上調(diào)和溶酶體酶降解增加等機(jī)制[13-15]。最新研究發(fā)現(xiàn),BMP9治療可顯著改善PAH的發(fā)生發(fā)展,這一作用與恢復(fù)上調(diào)肺血管內(nèi)皮BMPR2信號(hào)通路有關(guān)[15-17]。
人們發(fā)現(xiàn),并不是所有BMPR2突變基因攜帶者都患PAH。進(jìn)一步研究表明,突變外顯率只有27%,女性(42%)高于男性(14%)[18-19]。其原因至今未知,提示可能還存在其他因素影響PAH的發(fā)生發(fā)展。此外,BMPR2基因敲除小鼠并不能自發(fā)形成PAH,提示BMPR2基因突變可能僅是PAH發(fā)病的遺傳學(xué)基礎(chǔ)或易感因素。另有BMP信號(hào)通路下游效應(yīng)蛋白,如分化抑制因子(inhibitor of differen?tiation,Id)在發(fā)病過(guò)程中起關(guān)鍵作用,或者存在“第二重打擊”(the second hit),如炎癥反應(yīng)而觸發(fā)PAH的發(fā)病過(guò)程[20]。該假說(shuō)已獲得研究者的認(rèn)同,也成為當(dāng)前有關(guān)研究領(lǐng)域的熱點(diǎn)。
1.2 分化抑制因子與肺動(dòng)脈高壓
Id蛋白是一種擁有堿性螺旋-環(huán)-螺旋結(jié)構(gòu)域的轉(zhuǎn)錄調(diào)節(jié)因子。自1990年被發(fā)現(xiàn)以來(lái),共定義4種Id蛋白(Id1~I(xiàn)d4),它們的表達(dá)、功能和分布各有不同[21-23]。通常認(rèn)為,Id蛋白通過(guò)與其他基本型轉(zhuǎn)錄因子(主要是E蛋白家族成員)結(jié)合形成二聚體,進(jìn)而阻斷下游基因轉(zhuǎn)錄過(guò)程,發(fā)揮負(fù)性調(diào)控作用[24]。
最新研究表明,肺動(dòng)脈平滑肌細(xì)胞(pulmonary arterial smooth muscle cells,PASMC)中的Id蛋白,尤其是Id1和Id3是BMP信號(hào)通路下游關(guān)鍵的效應(yīng)蛋白[20,25]。當(dāng)Id蛋白的表達(dá)出現(xiàn)異常時(shí),可能會(huì)引起PASMC增殖和血管重構(gòu)等病理轉(zhuǎn)化[26],這正是PAH重要的病理特征和干預(yù)環(huán)節(jié)。首先,當(dāng)用一系列生長(zhǎng)因子和細(xì)胞因子如血小板衍生因子、BMP4、BMP6、BMP9、血管緊張素Ⅱ和血清素等刺激人PASMC時(shí),BMP4和BMP6上調(diào)Id蛋白的表達(dá)最為顯著;在BMPR2基因突變或用siRNA沉默BMPR2模型中進(jìn)一步發(fā)現(xiàn),BMP刺激Id1和Id3表達(dá)的效果均被明顯抑制,這提示PASMC中Id蛋白特別是Id1和Id3的表達(dá)受BMPR2嚴(yán)格調(diào)控。同時(shí),用siRNA干擾沉默Id1和Id3的表達(dá)后,發(fā)現(xiàn)BMP4抑制人PASMC生長(zhǎng)的作用顯著減弱;反之,當(dāng)用慢病毒轉(zhuǎn)染使Id3在PASMC中過(guò)表達(dá)后,細(xì)胞周期被阻滯于G1期,細(xì)胞增殖被顯著抑制,而細(xì)胞凋亡卻無(wú)顯著變化[25],進(jìn)一步提示Id蛋白直接參與了PASMC增殖的調(diào)控。整體動(dòng)物研究發(fā)現(xiàn),Id蛋白下調(diào)也可見(jiàn)于低氧型PAH小鼠和野百合堿誘導(dǎo)的PAH大鼠等多種動(dòng)物模型;西地那非、曲前列素及依前列素等藥物抑制肺血管重構(gòu)、改善肺動(dòng)脈高壓癥狀的同時(shí),也觀察到Id蛋白的表達(dá)同步上調(diào)[27-29]。臨床病理檢測(cè)進(jìn)一步提示,BMPR2基因突變型PAH患者肺血管Id蛋白的表達(dá)顯著下調(diào)。
綜上所述,BMP/BMPR2信號(hào)通路在PAH的形成過(guò)程中發(fā)揮著至關(guān)重要的作用。而Id蛋白可能是BMP信號(hào)通路下游的關(guān)鍵效應(yīng)分子,通過(guò)介導(dǎo)BMP信號(hào)調(diào)控肺血管細(xì)胞增殖、遷移等生理過(guò)程參與PAH的發(fā)生發(fā)展。目前,BMP/Id信號(hào)通路在PAH機(jī)制研究的關(guān)鍵在于尋找和篩選出與Id蛋白結(jié)合的轉(zhuǎn)錄因子和調(diào)控靶點(diǎn),并且在動(dòng)物整體水平進(jìn)行驗(yàn)證,從而揭示Id蛋白介導(dǎo)PAH血管重構(gòu)的分子機(jī)制及重要意義。
PAH是由多種原因引起的疾病,遺傳和環(huán)境是其最重要的兩大因素。自1951年首例PAH被報(bào)道至1984年,相繼發(fā)現(xiàn)13個(gè)PAH家系,PAH被確定為一種單基因常染色體顯性遺傳病。遺傳因素在PAH發(fā)生過(guò)程中扮演著十分重要的角色。尤其是2000年,科學(xué)家成功克隆出第一個(gè)PAH致病基因BMPR2,是目前已知的最主要的PAH致病基因之一;其他 7個(gè)致病基因分別為BMPR1B[30],ALK1[31],CAV1[32],Endoglin[33],KCNK3,SMAD8[34]和EIF2AK4[35];2個(gè)修飾基因分別為KCNA5[36]和CBLN2[37]。研究表明,除了遺傳學(xué)因素,表觀遺傳學(xué)同樣參與了PAH的發(fā)生機(jī)制。以微RNA(microRNA,miRNA)為代表的表觀遺傳學(xué)研究已經(jīng)成為該領(lǐng)域的研究熱點(diǎn)之一。相繼發(fā)現(xiàn)和報(bào)道50多個(gè)相關(guān)miRNA,其中與BMP信號(hào)通路相關(guān)的miRNA是本文論述的重點(diǎn)。隨著基因組學(xué)和測(cè)序技術(shù)的不斷發(fā)展,遺傳學(xué)研究將取得更大進(jìn)展。
2.1 遺傳學(xué)研究與PAH的發(fā)生機(jī)制
BMPR2基因突變與PAH密切相關(guān)已經(jīng)被廣泛認(rèn)可[38-39],但是其具體作用機(jī)制仍不完全清楚。目前主要存在2種理解,即突變產(chǎn)生顯性負(fù)效應(yīng)和突變引起表達(dá)量降低[40-41],進(jìn)而影響其介導(dǎo)BMP信號(hào)發(fā)揮肺血管保護(hù)作用,誘發(fā)血管重構(gòu),最終導(dǎo)致PAH的形成。以BMPR2突變?yōu)榛A(chǔ)的遺傳學(xué)研究在PAH機(jī)制探索中發(fā)揮著十分重要的作用。
2.1.1 種族和性別差異
在不同種族和人群中的研究發(fā)現(xiàn),BMPR2基因突變存在一定種族和性別差異。在亞洲人群中,中國(guó)人特發(fā)性PAH患者BMPR2基因突變率為14.5%(n=290),遺傳性PAH患者中BMPR2突變率為53.3%(n=15),而日本PAH患者中BMPR2的突變率分別為35%(n=40)、57%(n=7)[42]。另外發(fā)現(xiàn)了25個(gè)未在歐美人群中報(bào)導(dǎo)的BMPR2突變位點(diǎn)[43]。歐美人群中,BMPR2基因突變率總體一致,稍有區(qū)別。以土耳其人為代表,數(shù)據(jù)顯示特發(fā)性PAH患者BMPR2錯(cuò)義突變率為12.5%[44-45]。性別差異對(duì)BMPR2突變后的表型變化有顯著影響。最近一項(xiàng)在中國(guó)PAH人群中的研究結(jié)果顯示,BMPR2基因突變對(duì)中國(guó)男性患者的影響要比女性明顯,雖然整體來(lái)說(shuō)女性發(fā)病率高于男性。BMPR2基因突變的男性患者表現(xiàn)為更高的死亡率和更差的血流動(dòng)力學(xué)狀態(tài),而且發(fā)現(xiàn)雌激素在這個(gè)過(guò)程中發(fā)揮重要作用[46-47],不同的是,另一個(gè)獨(dú)立研究小組在法國(guó)PAH人群中的類似研究卻得出不同結(jié)論,認(rèn)為性別對(duì)BMPR2突變的表型變化沒(méi)有影響[48]。這可能跟種族差異和樣本量大小有關(guān)。深入揭示種族和性別的差異對(duì)于PAH的精準(zhǔn)治療將具有重要的指導(dǎo)意義。
2.1.2 BMPR2相關(guān)基因突變
近年來(lái)研究表明,某些與BMPR2密切相關(guān)的基因發(fā)生突變,同樣與PAH的發(fā)生有關(guān)。如通過(guò)對(duì)PAH家系進(jìn)行全外顯子組測(cè)序,發(fā)現(xiàn)小窩蛋白1(Caveolin-1,CAV1)基因存在2個(gè)移碼突變,可能通過(guò)激活自噬系統(tǒng)增加溶酶體對(duì)BMPR2的降解以及調(diào)節(jié)內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)通路等多種途徑參與到PAH發(fā)生過(guò)程,因此CAV1被認(rèn)為是一種新的PAH致病基因[49]。另一個(gè)相關(guān)基因是活化素受體樣激酶1(activin A receptor type II-like kinase-1,ACVRL1)基因,也稱ALK1(activin receptorlike kinase 1),它與BMPR2同屬于TGF受體家族成員。以往的研究表明,ALK1突變可以引起遺傳性出血性毛細(xì)血管擴(kuò)張癥。最新的研究發(fā)現(xiàn),在肺動(dòng)脈內(nèi)皮細(xì)胞中,ALK1可以通過(guò)與BMP9配體結(jié)合,促進(jìn)Smad1/5/ 8磷酸化和Id蛋白的表達(dá),影響血管新生。ALK1和BMPR2通過(guò)BMP信號(hào)通路決定內(nèi)皮細(xì)胞命運(yùn),影響肺動(dòng)脈內(nèi)皮細(xì)胞的完整性,從而參與到PAH的發(fā)生發(fā)展過(guò)程。動(dòng)物實(shí)驗(yàn)證實(shí),用BMP9選擇性上調(diào)內(nèi)皮細(xì)胞中BMPR2的表達(dá),可以緩解PAH癥狀[16,50-53]。另外,編碼DNA拓?fù)洚悩?gòu)酶Ⅱ結(jié)合蛋白1(DNA topoisomerase 2-binding protein 1,TopBP1)基因發(fā)生突變,也可能誘發(fā)PAH,因?yàn)門opBP1可保護(hù)BMPR2缺陷造成的DNA損傷[54]。對(duì)324名PAH患者(特發(fā)性PAH病例數(shù):其他疾病相關(guān)性PAH病例數(shù)=188∶136)進(jìn)行了基因分析,在Smad1,4和9中發(fā)現(xiàn)了4種變異體,揭示了Smad家族突變成為PAH發(fā)生的原因之一[55]。當(dāng)前許多國(guó)家正在開展PAH基因分析工作。美國(guó)正在進(jìn)行上千例特發(fā)性PAH患者全基因組關(guān)聯(lián)分析(genome wide asso?ciation study,GWAS);英國(guó)開展了全國(guó)性的PAH患者注冊(cè)研究;其他國(guó)家包括我國(guó)也正開展相關(guān)研究。隨著基因測(cè)序技術(shù)的突破和研究的深入,越來(lái)越多的易感基因如KCNK3,Endoglin,SMAD8,EIF2AK4和KCNA5等將被揭示,全面揭示PAH發(fā)病的遺傳學(xué)機(jī)制和特點(diǎn)將成為可能。
2.2 表觀遺傳學(xué)研究
除了遺傳學(xué)上的進(jìn)展,PAH表觀遺傳學(xué)研究也有新的突破。目前,有關(guān)PAH的表觀遺傳學(xué)研究包括3個(gè)方面的內(nèi)容,即DNA的甲基化調(diào)節(jié)、組蛋白修飾和miRNA調(diào)控[56]。
2.2.1 DNA的甲基化調(diào)節(jié)和組蛋白修飾
DNA的甲基化調(diào)節(jié)是指在甲基轉(zhuǎn)移酶的參與下,DNA的2個(gè)核苷酸胞嘧啶被選擇性地添加了甲基,形成5-甲基胞嘧啶的過(guò)程;組蛋白修飾包括乙?;腿ヒ阴;?種,它們都是DNA的翻譯后修飾形式。國(guó)內(nèi)外研究報(bào)道,BMPR2的表達(dá)與DNA的甲基化呈負(fù)相關(guān),甲基化程度越高,基因表達(dá)越低[57]。雖然到目前為止,關(guān)于BMPR2信號(hào)通路在上述2種表觀遺傳學(xué)過(guò)程的研究還沒(méi)有深入展開,尤其是組蛋白修飾過(guò)程,但,DNA的甲基化調(diào)節(jié)和組蛋白修飾過(guò)程涉及到炎癥反應(yīng)和DNA損傷環(huán)節(jié),以及肺動(dòng)脈平滑肌細(xì)胞、肺動(dòng)脈內(nèi)皮細(xì)胞和成纖維細(xì)胞的抗凋亡、促增殖過(guò)程,這些過(guò)程已知又與BMPR2信號(hào)通路有著千絲萬(wàn)縷的聯(lián)系,值得更深入的探討[57]。
2.2.2 非編碼RNA的調(diào)節(jié)
非編碼RNA是一類不能編碼蛋白質(zhì)的RNA。miRNA是一種長(zhǎng)度為21~25個(gè)核糖核苷酸的非編碼小單鏈RNA。miRNA雖然不能編碼蛋白質(zhì),但卻可以通過(guò)堿基互補(bǔ)配對(duì)與目標(biāo)RNA結(jié)合,降解mRNA或者抑制其翻譯,在轉(zhuǎn)錄后水平調(diào)節(jié)基因表達(dá),成為表觀遺傳學(xué)機(jī)制研究的重要內(nèi)容。雖然具體機(jī)制還不清楚,但研究表明,miRNA參與了PAH的發(fā)生發(fā)展過(guò)程,且主要與肺血管穩(wěn)態(tài)的調(diào)控有關(guān),影響肺動(dòng)脈血管重構(gòu)過(guò)程[58-59]。
到目前為止,已經(jīng)相繼發(fā)現(xiàn)數(shù)十種miRNA與PAH相關(guān)[60-62],如發(fā)現(xiàn)miR322、miR-21、miR-27a、miR-17-92簇、miR-143/145簇、miR-190和miR-210等數(shù)種miRNA表達(dá)在PAH患者或?qū)嶒?yàn)?zāi)P椭酗@著升高,而miR-150,miR-124,miR-204和miR-424/ 503等miRNA的表達(dá)明顯減少[58-59,63],甚至不同病程的PAH患者體內(nèi)miRNA水平也有差異。進(jìn)一步研究表明,造成這些變化的調(diào)控機(jī)制也不盡相同,如miR322在低氧刺激下靶向作用于BMP1ASmad5通路,下調(diào)其表達(dá),促進(jìn)低氧誘導(dǎo)因子的積累從而引起PASMC增殖、遷移和病變;miR-190在缺氧條件下是通過(guò)電壓門控鉀離子通道家族成員KCNQ5下調(diào),促進(jìn)鈣離子內(nèi)流影響血管收縮功能[64-66];而miR-424/503的變化則可能與Apelin信號(hào)調(diào)節(jié)相關(guān)[67-69];miR-124則可能與Notch1/PTEN/ FOXO3/p21Cip1/p27Kip1通路有關(guān)[70-71]。
miRNA與BMP信號(hào)通路間之間存在重要的相互影響。研究表明,BMPR2是miR-21的靶基因之一,miR-21可以通過(guò)抑制BMPR2表達(dá)來(lái)影響PASMC的表型變化,并很可能在肺動(dòng)脈內(nèi)皮細(xì)胞(pulmonary artery endothelial cells,PAEC)中也發(fā)揮著同樣作用[72]。在低氧和野百合堿誘導(dǎo)的PAH小鼠模型及低氧處理的患者PASMC中,miR-21上調(diào)引起B(yǎng)MPR2表達(dá)減少,miR-21與BMPR2似乎存在一種負(fù)反饋調(diào)節(jié)通路[73];類似的還有miR-143-145系列,在BMPR2突變和BMPR2 R899X基因敲入小鼠的PASMC中其表達(dá)明顯增多,且用miR-145中和抗體治療可以改善PAH癥狀,提示miR-143-145 miRNA可以通過(guò)調(diào)節(jié)PASMC的表型變化參與PAH過(guò)程[74]。研究表明,miR-17-92系列(miR-17,miR-18a,miR-19a,miR-20a,miR-19b-1和miR-92-1)通過(guò)IL-6/STAT3通路下調(diào)BMPR2,發(fā)揮促增殖和抗凋亡作用[75-76]。miR-17和miR-20a都屬于miR-17-92簇成員。研究發(fā)現(xiàn),它們都可以抑制BMPR2的表達(dá),且用miR-17中和抗體及miR-20a拮抗劑治療后,BMPR2表達(dá)增多,PAH癥狀得到改善[77]。最近有研究指出,miR-424/503在PAH中表達(dá)下調(diào),可能通過(guò)成纖維細(xì)胞生長(zhǎng)因子2(fibro?blast growth factor 2,F(xiàn)GF2)及其受體FGFR1作用于內(nèi)皮細(xì)胞Apelin信號(hào)通路[68],后者被認(rèn)為可通過(guò)恢復(fù)BMPR2信號(hào)和內(nèi)皮功能紊亂以改善小鼠PAH癥狀[69],提示miR-424/503可通過(guò)Apelin信號(hào)通路影響B(tài)MPR2水平,干預(yù)PAH過(guò)程。另外,在BMPR2基因缺失小鼠的PASMC中,miR130/310表達(dá)上調(diào),參與調(diào)節(jié)PASMC增殖和PAEC功能紊亂,誘導(dǎo)PAH發(fā)生發(fā)展[78-79]。
miRNA與BMP信號(hào)通路間的作用是相互的,miRNA在調(diào)節(jié)BMP信號(hào)表達(dá)的同時(shí)也受BMP信號(hào)的影響。比如在用BMP4處理野百合堿誘導(dǎo)的動(dòng)物PAH模型時(shí),它可以下調(diào)miRNA-21的表達(dá),緩解PAH癥狀[80]。同樣用BMP4處理人的原代PASMC時(shí)發(fā)現(xiàn),miR-302/367簇表達(dá)受到抑制,BMP/Id信號(hào)得到增強(qiáng)[81],且這種調(diào)節(jié)依賴于Smad蛋白。核苷酸藥物已經(jīng)在丙型肝炎治療等領(lǐng)域取得了突破性進(jìn)展,miRNA作為PAH治療的潛在靶點(diǎn),可能是治療PAH的另一選擇。
BMP信號(hào)通路相關(guān)的miRNA信息匯總見(jiàn)表1。
炎癥反應(yīng)在PAH發(fā)生機(jī)制中的研究已經(jīng)成為一個(gè)熱點(diǎn)。雖然具體機(jī)制目前仍不清楚,但是炎癥作為PAH發(fā)生發(fā)展過(guò)程中的重要病理變化卻毋庸置疑。大量的動(dòng)物實(shí)驗(yàn)和臨床研究數(shù)據(jù)表明,與正常對(duì)照組對(duì)比,PAH患者和模型動(dòng)物外周血漿、血管受損部位以及肺部組織中炎癥因子或趨化因子的水平均發(fā)生顯著變化。如IL-1,IL-2,IL-4,IL-6,IL-8和TNF-α等水平明顯升高,而IL-10卻顯著下降[84-88],并且這些變化可以直接預(yù)示患者的生存率和預(yù)后情況;甚至某些炎癥性疾病本身就能誘發(fā)PAH,如結(jié)締組織病、HIV感染、血吸蟲感染以及類風(fēng)濕性關(guān)節(jié)炎等。更重要的是,給予糖皮質(zhì)激素、環(huán)磷酰胺、霉酚酸酯和雷帕霉素等抗炎藥物治療能明顯改善PAH癥狀[89]。但是炎癥反應(yīng)參與PAH的具體機(jī)制是什么以及抗炎治療能否作為PAH治療的新選擇這些問(wèn)題至今仍不清楚。炎癥反應(yīng)可能是基于遺傳病變基礎(chǔ)上的“二重打擊”,參與到PAH的發(fā)生發(fā)展。
最新研究表明,BMPR2基因敲除小鼠和基因突變的人源PASMC中,磷酸化STAT3和超氧化物歧化酶表達(dá)降低,且在脂多糖急性刺激后,兩者的炎癥因子IL-6和KC/IL-8的水平均升高。在脂多糖慢性誘導(dǎo)下,BMPR2敲除小鼠成功誘發(fā)PAH且給予超氧化物歧化酶模擬物四甲基哌啶治療后,炎癥被抑制,PAH癥狀得到緩解[90]。還有研究報(bào)道,PAH患者肺組織中炎癥細(xì)胞浸潤(rùn)的同時(shí)伴隨BMP信號(hào)明顯減弱;廣譜抗炎藥地塞米松可以阻止甚至逆轉(zhuǎn)野百合堿誘導(dǎo)的大鼠PAH癥狀,進(jìn)一步發(fā)現(xiàn)其機(jī)制可能與抑制IL-6表達(dá)、恢復(fù)BMPR2信號(hào)以及抑制血管平滑肌細(xì)胞增殖有關(guān)[91]。
表1 骨形成蛋白(BMP)信號(hào)通路相關(guān)微RNA(miRNA)
炎癥干預(yù)BMP信號(hào)通路的具體機(jī)制仍不清楚。相關(guān)研究提示,BMP4可以通過(guò)BMPR2信號(hào)激活心肌蛋白相關(guān)轉(zhuǎn)錄因子A(myocardin-related transcription factor A,MRTF-A),從而抑制NF-κB的表達(dá)。參與免疫反應(yīng)的早期和炎癥反應(yīng)各階段的許多分子都受NF-κB的調(diào)控,抑制NF-κB表達(dá)可以恢復(fù)PASMC對(duì)TGF-β1引起的抗增殖應(yīng)答[92-93];在肺血管內(nèi)皮細(xì)胞中,BMPR2缺失不僅能誘導(dǎo)炎癥因子的表達(dá),而且也能促進(jìn)血管外白細(xì)胞進(jìn)入肺動(dòng)脈壁,兩者共同誘導(dǎo)了血管炎癥的發(fā)生。體外實(shí)驗(yàn)表明,BMPR2缺失的內(nèi)皮細(xì)胞經(jīng)TGF-α或TGF-β刺激后,白細(xì)胞轉(zhuǎn)移明顯加強(qiáng),且這種轉(zhuǎn)移依賴于趨化因子受體2,內(nèi)皮細(xì)胞中的BMPR2似乎能調(diào)節(jié)趨化因子受體2,后者則對(duì)白細(xì)胞的轉(zhuǎn)移產(chǎn)生影響。因此,利用趨化因子受體2信號(hào)通路,有可能找到一種治療PAH的新思路[94-95]。一直以來(lái),IL-6和IL-8等幾種炎癥因子是人們關(guān)注的重點(diǎn),尤其是它們?cè)谄交〖?xì)胞中的表達(dá)和作用被認(rèn)為與PAH的發(fā)生有重要聯(lián)系[96-98]。最近有研究表明,IL-6和BMP/BMPR2共同參與了PAH的發(fā)生過(guò)程[76,99],用腺病毒轉(zhuǎn)染過(guò)表達(dá)和siRNA沉默等手段抑制轉(zhuǎn)基因小鼠和人PASMC中BMPR2表達(dá),檢測(cè)發(fā)現(xiàn)不僅2種模型中IL-6的水平均明顯升高,而且BMPR2下游Id1蛋白的表達(dá)也顯著增加,且用P38MAPK抑制劑可以阻斷這些變化。表明IL-6與BMP/ BMPR2通路間有某種負(fù)性反饋調(diào)節(jié)回路。進(jìn)一步研究發(fā)現(xiàn),IL-6可以通過(guò)STAT3/miR17/92通路調(diào)節(jié)BMPR2的表達(dá)[76]。
近年來(lái)不斷發(fā)現(xiàn)有新的炎癥誘導(dǎo)因子可能參與PAH的發(fā)生發(fā)展過(guò)程。如高遷移率族蛋白1(high mobility group box-1 protein,HMGB1)和IL-33等。研究發(fā)現(xiàn),PAH患者血漿和病變血管部位HMGB1水平顯著升高,HMGB1能上調(diào)野百合堿誘導(dǎo)PAH大鼠體內(nèi)其他炎癥因子水平如TNF-α,引起肺動(dòng)脈壁肥厚以及右心室收縮壓升高。而用抗體中和或抑制劑阻斷HMGB1作用后,PAH癥狀顯著改善[100-102];此外,核IL-33也可通過(guò)調(diào)節(jié)IL-6和sST2表達(dá)影響PAH的發(fā)生,因而在PAH的發(fā)生機(jī)制中扮演著重要角色[103]。炎癥反應(yīng)與BMP/BMPR2信號(hào)通路之間的直接關(guān)聯(lián)被逐步揭示。一方面,BM?PR2信號(hào)通路的功能失調(diào)可能誘導(dǎo)炎癥的加重;另一方面,炎癥反應(yīng)可能作為“第二重打擊”,在BMP/ BMPR2信號(hào)缺失的基礎(chǔ)上誘發(fā)PAH。抗炎治療已在動(dòng)物實(shí)驗(yàn)中取得理想效果,多項(xiàng)臨床試驗(yàn)也正在開展,抗炎治療有望成為PAH治療新策略。
PAH發(fā)病是一個(gè)復(fù)雜的病理生理過(guò)程。多種病理因素、多條信號(hào)通路參與其中。如血漿內(nèi)皮素1通路、一氧化氮/eNOS通路和ERK1/2/P38MAPK通路等。其中一些已經(jīng)成為臨床治療的靶點(diǎn)。研究表明,BMPR2信號(hào)通路與其他相關(guān)通路之間存在密切聯(lián)系,共同參與PAH的發(fā)生發(fā)展。當(dāng)BMPR2的表達(dá)不足時(shí),多種BMP配體能促進(jìn)血漿內(nèi)皮素1的分泌,例如BMP7能增加血漿內(nèi)皮素1的水平;而且進(jìn)一步發(fā)現(xiàn)ALK-2在該過(guò)程中發(fā)揮著重要作用[104]。還有研究發(fā)現(xiàn),BMPR2可以通過(guò)蛋白激酶A激活eNOS,發(fā)揮血管保護(hù)作用[105]。也有研究報(bào)道,作用于一氧化氮/eNOS通路的藥物西地那非能夠通過(guò)cGMP來(lái)恢復(fù)BMPR2突變引起的BMP信號(hào)不足,緩解PAH癥狀[28]。研究還發(fā)現(xiàn),BMPR2/ Smad信號(hào)削弱會(huì)激活ERK1/2和P38MAPK通路,引起PASMC異常增殖[106-108]。
自2000年人類克隆出PAH突變基因BMPR2以來(lái),PAH遺傳學(xué)研究史開啟了新篇章。然而,隨著研究的深入,發(fā)現(xiàn)BMPR2突變的外顯率很低(只有30%左右),BMPR2突變可能只是PAH形成的基礎(chǔ),還需要“二重打擊”或者下游通路重要蛋白的進(jìn)一步介導(dǎo)。在這個(gè)假說(shuō)基礎(chǔ)上,研究者圍繞BMP信號(hào)通路的作用機(jī)制及調(diào)節(jié)機(jī)制開展了一系列研究,取得明顯進(jìn)展(圖1)。發(fā)現(xiàn)轉(zhuǎn)錄因子Id蛋白很可能是BMPR2下游的關(guān)鍵效應(yīng)蛋白;發(fā)現(xiàn)以miRNA、DNA甲基化和組蛋白修飾為代表的表觀遺傳學(xué)調(diào)節(jié)機(jī)制也參與了BMP介導(dǎo)的PAH發(fā)生發(fā)展過(guò)程;經(jīng)典的炎癥因子(如IL-6和IL-8等)和新的炎癥因子(如HMGB1和IL-33等)與PAH形成密切相關(guān),其機(jī)制涉及對(duì)BMP信號(hào)同路的調(diào)節(jié)。近年研究進(jìn)一步提示,以BMPR2信號(hào)通路為靶點(diǎn)治療PAH在動(dòng)物水平獲得了確證,展示出良好的開發(fā)潛力。隨著研究的深入,將全面揭示BMPR2信號(hào)通路在PAH發(fā)病中的作用及機(jī)制,對(duì)于今后開展臨床轉(zhuǎn)化、實(shí)現(xiàn)臨床治愈具有重要意義。
參考文獻(xiàn):
[1]Gaine SP,Rubin LJ.Primary pulmonary hyper?tension[J].Lancet,1998,352(9129):719-725.
[2]Runo JR,Loyd JE.Primary pulmonary hypertension[J].Lancet,2003,361(9368):1533-1544.
[3]Rich S,Dantzker DR,Ayres SM,Bergofsky EH,Brundage BH,Detre KM,et al.Primary pulmo?nary hypertension.A national prospective study[J].Ann Intern Med,1987,107(2):216-223.
[4]Lee SD,Shroyer KR,Markham NE,Cool CD,Voelkel NF,Tuder RM.Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension[J].J Clin Invest,1998,101(5):927-934.
[5]Miyazono K,Maeda S,Imamura T.BMP receptor signaling:transcriptional targets,regulation of signals,and signaling cross-talk[J].Cytokine Growth Factor Rev,2005,16(3):251-263.
[6]Kawabata M,Imamura T,Miyazono K.Signal transduction by bone morphogenetic proteins[J]. Cytokine Growth Factor Rev,1998,9(1):49-61.
[7]Upton PD,Long L,Trembath RC,Morrell NW. Functional characterization of bone morphoge?netic protein binding sites and Smad1/5 activation in human vascular cells[J].Mol Pharmacol,2008,73(2):539-552.
[8] Shi Y,Massagué J.Mechanisms of TGF-beta signaling from cell membrane to the nucleus[J]. Cell,2003,113(6):685-700.
[9]Morisaki H,Nakanishi N,Kyotani S,Takashima A,Tomoike H,Morisaki T.BMPR2 mutations found in Japanese patients with familial and sporadic primary pulmonary hypertension[J].Hum Mutat,2004,23(6):632.
[10]ThomsonJR,MachadoRD,PauciuloMW,Morgan NV,Humbert M,Elliott GC,et al. Sporadic primarypulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II,a receptor member of the TGF-beta family[J].J Med Genet,2000,37(10):741-745.
[11] CoganJD, PauciuloMW, BatchmanAP,Prince MA,Robbins IM,Hedges LK,et al.High frequency of BMPR2 exonic deletions/duplica?tions in familial pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2006,174(5):590-598.
[12] Aldred MA, Vijayakrishnan J, JamesV, Soubrier F,Gomez-Sanchez MA,Martensson G,et al.BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension[J]. Hum Mutat,2006,27(2):212-213.
[13]Gilbane AJ, Derrett-Smith E, Trinder SL,Good RB,Pearce A,Denton CP,et al.Impaired bone morphogenetic protein receptor II signaling in a transforming growth factor-β-dependent mouse model of pulmonary hypertension and in systemic sclerosis[J].Am J Respir Crit Care Med,2015,191(6):665-677.
[14]Long L, Yang X,SouthwoodM, Lu J,Marciniak SJ,Dunmore BJ,et al.Chloroquine prevents progression of experimental pulmonary hypertension via inhibition of autophagy and lyso?somal bone morphogenetic protein type II receptor degradation[J].Circ Res,2013,112(8):1159-1170.
[15]Dunmore BJ,Drake KM,Upton PD,Toshner MR,Aldred MA,Morrell NW.The lysosomal inhibitor,chloroquine,increases cell surface BMPR-Ⅱlevels and restores BMP9 signalling in endothelial cells harbouring BMPR-Ⅱ mutations[J].Hum Mol Genet,2013,22(18):3667-3679.
[16]Long L,Ormiston ML,Yang X,Southwood M,Gr?f S,Machado RD,et al.Selective enhance?ment of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension[J].Nat Med,2015,21(7):777-785.
[17]Crunkhorn S.Hypertension:BMP9 reverses PAH[J].Nat Rev Drug Discov,2015,14(8):528.
[18]Larkin EK,Newman JH,Austin ED,Hemnes AR,Wheeler L,Robbins IM,et al.Longitudinal analysis casts doubt on the presence of genetic anticipa?tion in heritable pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2012,186(9):892-896.
[19]PatelHH,ZhangS,MurrayF,SudaRY,Head BP,Yokoyama U,et al.Increased smooth muscle cell expression of caveolin-1 and caveo?lae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension[J].FASEB J,2007,21(11):2970-2979.
[20]Li XH.The role and related molecular mecha?nisms of BMP signaling about vascular remodeling in pulmmonary arterial hypertension(骨形成蛋白信號(hào)通路在肺動(dòng)脈高壓血管重構(gòu)中的作用及機(jī)制研究)[D].Changsha:Centrol South University(中南大學(xué)),2011.
[21]Norton JD.ID helix-loop-helix proteins in cell growth,differentiation and tumorigenesis[J].J Cell Sci,2000,113(Pt 22):3897-3905.
[22]Sikder HA,Devlin MK,Dunlap S,Ryu B,Alani RM.Id proteins in cell growth and tumori?genesis[J].Cancer Cell,2003,3(6):525-530.
[23]Benezra R, Rafii S,Lyden D.The Id proteins and angiogenesis[J].Oncogene,2001,20(58):8334-8341.
[24]Lasorella A,Benezra R,Iavarone A.The ID pro?teins:master regulators of cancer stem cells and tumour aggressiveness[J].Nat Rev Cancer,2014,14(2):77-91.
[25]Yang J,Li X,Li Y,Southwood M,Ye L,Long L,et al.Id proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells[J].Am J Physiol Lung Cell Mol Physiol,2013,305(4):L312-L321.
[26]Yang J,Li X,Morrell NW.Id proteins in the vas?culature:from molecular biology to cardiopulmo?nary medicine[J].Cardiovasc Res,2014,104(3):388-398.
[27]Yang J,Li X,Al-Lamki RS,Southwood M,Zhao J,Lever AM,et al.Smad-dependent and smadin dependent induction of id1 by prostacyclin analogues inhibits proliferation ofpulmonary artery smooth muscle cells in vitro and in vivo[J]. Circ Res,2010,107(2):252-262.
[28]Yang J,Li X,Al-Lamki RS,Wu C,Weiss A,Berk J,et al.Sildenafil potentiates bone morpho?genetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmo?nary hypertension[J].Arterioscler Thromb Vasc Biol,2013,33(1):34-42.
[29]Li XW,Du J,Hu GY,Hu CP,Li D,Li YJ,et al. Fluorofenidone attenuates vascular remodeling in hypoxia-induced pulmonary hypertension of rats[J].Can J Physiol Pharmacol,2014,92(1):58-69.
[30]Chida A,Shintani M,Nakayama T,F(xiàn)urutani Y,Hayama E,Inai K,et al.Missense mutations of the BMPR1B(ALK6)gene in childhood idiopathic pulmonary arterialhypertension[J].Circ J,2012,76(6):1501-1508.
[31]Li W,Salmon RM,Jiang H,Morrell NW.Regula?tion of the ALK1 ligands,BMP9 and BMP10[J]. Biochem Soc Trans,2016,44(4):1135-1141.
[32]Piao C,Zhu Y,Zhang C,Xi X,Liu X,Zheng S,et al.Identification of multiple ACVRL1 mutations in patients with pulmonary arterial hypertension by targeted exome capture[J].Clin Sci(Lond),2016,130(17):1559-1569.
[33] Pousada G,Baloira A,F(xiàn)ontán D,Nú?ez M,Valverde D.Mutational and clinical analysis of the ENG gene in patients with pulmonary arterial hypertension[J].BMC Genet,2016,17(1):72.
[34] Shintani M,Yagi H,Nakayama T,Saji T,MatsuokaR.A new nonsensemutationof SMAD8 associated with pulmonary arterial hyper?tension[J].J Med Genet,2009,46(5):331-337.
[35] Eyries M,Montani D,Girerd B,Perret C,Leroy A,LonjouC,etal.EIF2AK4mutationscause pulmonary veno-occlusive disease,a recessive form of pulmonary hypertension[J].Nat Genet,2014,46(1):65-69.
[36]Wang G,Knight L,Ji R,Lawrence P,Kanaan U,Li L,et al.Early onset severe pulmonary arterial hypertension with′two-hit′digenic mutations in both BMPR2 and KCNA5 genes[J].Int J Cardiol,2014,177(3):e167-e169.
[37] Germain M,Eyries M,Montani D,Poirier O,Girerd B,Dorfmüller P,et al.Genome-wide associ?ation analysis identifies a susceptibility locus for pulmonary arterial hypertension[J].Nat Genet,2013,45(5):518-521.
[38]Deng Z,Morse JH,Slager SL,Cuervo N,Moore KJ,Venetos G,et al.Familial primary pulmonary hypertension(gene PPH1)is caused by mutations in the bone morphogenetic protein receptor-II gene[J].Am J Hum Genet,2000,67(3):737-744.
[39]Lane KB,Machado RD,Pauciulo MW,Thomson JR,Phillips JA 3rd,Lovd JE,et al.Heterozygous germline mutations in BMPR2,encoding a TGF-beta receptor,cause familial primary pulmonary hyper?tension[J].Nat Genet,2000,26(1):81-84.
[40]MachadoRD,PauciuloMW,ThomsonJR,Lane KB,Morgan NV,Wheeler L,Loyd JE,et al. BMPR2 haploinsufficiency as the inherited molec?ular mechanism for primary pulmonary hyperten?sion[J].Am J Hum Genet,2001,68(1):92-102.
[41]Saco TV,Parthasarathy PT,Cho Y,Lockey RF,Kolliputi N.Role of epigenetics in pulmonary hypertension[J].Am J Physiol Cell Physiol,2014,306(12):C1101-C1105.
[42]Kabata H,Satoh T,Kataoka M,Tamura Y,Ono T,Yamamoto M,et al.Bone morphogenetic protein receptor type 2 mutations,clinical pheno?types and outcomes of Japanese patients withsporadic or familial pulmonary hypertension[J]. Respirology,2013,18(7):1076-1082.
[43]Liu D,Liu QQ,Eyries M,Wu WH,Yuan P,Zhang R,et al.Molecular genetics and clinical features of Chinese idiopathic and heritable pulmo?nary arterial hypertension patients[J].Eur Respir J,2012,39(3):597-603.
[44]Grünig E,Weissmann S,Ehlken N,F(xiàn)ijalkowska A,F(xiàn)ischer C,F(xiàn)ourme T,et al.Stress Doppler echo?cardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension:results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia[J].Circulation,2009,119(13):1747-1757.
[45]Koumakis E,Wipff J,Dieudé P,Ruiz B,Bouaziz M,Revillod L,et al.TGFβ receptor gene variants in systemic sclerosis-related pulmonary arterial hyper?tension:results from a multicentre EUSTAR study of European Caucasian patients[J].Ann Rheum Dis,2012,71(11):1900-1903.
[46]Mair KM,Yang XD,Long L,White K,Wallace E,Ewart MA,et al.Sex affects bone morphogenetic protein typeⅡ receptor signaling in pulmonary artery smooth muscle cells[J].Am J Respir Crit Care Med,2015,191(6):693-703.
[47]Liu D,Wu WH,Mao YM,Yuan P,Zhang R,Ju FL,et al.BMPR2 mutations influence phenotype more obviously in male patients with pulmonary arterial hypertension[J].Circ Cardiovasc Genet,2012,5(5):511-518.
[48]Girerd B,Montani D,Eyries M,Yaici A,Sztrymf B,Coulet F,et al.Absence of influence of gender and BMPR2 mutation type on clinical phenotypes of pulmonary arterial hypertension[J].Respir Res,2010,11(1):73-76.
[49]Austin ED,Ma L,LeDuc C,Berman Rosenzweig E,Borczuk A,Phillips JA 3rd,et al.Whole exome sequencing to identify a novel gene(cave?olin-1)associated with human pulmonary arterial hypertension[J].Circ Cardiovasc Genet,2012,5(3):336-343.
[50]David L,F(xiàn)eige JJ,Bailly S.Emerging role of bone morphogenetic proteins in angiogenesis[J]. Cytokine Growth Factor Rev,2009,20(3):203-212.
[51]Upton PD,Davies RJ,Trembath RC,Morrell NW. Bone morphogenetic protein(BMP)and activin typeⅡreceptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells[J].J Biol Chem, 2009,284(23):15794-15804.
[52]David L,Mallet C,Mazerbourg S,F(xiàn)eige JJ,Bailly S.Identification of BMP9 and BMP10 as functional activators of the orphan activin recep?tor-like kinase 1(ALK1)in endothelial cells[J]. Blood,2007,109(5):1953-1961.
[53]van Meeteren LA,Thorikay M,Bergqvist S,Pardali E,Stampino CG,Hu-Lowe D,et al.Antihuman activin receptor-like kinase 1(ALK1)anti?body attenuates bone morphogenetic protein 9(BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting[J].J Biol Chem,2012,287(22):18551-18561.
[54]de Jesus Perez VA,Yuan K,Lyuksyutova MA,Dewey F,Orcholski ME,Shuffle EM,et al. Whole-exome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hyper?tension[J].Am J Respir Crit Care Med,2014,189(10):1260-1272.
[55]Nasim MT,Ogo T,Ahmed M,Randall R,Chowdhury HM,Snape KM,et al.Molecular genetic characterization of SMAD signaling mole?cules in pulmonary arterial hypertension[J].Hum Mutat,2011,32(12):1385-1389.
[56]Liu D,Morrell NW.Genetics and the molecular pathogenesis of pulmonary arterial hypertension[J].Curr Hypertens Rep,2013,15(6):632-637.
[57]Ye FZ.The study on the relation between status of 5′-CpG island methylation of BMPR-Ⅱ gene and its expression(BMPR-Ⅱ基因5’-側(cè)翼區(qū)CpG島甲基化狀態(tài)與基因表達(dá)關(guān)系的研究)[D]. Guangzhou:Jinan University(暨南大學(xué)),2006.
[58]Bienertova-Vasku J,Novak J,Vasku A.MicroR?NAs in pulmonary arterial hypertension:patho?genesis,diagnosis and treatment[J].J Am Soc Hypertens,2015,9(3):221-234.
[59]Gupta S,Li L.Modulation of miRNAs in Pulmo?nary Hypertension[J].Int J Hypertens,2015,2015(1):169-173.
[60]Wu D,Talbot CC Jr,Liu Q,Jing ZC,Damico RL,Tuder R,et al.Identifying microRNAs targeting Wnt/β-catenin pathway in end-stage idiopathic pulmonary arterial hypertension[J].J Mol Med(Berl),2016,94(8):875-885.
[61]Boucherat O,Bonnet S.MicroRNA signature of end-stage idiopathic pulmonary arterial hypertension:clinical correlations and regulation of WNT signaling[J].J Mol Med(Berl),2016,94(8):849-851.
[62]Elia L,Condorelli G.MicroRNAs and pulmonaryhypertension:a tight link[J].Cardiovasc Res,2016,111(3):163-164.
[63]Zeng Y,Liu H,Kang K,Wang Z,Hui G,Zhang X,et al.Hypoxia inducible factor-1 mediates expres?sion of miR-322:potential role in proliferation and migration of pulmonary arterial smooth mus?cle cells[J].Sci Rep,2015,2015(5):120-125.
[64]Li S,Ran Y,Zhang D,Chen J,Li S,Zhu D. MicroRNA-138 plays a role in hypoxic pulmonary vascular remodelling by targeting Mst1[J].Biochem J,2013,452(2):281-291.
[65]Li SS,Ran YJ,Zhang DD,Li SZ,Zhu D. MicroRNA-190 regulates hypoxic pulmonary vaso?constriction by targeting a voltage-gated K+channel in arterial smooth muscle cells[J].J Cell Biochem,2014,115(6):1196-1205.
[66]Mackie AR,Byron KL.Cardiovascular KCNQ(Kv7)potassium channels:physiological regulators and new targets for therapeutic intervention[J]. Mol Pharmacol,2008,74(5):1171-1179.
[67] Andersen CU, Hilberg O, Mellemkj?r S,Nielsen-Kudsk JE,Simonsen U.Apelin and pul?monary hypertension[J].Pulm Circ,2011,1(3):334-346.
[68]Kim J,Kang Y,Kojima Y,Lighthouse JK,Hu X,Aldred MA,et al.An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension[J].Nat Med,2013,19(1):74-82.
[69]Alastalo TP,Li M,Perez Vde J,Pham D,SawadaH,WangJK,etal.Disruptionof PPARγ/β-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmo?nary arterial EC survival[J].J Clin Invest,2011,121(9):3735-3746.
[70]Kang K,Peng X,Zhang X,Wang Y,Zhang L,Gao L, et al.MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells[J].J Biol Chem,2013,288(35):25414-25427.
[71]Wang D,Zhang H,Li M,F(xiàn)rid MG,F(xiàn)lockton AR,McKeon BA,et al.MicroRNA-124 controls the proliferative,migratory,and inflammatory pheno?type of pulmonary vascular fibroblasts[J].Circ Res,2014,114(1):67-78.
[72] Parikh VN,Jin RC,Rabello S,Gulbahce N,White K,Hale A,et al.MicroRNA-21 integrates pathogenic signaling to control pulmonary hyper?tension:results of a network bioinformatics approach[J].Circulation,2012,125(12):1520-1532.
[73]Yang S,Banerjee S,F(xiàn)reitas Ad,Cui H,Xie N,Abraham E, et al.miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling[J].Am J Physiol Lung Cell Mol Physiol,2012,302(6):L521-L529.
[74]Caruso P,Dempsie Y,Stevens HC,McDonald RA,Long L,Lu R,et al.A role for miR-145 in pulmo?nary arterial hypertension:evidence from mouse models and patient samples[J].Circ Res,2012,111(3):290-300.
[75]Steiner MK,Syrkina OL,Kolliputi N,Mark EJ,Hales CA,Waxman AB.Interleukin-6 overex?pression induces pulmonary hypertension[J]. Circ Res.2009,104(2):236-244,228.
[76]Brock M,Trenkmann M,Gay RE,Michel BA,Gay S,F(xiàn)ischler M,et al.Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway[J].Circ Res,2009,104(10):1184-1191.
[77]Pullamsetti SS,Doebele C,F(xiàn)ischer A,Savai R,Kojonazarov B,Dahal BK,et al.Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension[J].Am J Respir Crit Care Med,2012,185(4):409-419.
[78]Bertero T,Lu Y,Annis S,Hale A,Bhat B,Saggar R, et al.Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension[J].J Clin Invest,2014,124(8):3514-3528.
[79]Bertero T,Cottrill K,Krauszman A,Lu Y,Annis S,Hale A,et al.The microRNA-130/301 family con?trols vasoconstriction in pulmonary hypertension[J].J Biol Chem,2015,290(4):2069-2085.
[80]Caruso P,MacLean MR,Khanin R,McClure J,Soon E,Southgate M,et al.Dynamic changes in lung microRNA profiles during the develop?ment of pulmonary hypertension due to chronic hypoxia and monocrotaline[J].Arterioscler Thromb Vasc Biol,2010,30(4):716-723.
[81]Kang H,Louie J,Weisman A,Sheu-Gruttadauria J,Davis-Dusenbery BN,Lagna G,et al.Inhibition of microRNA-302(miR-302)by bone morphogenetic protein 4(BMP4)facilitates the BMP signal?ing pathway[J].J Biol Chem,2012,287(46):38656-38664.
[82] Sarkar J,Gou D,Turaka P,Viktorova E,Ramchandran R,Raj JU.MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration[J].Am J Physiol Lung Cell Mol Physiol,2010,299(6):L861-L871.
[83]Rothman AM, Arnold ND, Pickworth JA,Iremonger J,Ciuclan L,Allen RM,et al.MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension[J].J Clin Invest,2016,126(7):2495-2508.
[84]Soon E,Holmes AM,Treacy CM,Doughty NJ,Southgate L,Machado RD,et al.Elevated levels of inflammatory cytokines predict survival in idio?pathic and familial pulmonary arterial hyperten?sion[J].Circulation,2010,122(9):920-927.
[85] Bhargava A,Kumar A,Yuan N,Gewitz MH,Mathew R.Monocrotaline induces interleukin-6 mRNA expression in rat lungs[J].Heart Dis,1999,1(3):126-132.
[86]Tuder RM,Voelkel NF.Pulmonary hypertension and inflammation[J].J Lab Clin Med,1998,132(1):16-24.
[87]Humbert M,Monti G,Brenot F,Sitbon O,Portier A,Grangeot-Keros L,et al.Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hyperten?sion[J].Am J Respir Crit Care Med,1995,151(5):1628-1631.
[88]Parpaleix A,Amsellem V,Houssaini A,Abid S,Breau M,Marcos E,et al.Role of interleukin-1 receptor 1/MyD88 signalling in the development and progression of pulmonary hypertension[J]. Eur Respir J,2016,48(2):470-483.
[89]Meloche J,Renard S,Provencher S,Bonnet S. Anti-inflammatory and immunosuppressive agents in PAH[J].Handb Exp Pharmacol,2013,2013(218):437-476.
[90]Soon E,Crosby A,Southwood M,Yang P,Tajsic T,Toshner M,et al.Bone morphogenetic protein receptor typeⅡ deficiency and increased inflammatory cytokine production.A gateway to pulmonary arterial hypertension[J].Am J Respir Crit Care Med,2015,192(7):859-872.
[91]Price LC,Montani D,Tcherakian C,Dorfmüller P,Souza R,Gambaryan N,et al.Dexamethasone reverses monocrotaline-induced pulmonary arterial hypertension in rats[J].Eur Respir J,2011,37(4):813-822.
[92]Wang D,Prakash J,Nguyen P,Davis-Dusenbery BN,Hill NS,Layne MD,et al.Bone morphoge?netic protein signaling in vascular disease:antiinflammatory action through myocardin-related transcription factor A[J].J Biol Chem,2012,287(33):28067-28077.
[93]Davies RJ,Holmes AM,Deighton J,Long L,Yang X,Barker L,et al.BMP typeⅡ receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells:role of proinflammatory cytokines[J].Am J Physiol Lung Cell Mol Physiol,2012,302(6):L604-L615.
[94]Burton VJ,Ciuclan LI,Holmes AM,Rodman DM,Walker C,Budd DC.Bone morphogenetic protein receptorⅡregulates pulmonary artery endothelial cell barrier function[J].Blood,2011,117(1):333-341.
[95]Burton VJ,Holmes AM,Ciuclan LI,Robinson A,Roger JS,Jarai G,et al.Attenuation of leuko?cyte recruitment via CXCR1/2 inhibition stops the progression of PAH in mice with genetic ablation of endothelial BMPR-II[J].Blood,2011,118(17):4750-4758.
[96]Nabata T,Morimoto S,Koh E,Shiraishi T,Ogihara T.Interleukin-6 stimulates c-myc expression and proliferation of cultured vascular smooth muscle cells[J].Biochem Int,1990,20(3):445-453.
[97]Yue TL,Mckenna PJ,Gu JL,F(xiàn)euerstein GZ. Interleukin-8 is chemotactic for vascular smooth muscle cells[J].Eur J Pharmacol,1993,240(1):81-84.
[98]Yue TL,Wang X,Sung CP,Olson B,McKenna PJ,Gu JL,et al.Interleukin-8.A mitogen and chemoattractant for vascular smooth muscle cells[J].Circ Res,1994,75(1):1-7.
[99]Hagen M,F(xiàn)agan K,Steudel W,Carr M,Lane K,Rodman DM,et al.Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle[J].Am J Physiol Lung Cell Mol Physiol,2007,292(6):L1473-L1479.
[100]Sadamura-Takenaka Y,Ito T,Noma S,Oyama Y,Yamada S,Kawahara K,et al.HMGB1 promotes the development of pulmonary arterial hyperten?sion in rats[J].PLoS One,2014,9(7):e102482.
[101]Bauer EM,Shapiro R,Billiar TR,Bauer PM. High mobility group box 1 inhibits human pulmonary artery endothelial cell migration via a Toll-like receptor 4-and interferon response factor 3-depen-dent mechanism(s)[J].J Biol Chem,2013,288(2):1365-1373.
[102]Yang PS,Kim DH,Lee YJ,Lee SE,Kang WJ,Chang HJ,et al.Glycyrrhizin,inhibitor of high mobility group box-1,attenuates monocrotalineinduced pulmonaryhypertension andvascular remodeling in rats[J].Respir Res,2014,15(1):148-153.
[103]Shao D,Perros F,Caramori G,Meng C,Dormuller P,Chou PC,et al.Nuclear IL-33 regu?lates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hyper?tension[J].Biochem Biophys Res Commun,2014,451(1):8-14.
[104]Star GP,Giovinazzo M,Langleben D.ALK2 and BMPR2 knockdown and endothelin-1 production by pulmonary microvascular endothelial cells[J]. Microvasc Res,2013,2013(85):46-53.
[105]Gangopahyay A,Oran M,Bauer EM,Wertz JW, Comhair SA,Erzurum SC,et al.Bone morpho?genetic protein receptorⅡis a novel mediator of endothelial nitric-oxide synthase activation[J].J Biol Chem,2011,286(38):33134-33140.
[106]Dewachter L,Adnot S,Guignabert C,Tu L,Marcos E,F(xiàn)adel E,et al.Bone morphogenetic protein signalling in heritable versus idiopathic pulmonary hypertension[J].Eur Respir J,2009,34(5):1100-1110.
[107]Yang X,Long L,Southwood M,Rudarakanchana N,Upton PD,Jeffery TK,et al.Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hyper?tension[J].Circ Res,2005,96(10):1053-1063.
[108] Rudarakanchana N,F(xiàn)lanagan JA,Chen H,Upton PD,Machado R,Patel D,et al.Functional analysis of bone morphogenetic protein typeⅡreceptor mutations underlying primary pulmonary hypertension[J].Hum Mol Genet,2002,11(13):1517-1525.
Bone morphogenetic protein receptor II signaling pathway and pulmonary arterial hypertension:updates and expectations
WANG Jin,XIANG Li-li,LI Xiao-hui
(Department of Pharmacology,Xiangya School of Pharmaceutical Science,Central South University,Changsha 410078,China)
The identification of the relationships between mutations of the bone morphogenetic protein type II receptor(BMPR2)and pulmonary arterial hypertension(PAH)has been considered to be one of the most significant discoveries in this area in the 21stcentury.And BMPR2 mutation is responsible for the majority of hereditary PAH as well as some of idiopathic PAH.Furthermore,clinical and animal expreimental research over the past few years has revealed that BMPR2 signaling pathway plays a critical role in the initiation and progress of PAH,by participateing in the pathogenesis of PAH.In addition,the potential that BMPR2 signaling pathway is used as a therapeutic target is being evaluated.This review summarizes our current understanding of the role of BMPR2 mutations in PAH from the perspectives of genetics, epigenetics,inflammation as well as interactions with other significant pathways.
pulmonary arterial hypertension;bone morphogenetic protein;genetics;epigenetics; inflammation
LI Xiao-hui,E-mail:xiaohuili@csu.edu.cn,Tel:(0731)82355077
R962
A
1000-3002-(2017)02-0119-12
10.3867/j.issn.1000-3002.2017.02.001
Foundation item:The project supported by National Natural Science Foundation of China(81200035);and Central South University Innovation-driven Project(2016CX034)
2016-11-11接受日期:2017-02-16)
(本文編輯:齊春會(huì))
國(guó)家自然科學(xué)基金(81200035);中南大學(xué)創(chuàng)新驅(qū)動(dòng)計(jì)劃(2016CX034)。
李曉暉,E-mail:xiaohuili@csu.edu.cn,Tel:(0731)82355077
中國(guó)藥理學(xué)與毒理學(xué)雜志2017年2期