亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一種模擬電路故障診斷方法研究

        2017-04-10 00:53:23劉琳
        現(xiàn)代電子技術(shù) 2017年6期
        關(guān)鍵詞:最小二乘支持向量機(jī)模擬電路粒子群優(yōu)化算法

        劉琳

        摘 要: 將LSSVM算法應(yīng)用于模擬電路故障診斷模型,使用PSO算法對(duì)LSSVM算法的參數(shù)進(jìn)行尋優(yōu)。以帶通濾波器電路和雙二次高通濾波器電路的故障診斷實(shí)例對(duì)該文研究的模擬電路故障診斷方法進(jìn)行驗(yàn)證。使用三層小波包分解輸出電壓信號(hào),得到8個(gè)頻帶能量特征向量,通過(guò)Monte Carlo仿真得到數(shù)據(jù)樣本,用于故障診斷模型的訓(xùn)練和測(cè)試。結(jié)果表明,該文使用的改進(jìn)LSSVM算法構(gòu)建的故障診斷模型針對(duì)8種故障的診斷準(zhǔn)確率均高于95%,具有較好的故障診斷性能。

        關(guān)鍵詞: 模擬電路; 故障診斷; 最小二乘支持向量機(jī); 粒子群優(yōu)化算法

        中圖分類號(hào): TN710.4?34; TP391 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2017)06?0183?04

        Abstract: The LSSVM algorithm is applied to the analog circuit fault diagnosis model, and its parameters are optimized with particle swarm optimization (PSO) algorithm. The circuits of the band?pass filter and bi?quadratic high?pass filter are taken as the instance of the fault diagnosis to verify the analog circuit fault diagnosis method. The three?layer wavelet packet is used to decompose the output voltage signal to obtain 8 frequency band energy feature vectors. The data samples are acquired with Carlo Monte simulation, which are used to train and test the fault diagnosis model. The results show that the fault diagnosis model′s diagnosis accuracy for eight faults is higher than 95%, which is constructed with the improved LSSVM algorithm, and has high fault diagnosis performance.

        Keywords: analog circuit; fault diagnosis; least square support vector machine; particle swarm optimization algorithm

        0 引 言

        目前各個(gè)行業(yè)對(duì)于大規(guī)模混合集成電路的應(yīng)用越來(lái)越廣泛,因此越來(lái)越多的學(xué)者開(kāi)始重點(diǎn)研究電路故障診斷以及測(cè)試[1?2]。實(shí)際上數(shù)字電路故障診斷技術(shù)已經(jīng)得到了完善的發(fā)展,然而模擬電路因具有非線性的特點(diǎn),同時(shí)由于故障復(fù)雜多樣性以及元件的容差性使得無(wú)法采取有效的方法診斷模擬電路的故障。國(guó)內(nèi)外學(xué)者在1960年左右開(kāi)始研究模擬電路故障診斷,并得到了很多經(jīng)典的方法和理論,例如支持向量機(jī)法、人工神經(jīng)網(wǎng)絡(luò)、小波分解、模糊理論以及故障字典等,并對(duì)這些理論進(jìn)行了充分的實(shí)踐研究[3?5]。Suykens等人以機(jī)器學(xué)習(xí)損失函數(shù)為出發(fā)點(diǎn)提出了最小二乘支持向量機(jī)法,將二范數(shù)作為優(yōu)化目標(biāo)函數(shù),采用等式約束條件取代不等式約束條件,這樣在進(jìn)行優(yōu)化的過(guò)程中一組線性方程組的解可以通過(guò)Kuhn?Tucker條件來(lái)獲取[6?7]。作為一種進(jìn)化算法,PSO 算法和模擬退火算法有一定的相似性,采用迭代的方法,以隨機(jī)解為出發(fā)點(diǎn)進(jìn)行優(yōu)化。這種算法具有收斂速度塊、精度高以及實(shí)現(xiàn)容易的特點(diǎn),在對(duì)一些實(shí)際問(wèn)題進(jìn)行解決的過(guò)程中具有一定的優(yōu)勢(shì)。粒子群算法也屬于并行算法的類型[8?9]。本文將LSSVM算法應(yīng)用于模擬電路故障診斷模型。

        1 模擬電路故障診斷模型

        完善后的慣性權(quán)重系數(shù)能夠?qū)λ阉鬟^(guò)程的高復(fù)雜性以及非線性進(jìn)行模擬,全局以及局部搜索能力利用粒子群算法可以得到有效的平衡。

        步驟4:對(duì)所能達(dá)到的停止條件進(jìn)行檢查,檢查適應(yīng)度值以及最大迭代次數(shù)是否能夠滿足要求,當(dāng)滿足條件時(shí)就停止迭代過(guò)程,如果不滿足條件就繼續(xù)執(zhí)行步驟2。

        步驟5:在獲取粒子全局最優(yōu)值的基礎(chǔ)上進(jìn)行LSSVM 回歸預(yù)測(cè),參數(shù)流程如圖1所示[14]。

        2 帶通濾波器電路故障診斷

        首先以帶通濾波器電路故障診斷實(shí)例對(duì)本文研究的模擬電路故障診斷方法進(jìn)行驗(yàn)證。所研究的帶通濾波器電路如圖2所示[15],診斷對(duì)象為R2,R3,C1和C2。各元件的標(biāo)稱值[16]為:R2=2 kΩ,R3=2 kΩ,C1=10 nF,C2=10 nF。使用ORCAD10.5軟件對(duì)電路故障進(jìn)行模擬。

        將幅值為5 V,0.01 ms的脈沖電路施加于所研究的帶通濾波器電路實(shí)例電路中,使用三層小波包分解輸出電壓信號(hào),得到8個(gè)頻帶能量特征向量,通過(guò)Monte Carlo仿真得到200組數(shù)據(jù)樣本,隨機(jī)抽取其中150組用于對(duì)診斷模型的訓(xùn)練,另外50組用于對(duì)診斷模型的測(cè)試,部分樣本數(shù)據(jù)見(jiàn)表1。使用常規(guī)LSSVM算法和本文使用的改進(jìn)LSSVM算法構(gòu)建故障診斷模型。模型中,γ取值為[0.5,200],核參數(shù)σ取值范圍為[0.2,5],種群規(guī)模為50,最大迭代次數(shù)為100。

        使用相同的訓(xùn)練數(shù)據(jù)對(duì)兩種診斷模型進(jìn)行訓(xùn)練,訓(xùn)練曲線如圖3所示??梢钥闯霰疚氖褂玫母倪M(jìn)LSSVM算法構(gòu)建故障診斷模型訓(xùn)練誤差更低、訓(xùn)練步數(shù)更少。

        使用相同的測(cè)試數(shù)據(jù)對(duì)兩種已經(jīng)訓(xùn)練后的診斷模型進(jìn)行測(cè)試,得到兩種模型的測(cè)試準(zhǔn)確率對(duì)比如表2所示。

        可以看出,本文使用的改進(jìn)LSSVM算法構(gòu)建的故障診斷模型針對(duì)8種故障的診斷準(zhǔn)確率均高于95%,均高于常規(guī)LSSVM算法,平均準(zhǔn)確率為96.07%,高于常規(guī)LSSVM算法的平均準(zhǔn)確率88.99%。

        3 雙二次高通濾波器電路故障診斷

        以雙二次高通濾波器電路故障診斷實(shí)例對(duì)本文研究的模擬電路故障診斷方法進(jìn)行驗(yàn)證。所研究的雙二次高通濾波器電路如圖4所示[17],診斷對(duì)象為R1,R2,C1和C2。各元件的標(biāo)稱值[18]為:R1=6 kΩ,R2=6 kΩ,C1=5 nF,C2=5 nF。使用ORCAD10.5軟件對(duì)電路故障進(jìn)行模擬。將幅值為5 V,0.01 ms的脈沖電路施加于所研究的雙二次高通濾波器電路實(shí)例電路中,使用三層小波包分解輸出電壓信號(hào),得到8個(gè)頻帶能量特征向量,通過(guò)Monte Carlo仿真得到300組數(shù)據(jù)樣本,隨機(jī)抽取其中200組用于對(duì)診斷模型的訓(xùn)練,另外100組用于對(duì)診斷模型的測(cè)試,部分樣本數(shù)據(jù)見(jiàn)表3。

        使用常規(guī)LSSVM算法和本文使用的改進(jìn)LSSVM算法構(gòu)建故障診斷模型。使用相同的訓(xùn)練數(shù)據(jù)對(duì)兩種診斷模型進(jìn)行訓(xùn)練,訓(xùn)練曲線如圖5所示。

        使用相同的測(cè)試數(shù)據(jù)對(duì)兩種已經(jīng)訓(xùn)練后的診斷模型進(jìn)行測(cè)試,得到兩種模型的測(cè)試準(zhǔn)確率對(duì)比如表4所示??梢钥闯?,本文使用的改進(jìn)LSSVM算法構(gòu)建的故障診斷模型針對(duì)8種故障的診斷準(zhǔn)確率均高于95%,均高于常規(guī)LSSVM算法,平均準(zhǔn)確率為96.03%,高于常規(guī)LSSVM算法的平均準(zhǔn)確率89.92%。

        4 結(jié) 論

        本文將LSSVM算法應(yīng)用于模擬電路故障診斷模型。以帶通濾波器電路和雙二次高通濾波器電路的故障診斷為實(shí)例對(duì)本文研究的模擬電路故障診斷方法進(jìn)行驗(yàn)證。結(jié)果表明,本文使用的改進(jìn)LSSVM算法構(gòu)建的故障診斷模型針對(duì)8種故障的診斷準(zhǔn)確率均高于95%,均高于常規(guī)LSSVM算法,具有較好的故障診斷性能。

        表3 部分樣本數(shù)據(jù)

        表4 兩種模型的測(cè)試準(zhǔn)確率對(duì)比

        參考文獻(xiàn)

        [1] 胡梅,胡列峰,明德祥.模擬電路統(tǒng)一軟故障診斷的研究[J].電子測(cè)量與儀器學(xué)報(bào),2013(11):1060?1066.

        [2] 祝文姬.模擬電路故障診斷的神經(jīng)網(wǎng)絡(luò)方法及其應(yīng)用[D].長(zhǎng)沙:湖南大學(xué),2011.

        [3] 劉麗霞.基于小波理論與LSSVM的模擬集成電路故障診斷方法[D].西安:西安電子科技大學(xué),2011.

        [4] 黃亮.模擬電路故障診斷研究[D].北京:北京交通大學(xué),2012.

        [5] 李晴.基于優(yōu)化機(jī)器學(xué)習(xí)算法的模擬電路故障診斷研究[D].長(zhǎng)沙:湖南大學(xué),2013.

        [6] 方葛豐.模擬電路故障診斷優(yōu)化理論與方法的研究[D].長(zhǎng)沙:湖南大學(xué),2013.

        [7] 李明亮.基于神經(jīng)網(wǎng)絡(luò)的模擬電路故障診斷方法研究[D].北京:中國(guó)地質(zhì)大學(xué),2007.

        [8] 宋麗偉,彭敏放,田成來(lái),等.基于PSO?RBF神經(jīng)網(wǎng)絡(luò)的模擬電路診斷[J].計(jì)算機(jī)應(yīng)用研究,2012(1):72?74.

        [9] 謝春,宋國(guó)明,姜書(shū)艷,等.自適應(yīng)GA優(yōu)化WNN的模擬電路軟故障診斷方法[J].計(jì)算機(jī)應(yīng)用研究,2012(1):75?78.

        [10] 孫斌,姚海濤.基于PSO優(yōu)化LSSVM的短期風(fēng)速預(yù)測(cè)[J].電力系統(tǒng)保護(hù)與控制,2012(5):

        85?89.

        [11] 王賀,胡志堅(jiān),張翌暉,等.基于IPSO?LSSVM的風(fēng)電功率短期預(yù)測(cè)研究[J].電力系統(tǒng)保護(hù)與控制,2012(24):107?112.

        [12] 楊青,田楓,王大志,等.基于提升小波和遞推LSSVM的實(shí)時(shí)故障診斷方法[J].儀器儀表學(xué)報(bào),2011(3):596?602.

        [13] 龍文,焦建軍,龍祖強(qiáng).基于PSO優(yōu)化LSSVM的未知模型混沌系統(tǒng)控制[J].物理學(xué)報(bào),2011(11):120?125.

        [14] 孫健,王成華,洪峰,等.基于人工魚(yú)群優(yōu)化支持向量機(jī)的模擬電路故障診斷[J].系統(tǒng)仿真學(xué)報(bào),2014(4):843?847.

        [15] 王靜,蔣剛,陳中杰.基于改進(jìn)PSO_LSSVM機(jī)械結(jié)構(gòu)疲勞裂紋擴(kuò)展預(yù)測(cè)[J].計(jì)算機(jī)應(yīng)用研究,2013(12):3597?3599.

        [16] 童曉.基于LSSVM和改進(jìn)PSO算法的燃煤鍋爐燃燒優(yōu)化研究[D].北京:中國(guó)計(jì)量學(xué)院,2015.

        [17] 仇軍.改進(jìn)PSO?LSSVM方法在城市時(shí)用水量預(yù)測(cè)中的應(yīng)用[D].上海:上海交通大學(xué),2013.

        [18] 宋麗偉.基于小波分析和神經(jīng)網(wǎng)絡(luò)的模擬電路故障診斷[D].長(zhǎng)沙:湖南大學(xué),2012.

        猜你喜歡
        最小二乘支持向量機(jī)模擬電路粒子群優(yōu)化算法
        多級(jí)RC電路的PID控制方法
        東方教育(2017年1期)2017-04-20 11:24:50
        基于最小二乘支持向量機(jī)的VaR計(jì)算方法研究
        電子電路的發(fā)展研究
        電子商務(wù)交易風(fēng)險(xiǎn)評(píng)估模型仿真分析
        基于改進(jìn)SVM的通信干擾識(shí)別
        基于自適應(yīng)線程束的GPU并行粒子群優(yōu)化算法
        基于混合粒子群算法的供熱管網(wǎng)優(yōu)化設(shè)計(jì)
        基于改進(jìn)支持向量機(jī)的船舶縱搖預(yù)報(bào)模型
        基于混合核函數(shù)的LSSVM網(wǎng)絡(luò)入侵檢測(cè)方法
        “模擬電路”課程中理論分析與EDA仿真關(guān)系的探討
        亚洲精品国产av天美传媒| 波多野结衣aⅴ在线| 丰满老熟妇好大bbbbb| 国产精品jizz在线观看老狼| 国产精品成人免费视频网站京东| 少妇白浆高潮无码免费区| 精品国产精品久久一区免费式| 国产精品久久久一本精品| 一区二区三区四区日韩亚洲| 三级日本理论在线观看| 国产精品国产三级国产av剧情| 人人做人人爽人人爱| 国产 麻豆 日韩 欧美 久久| 国产无遮挡又黄又爽在线视频| 91精品啪在线看国产网站| 中文字幕精品亚洲无线码二区| 国产亚洲激情av一区二区| 老熟妇嗷嗷叫91九色| 亚洲精品98中文字幕| 懂色av一区二区三区尤物| 无码h黄肉3d动漫在线观看| 亚洲色在线v中文字幕| 亚洲日本va午夜在线电影| 手机色在线| 天堂麻豆精品在线观看| 性人久久久久| 国产午夜福利久久精品| 日韩毛片免费无码无毒视频观看| 亚洲人成无码www久久久| 亚洲欧美在线视频| 久久亚洲精品中文字幕蜜潮| 国产精品一区二区夜色不卡| 亚洲午夜精品一区二区| 欧美真人性野外做爰| 欧美成人一区二区三区在线观看| 中文AV怡红院| 蜜桃av一区二区三区久久| 国产免费av手机在线观看片| 亚洲日韩激情无码一区| 六月婷婷久香在线视频| 久久国产36精品色熟妇|