亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        馬鈴薯遺傳育種研究:現(xiàn)狀與展望

        2017-04-07 00:55:44徐建飛金黎平
        關(guān)鍵詞:抗性種質(zhì)基因組

        徐建飛,金黎平

        (中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所/農(nóng)業(yè)部薯類(lèi)作物生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,北京100081)

        馬鈴薯遺傳育種研究:現(xiàn)狀與展望

        徐建飛,金黎平

        (中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所/農(nóng)業(yè)部薯類(lèi)作物生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,北京100081)

        馬鈴薯是世界第三大糧食作物,馬鈴薯產(chǎn)業(yè)的可持續(xù)發(fā)展對(duì)保障世界和中國(guó)的糧食安全具有重要意義。優(yōu)良品種是支撐馬鈴薯產(chǎn)業(yè)發(fā)展的基礎(chǔ)。馬鈴薯經(jīng)常遭受病蟲(chóng)害的侵襲和非生物脅迫,加工業(yè)的迅速發(fā)展和人們對(duì)食物營(yíng)養(yǎng)的重視,迫切需要選育出更抗病、更耐逆、更高產(chǎn)、更優(yōu)質(zhì)和專用的馬鈴薯新品種。培育一個(gè)優(yōu)良馬鈴薯品種,種質(zhì)資源是基礎(chǔ),重要性狀的遺傳學(xué)是理論指導(dǎo),先進(jìn)的育種技術(shù)是保障,完善的推廣和栽培模式是支撐。世界范圍內(nèi),保存了大約65 000份馬鈴薯種質(zhì)資源,通過(guò)對(duì)種質(zhì)資源抗病、抗逆和品質(zhì)方面的系統(tǒng)評(píng)價(jià),并應(yīng)用多種資源利用技術(shù),將三大類(lèi)約17個(gè)野生種的種質(zhì)導(dǎo)入到普通栽培種中,應(yīng)用于育種和遺傳學(xué)研究。利用純合雙單倍體材料作為測(cè)序?qū)ο?,馬鈴薯基因組序列已經(jīng)被揭示,預(yù)測(cè)出了39 031個(gè)蛋白編碼基因,目前更多的種質(zhì)資源正在被重測(cè)序以揭示更多的等位變異。馬鈴薯普通栽培品種是無(wú)性繁殖四倍體作物,具有四體遺傳特性,盡管如此,許多植株發(fā)育和形態(tài)、塊莖品質(zhì)和抗病抗逆等重要性狀的遺傳特性基本明確,并定位和克隆了大量重要性狀相關(guān)基因。目前,馬鈴薯育種技術(shù)主要涵蓋傳統(tǒng)育種技術(shù)、倍性育種技術(shù)、標(biāo)記輔助選擇育種技術(shù)、基因工程育種技術(shù)和新興的基因組選擇育種技術(shù)。中國(guó)馬鈴薯遺傳育種研究隊(duì)伍不斷壯大,品種選育取得了重大進(jìn)展。荷蘭馬鈴薯遺傳育種水平居于世界前列,合作育種模式推動(dòng)了商業(yè)化育種。不斷完善馬鈴薯綜合育種技術(shù),創(chuàng)新育種模式和機(jī)制,充分利用現(xiàn)有種質(zhì)資源培育突破性、專用型品種將是未來(lái)馬鈴薯遺傳育種發(fā)展的主要方向。

        馬鈴薯;育種;遺傳學(xué);現(xiàn)狀;展望

        0 引言

        馬鈴薯(Solanum tuberosum)是世界第三大糧食作物和最重要的非禾本科作物。2014年全球馬鈴薯總產(chǎn) 3.82億噸,分布在全球 158個(gè)國(guó)家和地區(qū)(http://fao.org/faostat)。馬鈴薯塊莖營(yíng)養(yǎng)豐富全面,含有人體必需的全部七大類(lèi)營(yíng)養(yǎng)物質(zhì),全球約10億人將馬鈴薯作為主要食物食用[1]。中國(guó)是第一大馬鈴薯生產(chǎn)國(guó),產(chǎn)量占世界總產(chǎn)量的1/4左右。馬鈴薯在中國(guó)各個(gè)生態(tài)區(qū)域都有廣泛種植,尤其在西部貧困地區(qū)和邊遠(yuǎn)山區(qū)種植面積更大,為緩解中國(guó)食物安全壓力和消除地區(qū)性貧困起到了重要作用[2-3]。馬鈴薯起源于南美和中北美地區(qū),經(jīng)過(guò)當(dāng)?shù)厝藗兊鸟Z化逐漸形成可以食用的地方品種;16世紀(jì),馬鈴薯經(jīng)由探險(xiǎn)家傳入歐洲[4];根據(jù)古籍《長(zhǎng)安客話》考證,馬鈴薯約于明朝萬(wàn)歷年間傳入中國(guó)。馬鈴薯不斷被馴化和傳播的歷史,就是一部馬鈴薯育種史:在最初的馴化過(guò)程中,對(duì)人畜有毒的糖苷生物堿(以茄堿和卡茄堿為主)含量減少[5],匍匐莖逐漸縮短,塊莖不斷增大;引入歐洲后,適應(yīng)長(zhǎng)日照結(jié)薯的品種開(kāi)始出現(xiàn)[6];隨著導(dǎo)致愛(ài)爾蘭大饑荒的晚疫病的發(fā)生,人們開(kāi)始從野生種引入抗病種質(zhì)培育抗病新品種;現(xiàn)在,為了滿足馬鈴薯鮮食和加工市場(chǎng)的巨大需求,育種者選育出了大量的馬鈴薯新品種應(yīng)用于生產(chǎn)。然而,馬鈴薯作為無(wú)性繁殖作物,經(jīng)常遭受病蟲(chóng)害的侵襲和非生物脅迫,加之加工業(yè)的迅速發(fā)展和人們對(duì)食物營(yíng)養(yǎng)的重視,迫切需要選育出更抗病、更耐逆、更高產(chǎn)、更優(yōu)質(zhì)和專用的馬鈴薯新品種。如何選育出一個(gè)優(yōu)良的馬鈴薯品種??jī)?yōu)異的種質(zhì)資源是材料基礎(chǔ),重要性狀的遺傳學(xué)是理論指導(dǎo),先進(jìn)的育種方法是技術(shù)保障,完善的推廣和栽培模式是應(yīng)用支撐。

        1 馬鈴薯種質(zhì)資源保存和利用

        種質(zhì)資源是植物育種與遺傳學(xué)研究的基礎(chǔ)。馬鈴薯種質(zhì)資源豐富,包含眾多野生種和栽培種,而且種質(zhì)資源的分類(lèi)一直在不斷變化。SPOONER等[7]在總結(jié)可以用于野生種種別界限和相互關(guān)系鑒別的形態(tài)學(xué)、分子水平、種間雜交障礙和野外觀察的大量數(shù)據(jù)之后,提出馬鈴薯分為107個(gè)野生種和4個(gè)栽培種,這相對(duì)于HAWKES[8]提出的劃分為228個(gè)野生種和 7個(gè)栽培種的分類(lèi)學(xué)說(shuō)發(fā)生了明顯變化。

        1.1 種質(zhì)資源的收集和保存技術(shù)

        世界范圍內(nèi),目前保存了大約30大類(lèi)共65 000份馬鈴薯種質(zhì)資源[9]。世界上主要馬鈴薯種質(zhì)資源收集和保存的機(jī)構(gòu)是:國(guó)際馬鈴薯中心(International Potato Center,CIP)、荷蘭遺傳資源中心(The Centre for Genetic Resources,the Netherlands,CGN)、英國(guó)馬鈴薯種質(zhì)資源庫(kù)(Commonwealth Potato Collection,CPC)、德國(guó)馬鈴薯種質(zhì)資源庫(kù)(The IPK Potato collections at Gross Luesewitz,GLKS)、俄羅斯瓦維洛夫植物栽培科學(xué)研究所(The Vavilov Institute of Plant Industry,VIR)、美國(guó)馬鈴薯基因庫(kù)(National Research Support Project-6,NRSP-6),除此之外,世界上其他國(guó)家如秘魯、玻利維亞、阿根廷、智利和哥倫比亞等國(guó)都建立有馬鈴薯種質(zhì)資源庫(kù)。據(jù)估計(jì),中國(guó)目前保存有5 000余份種質(zhì)資源,以國(guó)內(nèi)外育成品種和品系為主,野生種資源偏少。

        馬鈴薯種質(zhì)資源保存有多種方式,總體上來(lái)講,野生種通常以實(shí)生種子進(jìn)行保存,栽培品種(系)通常以試管苗或者田間種植的方式保存。試管苗保存技術(shù)形成于 1973年[10],由于比田間保存高效和安全,現(xiàn)在已經(jīng)成為世界范圍內(nèi)種質(zhì)資源保存的主要形式,其主要是利用低溫(6—8℃)和山梨醇作為滲透調(diào)節(jié)劑來(lái)抑制植物生長(zhǎng),達(dá)到2年左右時(shí)間不用擴(kuò)繁而較長(zhǎng)時(shí)間保存資源的目的,這種技術(shù)已經(jīng)成為世界上主要馬鈴薯種質(zhì)資源庫(kù)采用的通用技術(shù)。然而,試管苗保存存在耗時(shí)、高成本和因頻繁更新擴(kuò)繁易導(dǎo)致污染而造成資源丟失等諸多問(wèn)題。冷凍保存技術(shù)以其低成本和長(zhǎng)期保存的優(yōu)點(diǎn),逐漸開(kāi)始被種質(zhì)資源管理者所接受。冷凍保存是將植物以超低溫(-196℃)狀態(tài)長(zhǎng)期保存在液氮中,理論上不需要定時(shí)更新保存[9]。冷凍保存最主要的問(wèn)題是要避免外植體冷卻過(guò)程中細(xì)胞內(nèi)結(jié)冰,該項(xiàng)技術(shù)一直處在不斷完善過(guò)程中[11-12]。目前GLKS和CIP已經(jīng)采用冷凍保存技術(shù)進(jìn)行馬鈴薯資源的保存:GLKS采用液滴凍結(jié)技術(shù)(droplet freezing technique)保存了1 341份歐洲馬鈴薯品種資源;CIP對(duì)197份安第斯地方品種進(jìn)行了冷凍保存,但其莖段成活率和再生率都比較低。近年來(lái),為了提高冷凍保存的可靠性和效率,研究者嘗試將應(yīng)用于香蕉資源的冷凍保存技術(shù)進(jìn)行馬鈴薯資源保存,結(jié)果表明,相對(duì)于CIP和GLKS的冷凍保存技術(shù),該方法的成活率和再生率都比較高,而且不同基因型的保存效果比較一致,可用于馬鈴薯資源長(zhǎng)期保存[9]。

        1.2 種質(zhì)資源的評(píng)價(jià)

        馬鈴薯種質(zhì)資源遺傳多樣性評(píng)價(jià)主要可以分為形態(tài)學(xué)指標(biāo)評(píng)價(jià)和分子水平評(píng)價(jià)。形態(tài)學(xué)指標(biāo)是植物分類(lèi)和品種鑒別的傳統(tǒng)方法。在馬鈴薯分類(lèi)學(xué)上,常涉及的莖、葉和花等形態(tài)學(xué)指標(biāo)多達(dá) 53個(gè)[13]。在馬鈴薯品種鑒別上,世界范圍內(nèi)普遍采用的是國(guó)際植物新品種保護(hù)聯(lián)盟(International Union for the Protection of New Varieties of Plants,UPOV)發(fā)布的DUS測(cè)試指南,其涉及的形態(tài)學(xué)相關(guān)性狀指標(biāo)為42個(gè),但不同國(guó)家根據(jù)具體情況對(duì)測(cè)試指南進(jìn)行了修改,例如中國(guó)測(cè)試的指標(biāo)是41個(gè),英國(guó)測(cè)試的指標(biāo)是37個(gè),而印度測(cè)試的指標(biāo)是45個(gè)。隨著分子生物學(xué)的發(fā)展尤其是分子標(biāo)記技術(shù)的發(fā)展,種質(zhì)資源的分子水平評(píng)價(jià)技術(shù)逐漸成熟,其可以快速地進(jìn)行操作和分析,又可以避免由于環(huán)境變化造成的形態(tài)學(xué)指標(biāo)上的變化[14]。分子水平評(píng)價(jià)主要包括應(yīng)用蛋白質(zhì)、分子標(biāo)記和DNA序列進(jìn)行遺傳多樣性分析,具體包括同工酶電泳、限制性酶切位點(diǎn)拷貝數(shù)變化(RFLP和AFLP)、基因組和質(zhì)體DNA微衛(wèi)星標(biāo)記(SSR)、質(zhì)體缺失標(biāo)記、核糖體DNA非轉(zhuǎn)錄間隔子序列(ITS)、多倍體直系同源基因序列等[7]。近年來(lái),隨著基因組測(cè)序技術(shù)的發(fā)展,單核苷酸多態(tài)性(SNP)標(biāo)記已經(jīng)開(kāi)始應(yīng)用于種質(zhì)資源評(píng)價(jià)和品種鑒別。

        在馬鈴薯分類(lèi)學(xué)研究領(lǐng)域,除了對(duì)種質(zhì)資源進(jìn)行形態(tài)學(xué)指標(biāo)和分子水平評(píng)價(jià)之外,也進(jìn)行生殖障礙如自交不親和性(self-incompatibility)、單向不親和性(unilateral incompatibility)、雄性不育性、2n配子(2n gametes)發(fā)生率和胚乳平衡數(shù)(endosperm balance numbers,EBN)的評(píng)價(jià),并經(jīng)常根據(jù)特定的研究目的,開(kāi)展種質(zhì)資源的生物脅迫(病害、蟲(chóng)害等)、非生物脅迫(干旱、霜凍和鹽堿等)和品質(zhì)性狀(干物質(zhì)、營(yíng)養(yǎng)成分和炸片炸條等)評(píng)價(jià)。

        1.3 種質(zhì)資源的利用

        馬鈴薯的起源依然存在爭(zhēng)議,但無(wú)論馬鈴薯起源是源于多起源假說(shuō)(multiple origin hypothesis)或是限制性起源假說(shuō)(restricted origin hypothesis)[7,15],不可改變的事實(shí)是,馬鈴薯在自然界中主要以野生種形式存在。育種的本質(zhì)是創(chuàng)造變異并進(jìn)行選擇,因此,馬鈴薯育種者需要不斷地從野生種中尋找新的變異[16]。野生種被廣泛應(yīng)用于栽培種抗非生物脅迫如耐霜凍和抗低溫糖化及抗生物脅迫如抗病蟲(chóng)(晚疫病、病毒病、青枯病、黃萎病、科羅拉多甲蟲(chóng)和線蟲(chóng))性狀改良,根據(jù)野生種與栽培種雜交從易到難變化即種質(zhì)向栽培種轉(zhuǎn)移從易到難又分為3個(gè)類(lèi)別(表1)。此外野生種還可以提供非常豐富的等位基因多態(tài)性,拓展育種材料的遺傳多樣性[17]。

        然而,由于野生種在進(jìn)化過(guò)程中為了保持種性而與栽培種形成了諸如雜交不親和、雄性不育和胚乳敗育等生殖障礙[38],導(dǎo)致馬鈴薯野生資源利用難度增大。為了能將馬鈴薯野生種的優(yōu)異性狀轉(zhuǎn)移到栽培種中,研究者開(kāi)發(fā)了很多方法[17]:(1)倍性操作。倍性操作主要是通過(guò)體細(xì)胞加倍(秋水仙素處理和愈傷組織培養(yǎng))和非減數(shù)配子進(jìn)行染色體加倍,從而使雜交雙親或者配子體的 EBN達(dá)到相同數(shù)目后進(jìn)行性狀轉(zhuǎn)移。有時(shí)倍性操作需要借助橋梁品種雜交來(lái)實(shí)現(xiàn),S. acaule是常用的橋梁種之一[39-40]。(2)蒙導(dǎo)授粉(mentor pollination)與胚挽救。當(dāng)花柱不親和與胚乳敗育同時(shí)發(fā)生的情況下,采用蒙導(dǎo)授粉和胚挽救策略有時(shí)可以獲得種間雜種。蒙導(dǎo)授粉是指采用含有供體不易親和花粉和介導(dǎo)者易親和花粉的混合花粉進(jìn)行母本授粉,借助介導(dǎo)者花粉與柱頭識(shí)別反應(yīng)而達(dá)到供體花粉成功受精目的,通常介導(dǎo)者的花粉具有胚斑標(biāo)記,其后代容易鑒別和去除[41]。受精后,當(dāng)胚不能正常發(fā)育時(shí)就需要進(jìn)行胚挽救即將胚至于培養(yǎng)基上讓其發(fā)育成熟。然而,對(duì)于馬鈴薯來(lái)講,如果胚早期階段就停止發(fā)育,胚挽救很難成功[42]。(3)激素處理。在介導(dǎo)者花粉缺乏胚斑等明顯標(biāo)記而不能進(jìn)行后代選擇的時(shí)候,可以利用2,4-D等生長(zhǎng)素在授粉后24 h來(lái)處理子房從而達(dá)到獲得實(shí)生種子的目的[42]。(4)正反交。在野生資源利用過(guò)程中,有些材料只有作母本或作父本才易于成功,例如當(dāng)S.cardiophyllum與S.pinnatisectum雜交時(shí),只有S. pinnatisectum作為母本才容易成功[42]。(5)親和基因型選擇。對(duì)于馬鈴薯來(lái)說(shuō),有時(shí)雖然2個(gè)種間可以雜交,但并不是種內(nèi)的所有基因型間均可以雜交,這種種間雜交基因型的依賴性需要對(duì)雜交組合基因型進(jìn)行選擇以避免雜交障礙[43]。(6)體細(xì)胞融合。廣義上屬于倍性操作范疇,在花粉和柱頭不親和或者胚敗育的情況下,體細(xì)胞雜交(somatic hybridization)或者原生質(zhì)體融合(protoplast fusion)可以繞開(kāi)有性雜交而進(jìn)行野生資源利用。然而,體細(xì)胞雜交需要豐富的操作經(jīng)驗(yàn)和大量的時(shí)間和物質(zhì)投入,有時(shí)獲得的體細(xì)胞雜種外源有利性狀卻不一定被導(dǎo)入。S.tuberosum與S.brevidens、S.bulbocastanum、S.circaeifolium、S.commersonii、S.acaule種之間的體細(xì)胞融合都見(jiàn)諸文獻(xiàn)報(bào)道[17]。

        表1 系統(tǒng)評(píng)價(jià)過(guò)或應(yīng)用于馬鈴薯育種的野生種[16]Table 1 Wild relatives that have been evaluated and/or used in potato breeding

        2 馬鈴薯基因組學(xué)研究

        栽培馬鈴薯是四倍體作物,基因組高度雜合,存在嚴(yán)重的自交衰退現(xiàn)象,這給基因組學(xué)研究帶來(lái)巨大挑戰(zhàn)。揭示馬鈴薯基因組序列必須首先找到合適的測(cè)序材料,人們把目光投向了傳統(tǒng)的組織培養(yǎng)技術(shù)。通過(guò)二倍體材料S. phureja的花藥培養(yǎng)獲得了一個(gè)單倍體材料,利用染色體加倍又獲得了一個(gè)純合的雙單倍體材料DM1-3 516 R44(DM)[44]。同時(shí),利用含有普通栽培種血緣的的二倍體雜合材料 RH89-039-16的BAC序列進(jìn)行基因組序列的錨定和比較[45]。馬鈴薯基因組大概為844 Mb,通過(guò)DM序列的組裝拼接,共獲得727 Mb全基因組序列,沒(méi)有完成組裝的117 Mb主要是重復(fù)序列。通過(guò) EST和已有的遺傳和物理圖譜上的分子標(biāo)記對(duì)組裝的基因組序列進(jìn)行了驗(yàn)證。結(jié)合轉(zhuǎn)錄組和蛋白組學(xué)數(shù)據(jù),從測(cè)序基因組中預(yù)測(cè)出了39 031個(gè)蛋白編碼基因,其中9 875個(gè)基因存在可變剪接,這表明同一個(gè)基因即使序列不變卻也存在更多的功能性變異[46]。

        通過(guò)基因組序列中的共線性同源基因區(qū)塊分析發(fā)現(xiàn),馬鈴薯基因組存在2次全基因組范圍的復(fù)制事件。馬鈴薯基因組不同單倍型序列之間存在高度的多態(tài)性。通過(guò)RH的部分區(qū)段序列與DM對(duì)應(yīng)序列比較后發(fā)現(xiàn),每隔40 bp就存在一個(gè)SNP,每隔394 bp就存在一個(gè)indel;RH的2個(gè)單倍型之間的部分序列比較表明,每隔29 bp就存在一個(gè)SNP,每隔253 bp就存在一個(gè)indel[46]。

        近來(lái),抗病和抗逆尤其是耐寒特性突出的馬鈴薯野生種 S.commersonii的基因組序列也被揭示[47]。相對(duì)于栽培種,該種的基因組雜合程度更低,重復(fù)區(qū)段更少,抗病候選基因更少,但卻包含很多栽培種不具備的耐寒相關(guān)基因。目前,只有3個(gè)材料(DM基因組序列,RH的部分單倍型序列,PI243503基因組序列)的基因組序列被揭示,這遠(yuǎn)不能揭示豐富的馬鈴薯原始栽培種、新型栽培種、普通栽培種以及自然界中大量存在的野生種基因組水平上的遺傳多樣性,進(jìn)行更多單倍型測(cè)序?qū)?duì)馬鈴薯研究具有更大的作用,當(dāng)前涉及同源四倍體測(cè)序的技術(shù)嘗試正在進(jìn)行中。

        3 馬鈴薯重要性狀遺傳學(xué)和決定基因

        馬鈴薯由于存在無(wú)性和有性結(jié)合的混合繁殖方式,造成其遺傳組成高度雜合,在自然界中存在大量從二倍體到六倍體的結(jié)薯和非結(jié)薯種?,F(xiàn)代馬鈴薯栽培品種是同源四倍體作物,具有四體遺傳(tetrasomic inheritance)特性[48]。雖然四體遺傳比較復(fù)雜,但是單基因控制的質(zhì)量性狀和多基因控制的數(shù)量性狀依然可以應(yīng)用孟德?tīng)栠z傳學(xué)和數(shù)量遺傳學(xué)進(jìn)行分析[49]。馬鈴薯許多質(zhì)量性狀是由主效基因控制,如控制晚疫病小種專一性抗性基因 R1-R11、非小種專一性抗性基因RB/Rpi-blb1、抗PVX基因Rx、抗PVY基因Ryadg和金線蟲(chóng)抗性基因H1等,薯皮和花冠顏色、薯形和芽眼深淺也是由主效基因控制的[49]。對(duì)于單基因控制的質(zhì)量性狀來(lái)說(shuō),可以通過(guò)子代測(cè)驗(yàn)(progeny tests)或者分子生物學(xué)手段如高分辨率熔解曲線(high-resolution melt,HRM)來(lái)分析親本等位基因構(gòu)成,對(duì)于等位基因組成形式是單式(simplex)或者復(fù)式(duplex)親本,后代需要對(duì)目標(biāo)性狀進(jìn)行篩選,而對(duì)于親本組成是三式(triplex)或者四式(quadruplex)時(shí),在排除雙交換情況下,子代全部含有目標(biāo)基因。

        然而,馬鈴薯大多數(shù)性狀是由多基因控制的數(shù)量性狀。數(shù)量性狀的表型是由基因型和環(huán)境互作形成的,子代表型數(shù)據(jù)常呈正態(tài)分布。數(shù)量性狀可以通過(guò)家系均值和方差進(jìn)行分析,但不同群體的均值和方差會(huì)變化很大。在試驗(yàn)設(shè)計(jì)中,如果環(huán)境變異被壓縮到趨近于零時(shí),可以認(rèn)為表型變異全部由遺傳變異決定的[50]。數(shù)量性狀有效分析例如容錯(cuò)性子代測(cè)驗(yàn)(robust progeny tests)對(duì)于群體改良、選擇策略和遺傳增益(genetic gain)非常重要[51],研究者已經(jīng)開(kāi)始將這種統(tǒng)計(jì)分析方法應(yīng)用于馬鈴薯的數(shù)量性狀分析[49]。馬鈴薯主要性狀及其遺傳形式見(jiàn)表2。

        在抗病基因定位和克隆方面,晚疫病、病毒病和線蟲(chóng)抗性研究有較大突破。晚疫病是馬鈴薯第一大病害,平均導(dǎo)致馬鈴薯減產(chǎn)16%[77]。晚疫病抗性研究中,最先受到育種者關(guān)注的是來(lái)自于S.demissum的主效基因R1-R11[78],在2000年左右,R1、R3、R2、R4和R10都被導(dǎo)入到栽培品種中[79-81],但由于田間晚疫病菌小種組成的變化,這些品種在田間相繼失去抗性。由于小種專一性抗性基因不斷被晚疫病菌克服,人們開(kāi)始尋找并分離廣譜抗性的主效抗性基因,例如來(lái)自于 S.bulbocastanum的基因 Rpi-blb1/RB、Rpi-blb2和Rpi-blb3等基因接連被定位和克隆[32,81-83]。相對(duì)于主效基因,晚疫病數(shù)量抗性研究也比較深入,在全部 12條染色體上共發(fā)現(xiàn)至少20個(gè)QTL[48,68,84],其中不乏一些貢獻(xiàn)率高和重復(fù)性好的抗性位點(diǎn)。對(duì)于晚疫病主效抗性和數(shù)量抗性關(guān)系,GEBHARDT[85]認(rèn)為:失效的R基因能增加數(shù)量抗性;一些抗性QTL通常與R基因連鎖存在;一些防衛(wèi)信號(hào)傳導(dǎo)基因或者防衛(wèi)反應(yīng)基因?qū)儆跀?shù)量抗性基因的一部分。馬鈴薯在進(jìn)化過(guò)程中,由于抗性基因和病原菌之間的互作,使得馬鈴薯不同種中含有豐富的抗性基因資源,有時(shí)又形成一個(gè)個(gè)抗性基因家族,例如,晚疫病抗性基因 R2基因家族,就包括晚疫抗性基因R2、R2-like、Rpi-abpt、Rpi-blb3、RD、Rpi-edn1.1、Rpi-snk1.1、Rpi-snk1.2、 Rpi-hjt1.1、Rpi-hjt1.2和Rpi-hjt1.3[86-87]。已克隆的晚疫病主效基因見(jiàn)表3。

        自然界中大概有 40余種病毒感染馬鈴薯,其中PLRV和PVY危害最大,其次是PVX、PVA、PVM、PVS和PMTV,是導(dǎo)致馬鈴薯退化的主要原因[48]。目前,已經(jīng)有很多病毒抗性基因被定位和克隆?;ㄈ~病毒病的抗性分為極端抗性(extreme resistance,ER)和過(guò)敏抗性(hypersensitive resistance,HR),ER抗性基因無(wú)病毒小種選擇性,抗性反應(yīng)通常不表現(xiàn)出癥狀,而HR抗性的抗性依賴于病毒小種組成[98-99],抗性反應(yīng)表現(xiàn)為明顯的病毒侵染部位壞死。已知的病毒抗性基因見(jiàn)表4。

        線蟲(chóng)對(duì)馬鈴薯根莖危害極大,并可以脫離寄主在土壤中長(zhǎng)期存留,致使防治難度極大。對(duì)栽培馬鈴薯危害最大的線蟲(chóng)是孢囊線蟲(chóng)(Globodera spp.),其次是根結(jié)線蟲(chóng)(Meloidogyne spp.)。

        在S.tuberosum ssp. andigena、S.spegazzinii和S.vernei等許多種中發(fā)現(xiàn)了根結(jié)線蟲(chóng)抗性基因,其中許多基因已經(jīng)被導(dǎo)入到了栽培馬鈴薯種中[48]。目前,共有 14個(gè)線蟲(chóng)抗性位點(diǎn)被定位于馬鈴薯的8個(gè)連鎖群中[108]。已知的馬鈴薯線蟲(chóng)抗性基因或者QTL見(jiàn)表5。

        表2 主要馬鈴薯性狀的遺傳學(xué)Table 2 Genetic control of major potato traits

        表3 已經(jīng)克隆的馬鈴薯抗晚疫病基因Table 3 Late blight resistance genes cloned from potato

        馬鈴薯細(xì)菌性病害如青枯病(Ralstonia solanacearum)、黑脛?。≒ectobacterium atrosepticum)、軟腐?。≒ectobacterium spp.)和瘡痂?。⊿treptomyces spp.)的抗性一般都屬于數(shù)量抗性,在病原致病機(jī)理方面研究比較深入,但在馬鈴薯抗性機(jī)制和抗性位點(diǎn)研究方面進(jìn)展較小,只是通過(guò)群體進(jìn)行了抗性QTL定位或者通過(guò)原生質(zhì)體融合或體細(xì)胞雜交方式進(jìn)行了抗性的利用。普通栽培種(S.tuberosum)還沒(méi)有發(fā)現(xiàn)具有青枯病抗性的材料,來(lái)自于二倍體栽培種S.phureja的抗性被廣泛導(dǎo)入到栽培種中,但在高溫時(shí),青枯病抗性并不穩(wěn)定且具有小種特異性[119]。目前,研究者主要是通過(guò)原生質(zhì)體融合,從S.commersonii、S.chacoense、S.stenotomum 和茄子中向馬鈴薯中引入了抗性種質(zhì)[120-123]。研究者對(duì)馬鈴薯野生種軟腐病的抗性進(jìn)行了評(píng)價(jià),結(jié)果表明,來(lái)源于S.paucijugum、S.brevicaule和S.commersonii的材料具有良好的軟腐病抗性[124]。馬鈴薯瘡痂病抗性機(jī)制目前還不清楚,還沒(méi)有鑒定出來(lái)針對(duì)瘡痂病菌的抗性基因,只篩選出一些病菌侵染后的一些防衛(wèi)相關(guān)基因[125],但瘡痂病耐受品種的塊莖通常會(huì)有更多、更厚的木栓細(xì)胞層[126],通過(guò)體細(xì)胞無(wú)性系篩選技術(shù)(somaclonal cell selection techniques)已經(jīng)育成了具有瘡痂病極端抗性的馬鈴薯材料[127]。

        表4 已知的馬鈴薯抗病毒病基因Table 4 Known virus resistance genes from potato

        表5 已知馬鈴薯抗線蟲(chóng)基因Table 5 Known nematode resistance genes from potato

        在馬鈴薯塊莖性狀研究方面,塊莖顏色、薯形和芽眼深度等表觀性狀研究較多。塊莖顏色包括薯皮顏色和薯肉顏色。研究者最初認(rèn)為,四倍體馬鈴薯薯皮顏色由D、R、P 3個(gè)位點(diǎn)控制,R位點(diǎn)控制紅色色素合成,P位點(diǎn)控制紫色色素合成,而D位點(diǎn)是薯皮特異的、控制色素合成的調(diào)控因子[128]。在二倍體群體中,也相應(yīng)地存在控制薯皮顏色的I、R、P三基因系統(tǒng),I相當(dāng)于四倍體中的D位點(diǎn),P對(duì)R顯性,即I_ R_ P_呈現(xiàn)紫色,I_ R_pp呈現(xiàn)紅色,ii_ _ _ _呈現(xiàn)白色[129]。D、R、P位點(diǎn)被分別定位于第10、第2和第11染色體上[130-131]。借助于番茄色素結(jié)構(gòu)和調(diào)節(jié)基因的相關(guān)研究,研究者發(fā)現(xiàn) R編碼二氫黃酮醇還原酶(dfr),P編碼類(lèi)黃酮羥化酶(f 3'5' h),D編碼R2R3 MYB轉(zhuǎn)錄因子,并通過(guò)轉(zhuǎn)基因進(jìn)行了功能驗(yàn)證,D位點(diǎn)與薯形主效遺傳位點(diǎn)和芽眼深度基因 Eyd相距不遠(yuǎn)[132-136]。薯肉顏色遺傳機(jī)理與薯皮顏色類(lèi)似,只是組織特異性的調(diào)控因子發(fā)生了改變[132]。

        塊莖形狀的研究歷史也較長(zhǎng),MASSON[137]將控制圓形薯形的基因命名為Ro,并確定該基因距著絲粒12.2 cM,后來(lái)的研究表明,除了Ro影響薯形性狀之外,還有其他位點(diǎn)的修飾效應(yīng)[138],最近,研究者構(gòu)建了一個(gè)包含2 157個(gè)SNP標(biāo)記的遺傳圖譜,將薯形基因定位在第10和第2染色體上,第10染色體存在主效效應(yīng)[53]。芽眼深度和薯形存在相互關(guān)聯(lián),研究發(fā)現(xiàn)深芽眼和圓薯形2個(gè)性狀成連鎖關(guān)系,深芽眼控制基因被定位在第10染色體上,與薯形主效基因大概相距4 cM[54]。

        而塊莖的產(chǎn)量、淀粉和還原糖含量、炸片顏色和損傷等復(fù)雜性狀,是由多基因控制的,遺傳機(jī)制比較復(fù)雜,而且易受環(huán)境影響。近年來(lái),研究者一般通過(guò)關(guān)聯(lián)分析來(lái)進(jìn)行復(fù)雜性狀研究。LI等[139]利用243個(gè)四倍體品種(系),對(duì)塊莖產(chǎn)量、淀粉含量和炸片顏色進(jìn)行了分子標(biāo)記關(guān)聯(lián)分析,發(fā)現(xiàn)了50個(gè)與淀粉含量相關(guān)的分子標(biāo)記。馬鈴薯塊莖成熟時(shí),碳水化合物主要是以淀粉和少量可溶性糖貯存在塊莖當(dāng)中。在塊莖休眠期間,由于貯藏溫度較低,淀粉又會(huì)部分轉(zhuǎn)化成糖類(lèi)物質(zhì),即“低溫糖化(cold-induced sweetening)”現(xiàn)象,其嚴(yán)重影響塊莖炸條和炸片質(zhì)量。塊莖淀粉和糖相互轉(zhuǎn)化過(guò)程中,共有約18個(gè)遺傳位點(diǎn)參與作用,SCHREIBER等[140]利用208個(gè)四倍體材料,克隆了1個(gè)質(zhì)體淀粉磷酸化酶基因PHO1a,該基因可以提升塊莖淀粉含量;研究發(fā)現(xiàn),馬鈴薯中存在多種轉(zhuǎn)化酶(invertase)基因,轉(zhuǎn)化酶的活性與塊莖低溫糖化現(xiàn)象顯著相關(guān),對(duì)其進(jìn)行基因沉默或抑制表達(dá)可顯著改善低溫糖化現(xiàn)象[139,141-142]。酶促褐變和機(jī)械損傷嚴(yán)重影響塊莖商品品質(zhì),URBANY等[143]通過(guò)205個(gè)四倍體品種的酶促褐變和機(jī)械損傷性狀與候選基因和SSR標(biāo)記關(guān)聯(lián)分析,鑒定出21個(gè)貢獻(xiàn)率的較大的分子標(biāo)記或遺傳位點(diǎn)。

        馬鈴薯耐受非生物脅迫如抗旱、耐寒、耐熱和耐鹽堿的機(jī)制比較復(fù)雜。馬鈴薯是水分高效利用的作物,但卻對(duì)干旱比較敏感[144-145]??购档倪z傳學(xué)研究主要集中在抗旱相關(guān)QTL定位方面,結(jié)果表明,馬鈴薯抗旱性遺傳復(fù)雜,受多個(gè)位點(diǎn)的影響[61,146],此外關(guān)于馬鈴薯抗旱的轉(zhuǎn)錄組學(xué)研究也較多[147-148]。馬鈴薯耐寒性和冷馴化能力是獨(dú)立遺傳控制的并且是由許多微效基因影響[149]。高溫會(huì)造成塊莖畸形、表皮開(kāi)裂和內(nèi)部壞死,而這些表型都是受獨(dú)立的遺傳機(jī)制控制的[59,150]。馬鈴薯耐鹽堿也是屬于多基因控制的復(fù)雜性狀,應(yīng)用QTL定位和轉(zhuǎn)錄組學(xué)進(jìn)行耐鹽堿機(jī)制研究見(jiàn)諸報(bào)道[59,151]。

        4 馬鈴薯育種技術(shù)

        4.1 傳統(tǒng)育種技術(shù)

        目前,世界范圍內(nèi)育成的馬鈴薯品種中,絕大多數(shù)是依靠傳統(tǒng)育種技術(shù)育成的品種,傳統(tǒng)育種技術(shù)是馬鈴薯育種技術(shù)的基礎(chǔ)。馬鈴薯傳統(tǒng)育種技術(shù)是在雙親雜交產(chǎn)生的子代基礎(chǔ)上,進(jìn)行多代無(wú)性世代性狀評(píng)價(jià)和選擇,進(jìn)而培育出優(yōu)良品系和品種的過(guò)程。在無(wú)性世代的評(píng)價(jià)過(guò)程中,由于選擇壓力的增大,育種群體規(guī)模逐漸縮小,但入選的每個(gè)品系植株數(shù)量卻不斷增加[152]。在傳統(tǒng)育種中,親本的選配非常關(guān)鍵,親本一般為綜合性狀優(yōu)良、個(gè)別性狀需要改良的育成品種或者是經(jīng)過(guò)子代測(cè)驗(yàn)證明能產(chǎn)生優(yōu)良后代的育種材料,通常要求親本性狀互補(bǔ)[49]。由于馬鈴薯一些主要商品性狀如塊莖產(chǎn)量、數(shù)量、大小和比重等易受環(huán)境影響,無(wú)性世代品系通常需要進(jìn)行多年多點(diǎn)的試驗(yàn)評(píng)價(jià),所以育成一個(gè)馬鈴薯新品種通常需要10年左右的時(shí)間。表6是一個(gè)典型的中國(guó)北方一季作地區(qū)的傳統(tǒng)育種流程。

        表6 中國(guó)北方一季作地區(qū)傳統(tǒng)育種流程Table 6 Conventional potato breeding program in single cropping zone of China

        4.2 倍性育種技術(shù)

        自然界中,馬鈴薯大部分以不同倍性的近緣資源存在,其中74%以上是二倍體[153]。在EBN數(shù)目不同的情況下,它們難以與四倍體普通栽培馬鈴薯通過(guò)雜交進(jìn)行優(yōu)異性狀轉(zhuǎn)移,而倍性操作技術(shù)是進(jìn)行野生資源利用的重要方法。廣義上的倍性育種技術(shù)包括雙單倍體(dihaploid)誘導(dǎo)、2n配子利用和體細(xì)胞雜交或者原生質(zhì)體融合等技術(shù)。

        1958年,HOUGAS等[154]通過(guò)馬鈴薯普通栽培種與來(lái)源S.phureja的材料雜交,成功地通過(guò)孤雌生殖誘導(dǎo)出雙單倍體,發(fā)現(xiàn)S.phureja種的某些選系是誘導(dǎo)四倍體孤雌生殖產(chǎn)生單倍體的優(yōu)良授粉者(pollinator)[155]。在授粉過(guò)程中,授粉者的精細(xì)胞正常進(jìn)入母本子房,可以使胚乳正常發(fā)育,同時(shí)刺激未受精的卵子發(fā)育成雙單倍體(2x)的胚[7]。但有時(shí)二倍體授粉者會(huì)產(chǎn)生2n花粉,這樣就會(huì)造成母本產(chǎn)生孤雌生殖的雙單倍體種子的同時(shí),也會(huì)伴有四倍體種子,為解決此問(wèn)題,研究者把一個(gè)產(chǎn)生胚斑的標(biāo)記基因轉(zhuǎn)入具有高誘導(dǎo)能力的S.phureja無(wú)性系中,這樣在選擇時(shí)就可以直接淘汰授粉后代中帶有胚斑的四倍體雜交種子,提高了雙單倍體的誘導(dǎo)效率[156]。HOUGAS等[157]在1960年報(bào)道了雙單倍體可與24個(gè)結(jié)薯二倍體種雜交,并得到了健壯的后代。

        CHASE[158]提出了利用二倍體資源的分解育種法(analytical breeding),接著研究者對(duì)利用二倍體雜種發(fā)生不減數(shù) 2n配子而產(chǎn)生的四倍體后代進(jìn)行了評(píng)價(jià)[159],形成了分解合成育種方法并應(yīng)用于育種實(shí)踐。2n配子即染色體不減數(shù)的配子或者是和體細(xì)胞染色體數(shù)目一樣的配子,它是由控制減數(shù)分裂的隱性基因控制的[7,160]。2n配子包括2n卵子和2n花粉,2n卵子是由于第二次減數(shù)分裂重組(second division restitution,SDR)形成的,而2n花粉主要是由于第一次減數(shù)分裂重組(first division restitution,F(xiàn)DR)形成的[7],并能將親本的雜合性100%的傳遞給后代。2n卵子的鑒別需要借助一系列顯微技術(shù)[161],這給檢測(cè)帶來(lái)很多不便,但實(shí)際應(yīng)用過(guò)程中,二倍體母本和四倍體父本雜交,如果產(chǎn)生實(shí)生種子,通常就認(rèn)為二倍體母本產(chǎn)生了2n卵子[162]。2n花粉檢測(cè)比較簡(jiǎn)單,染色后通過(guò)普通光學(xué)顯微鏡即可檢測(cè),其大小比正?;ǚ蹘缀醮罅艘槐恫⒍嗔艘粋€(gè)萌發(fā)孔。利用可以產(chǎn)生 2n配子的二倍體材料與四倍體普通栽培種雜交,可以產(chǎn)生四倍體實(shí)生種子。在分解合成育種中,通過(guò)種間雜交誘導(dǎo)四倍體栽培品種孤雌生殖產(chǎn)生雙單倍體,其與二倍體野生種和原始栽培種雜交產(chǎn)生二倍體雜種,從而達(dá)到利用豐富的野生資源的目的,最終利用二倍體雜種產(chǎn)生的 2n配子將優(yōu)良性狀轉(zhuǎn)育到普通四倍體品種中[163]。目前,通過(guò)分解合成育種法育成了許多具有二倍體野生種種質(zhì)的栽培品種或育種材料[164-167]。

        體細(xì)胞雜交是除了2n配子利用技術(shù)和雙單倍體誘導(dǎo)技術(shù)外,繞過(guò)雜交障礙進(jìn)行近緣種種質(zhì)轉(zhuǎn)移的重要技術(shù),可以同時(shí)轉(zhuǎn)移細(xì)胞核和細(xì)胞質(zhì)基因,尤其在轉(zhuǎn)移多基因控制的數(shù)量性狀進(jìn)行育種材料創(chuàng)制方面應(yīng)用廣泛[168]。對(duì)于體細(xì)胞雜交技術(shù),進(jìn)行原生質(zhì)體分離、培養(yǎng)、融合和再生程序復(fù)雜,且具有種質(zhì)依賴性,因此,進(jìn)行原生質(zhì)體融合建立一個(gè)穩(wěn)定的工作體系非常重要。目前通過(guò)原生質(zhì)體融合獲得了很多具有抗病毒病、晚疫病和青枯病的育種材料[122,168-169]。

        4.3 標(biāo)記輔助選擇(marker-assisted selection,MAS)

        由于栽培馬鈴薯是高度雜合的常異花授粉四倍體作物,異交率僅為0.5%左右,其雜交后代優(yōu)良基因或者染色體區(qū)段重組到一起的概率極小,這就需要育種者必須通過(guò)擴(kuò)大 F1代群體數(shù)量來(lái)增加優(yōu)良子代出現(xiàn)概率,這就極大增加了選擇工作量。正常來(lái)講,育種者要每年要評(píng)價(jià)40個(gè)左右的植株和塊莖性狀,從雜交到品種釋放通常需要 10年左右時(shí)間[85]。隨著分子遺傳學(xué)和分子生物學(xué)研究的進(jìn)步,標(biāo)記輔助育種技術(shù)成為了加快育種進(jìn)程的重要手段。由于栽培馬鈴薯四體遺傳特性和自交造成的高度等位變異,使得馬鈴薯相比其他主要作物,相對(duì)缺乏可以應(yīng)用于育種的分子標(biāo)記[170]。馬鈴薯育種輔助選擇標(biāo)記主要集中在重要農(nóng)藝性狀如抗病性和塊莖品質(zhì)方面,在復(fù)雜性狀如產(chǎn)量和非生物脅迫方面的分子標(biāo)記開(kāi)發(fā)比較緩慢。目前,已經(jīng)發(fā)表的、可用于育種群體選擇的分子表記如表 7

        所示。

        表7 可用于馬鈴薯標(biāo)記輔助選擇的分子標(biāo)記Table 7 Markers used in potato breeding selection

        續(xù)表7 Continued table 7

        續(xù)表7 Continued table 7

        在分子標(biāo)記實(shí)際應(yīng)用于育種群體選擇時(shí),有幾點(diǎn)需要注意:(1)開(kāi)發(fā)的分子標(biāo)記的遺傳背景。大多數(shù)與目標(biāo)性狀連鎖的分子標(biāo)記是在二倍體水平上開(kāi)發(fā)的,而相當(dāng)一部分的栽培種群體是不含有二倍體種質(zhì)的,因此,四倍體栽培種群體是否含有目標(biāo)性狀分子標(biāo)記,所屬的遺傳背景非常關(guān)鍵,成功的育種選擇標(biāo)記必須經(jīng)過(guò)育種群體或資源的驗(yàn)證才能證明其有效性[186]。(2)分子標(biāo)記的組合應(yīng)用。一方面,由于不同遺傳背景的資源的等位基因具有豐富的序列變異,對(duì)于特定性狀的選擇標(biāo)記,需要標(biāo)記組合應(yīng)用才能完全追蹤到目標(biāo)性狀,例如對(duì)于來(lái)源于S.tuberosum ssp. andigena的抗PVY的Ryadg來(lái)說(shuō),RYSC3標(biāo)記具有良好的選擇效果[172],但是后來(lái)的研究者利用育種群體和不同遺傳背景的品種、品系進(jìn)行標(biāo)記驗(yàn)證發(fā)現(xiàn),RYSC3結(jié)合RYSC4和ADG2/BbvI標(biāo)記共同檢測(cè)時(shí)會(huì)取得更好效果,即同時(shí)含有這3個(gè)標(biāo)記,植株一定表現(xiàn)出對(duì)PVY抗性[187];另一方面,一部分分子標(biāo)記不是依據(jù)目標(biāo)性狀決定基因序列開(kāi)發(fā)的,而是其單側(cè)的序列開(kāi)發(fā),因此,對(duì)此類(lèi)標(biāo)記,應(yīng)用兩側(cè)標(biāo)記同時(shí)進(jìn)行選擇,可提高選擇準(zhǔn)確率;此外,在標(biāo)記檢測(cè)過(guò)程中,應(yīng)用多重PCR檢測(cè)體系,即將多個(gè)標(biāo)記檢測(cè)融合到一個(gè)PCR反應(yīng)中,可以顯著提高標(biāo)記檢測(cè)效率[175]。

        4.4 基因組選擇(genomic selection,GS)

        標(biāo)記輔助選擇自20世紀(jì)80年代開(kāi)始應(yīng)用以來(lái),主要針對(duì)少數(shù)基因控制的簡(jiǎn)單性狀,而對(duì)于微效多基因控制的復(fù)雜性狀無(wú)能為力[188-189]。而基因組選擇是檢測(cè)全基因組范圍的所有分子標(biāo)記,而不是針對(duì)單一性狀的部分標(biāo)記?;蚪M選擇主要流程是通過(guò)試驗(yàn)群體來(lái)估計(jì)出每個(gè)標(biāo)記(通常是SNP)或者不同染色體區(qū)段的效應(yīng)值,然后再利用這些效應(yīng)值來(lái)計(jì)算育種群體的育種值,進(jìn)而進(jìn)行后代個(gè)體選擇[190]?;蚪M選擇技術(shù)自2001年開(kāi)始應(yīng)用于預(yù)測(cè)復(fù)雜性狀的表現(xiàn)以來(lái),現(xiàn)已應(yīng)用于奶牛、玉米、棕櫚和大麥等動(dòng)物和植物的育種上,顯著提高了育種選擇效率[189,191-192]。

        隨著新一代測(cè)序技術(shù)(next generation sequencing,NGS)的不斷改進(jìn)和完善及生物信息學(xué)平臺(tái)的豐富,數(shù)以萬(wàn)計(jì)的、以SNP為主的分子標(biāo)記不斷地被開(kāi)發(fā)出來(lái),這為基因組選擇提供了充足的分子標(biāo)記信息。以馬鈴薯基因組序列信息為基礎(chǔ),基于Illumina平臺(tái)、包含20 000個(gè)SNP標(biāo)記馬鈴薯全基因組SNP芯片已經(jīng)商業(yè)化應(yīng)用[193]。栽培馬鈴薯遺傳復(fù)雜,傳統(tǒng)育種中馬鈴薯存在嚴(yán)重的連鎖累贅,優(yōu)異基因的導(dǎo)入常常伴隨著不利性狀。因此在馬鈴薯育種中通常既要盡量保留親本材料優(yōu)異遺傳背景,又要定向改良現(xiàn)有受體親本的特定性狀,也就是說(shuō)將前景選擇和背景選擇結(jié)合起來(lái)創(chuàng)制優(yōu)異新材料和選育優(yōu)良新品種,而基因組選擇技術(shù)是以前景選擇和背景選擇相結(jié)合的一項(xiàng)新的標(biāo)記輔助選擇技術(shù)。目前,全基因組SNP芯片已經(jīng)應(yīng)用于馬鈴薯種質(zhì)資源遺傳多樣性、簡(jiǎn)單性狀和復(fù)雜性狀的基因定位和QTL作圖,但還沒(méi)有以SNP標(biāo)記為基礎(chǔ)、將基因組選擇技術(shù)系統(tǒng)應(yīng)用于馬鈴薯育種進(jìn)程的報(bào)道,因此,開(kāi)展系統(tǒng)的基因組選擇技術(shù)研究并將之應(yīng)用于材料創(chuàng)制和品種選育意義重大。

        4.5 基因工程(genetic engineering)

        傳統(tǒng)的基因工程手段,一般通過(guò)基因轉(zhuǎn)化或者基因沉默技術(shù)進(jìn)行作物改良,一直是伴隨著爭(zhēng)議的研究熱點(diǎn)。2015年,美國(guó)農(nóng)業(yè)部批準(zhǔn)了抗損傷和褐化的馬鈴薯品種 Innate?[194],該品種是通過(guò) RNAi(RNA interference)技術(shù)限制了多酚氧化酶基因 PPO5和天冬酰胺酸合成酶基因Asn1的表達(dá),從而使馬鈴薯加工過(guò)程中不會(huì)褐變和降低有害物質(zhì)丙烯酰胺含量。最近,增加了晚疫病抗性和抗低溫糖化能力的 Innate?二代改良品種也已經(jīng)通過(guò)了美國(guó)食品和藥品管理局的審批,正在辦理環(huán)保注冊(cè)手續(xù),準(zhǔn)備投放市場(chǎng)(http:// www.simplotplantsciences.com)。在馬鈴薯中,最早的轉(zhuǎn)基因品種是針對(duì)科羅拉多甲蟲(chóng)(colorado potato beetles)抗性的轉(zhuǎn)Bt基因Russet Burbank[195],后來(lái)又引入了病毒病抗性基因,形成商業(yè)化品種Newleaf?系列,并于1996年獲得美國(guó)農(nóng)業(yè)部審批投放市場(chǎng)[196-197],但是后來(lái)由于加工企業(yè)和消費(fèi)者的排斥,不得不退出商業(yè)化種植。通過(guò)轉(zhuǎn)基因技術(shù)提高馬鈴薯晚疫病抗性也是研究熱點(diǎn),晚疫病抗性基因R1、R3a、RB/Rpi-blb1都通過(guò)轉(zhuǎn)基因方式引入到感病品種中并使其獲得了抗性[80],甚至將3個(gè)晚疫病抗性基因Rpi-sto1、Rpi-vnt1.1和Rpi-blb3同時(shí)引入到一個(gè)馬鈴薯品種Désirée中[183]。

        考慮到轉(zhuǎn)基因產(chǎn)品(genetically modified organism,GMO)的爭(zhēng)議,研究者相繼提出了無(wú)標(biāo)記質(zhì)粒(markerfree plasmids)[198]和順式轉(zhuǎn)基因(cisgenesis)的技術(shù)策略[199]。傳統(tǒng)的攜帶外源基因的轉(zhuǎn)化質(zhì)粒含有使細(xì)胞產(chǎn)生抗生素抗性的基因,以方便陽(yáng)性轉(zhuǎn)化材料的篩選,但人們擔(dān)心這種抗生素抗性基因會(huì)漂移并整合到其他非目標(biāo)生物體的基因組中,因此研究者開(kāi)發(fā)了一系列無(wú)抗性選擇標(biāo)記的轉(zhuǎn)化質(zhì)粒篩選系統(tǒng)[200]。相對(duì)于傳統(tǒng)的轉(zhuǎn)基因策略,順式轉(zhuǎn)基因定義是:引入生物體的外源核酸片段,只是來(lái)源于本種或與本種可雜交的種具有的、自然界本來(lái)就存在的核酸片段(包括啟動(dòng)子和終止子),不含有任何其他不可雜交物種的外源核酸片段[201]。順式轉(zhuǎn)基因的概念實(shí)質(zhì)上既包括了對(duì)無(wú)標(biāo)記質(zhì)粒的要求,又對(duì)質(zhì)粒攜帶的外源基因進(jìn)行了規(guī)范和限制。

        近幾年來(lái),在基因工程領(lǐng)域,CRISPR(clustered regularly interspaced short palindromic repeats)技術(shù)炙手可熱[202-203],該技術(shù)原理是依靠一種稱作Cas9的蛋白酶,利用引導(dǎo)性RNA分子鎖定目標(biāo)DNA,進(jìn)而對(duì)DNA進(jìn)行編輯達(dá)到阻斷基因表達(dá)或者插入目標(biāo)基因的目的。相對(duì)于鋅指核酸酶(zinc finger nucleases)和TALEN(transcription activator-like effector nucleases)技術(shù),CRISPR技術(shù)更高效、更特異,而且成本更低,被譽(yù)為繼 PCR技術(shù)之后生物科學(xué)領(lǐng)域的又一個(gè)革命性技術(shù)[204]。目前,CRISPR技術(shù)已經(jīng)有了應(yīng)用于馬鈴薯研究的報(bào)道[205-206]。最近,另一種稱之為 NgAgo–gDNA的基因組編輯技術(shù)見(jiàn)諸報(bào)道[207],該技術(shù)是在一種短序列DNA引導(dǎo)下,NgAgo蛋白酶對(duì)特定DNA序列進(jìn)行編輯,初步試驗(yàn)結(jié)果表明,NgAgo–gDNA相對(duì)于 CRISPR,效率更高且目標(biāo)序列不受所處位置限制,但該技術(shù)結(jié)果重復(fù)性和應(yīng)用效果有待進(jìn)一步驗(yàn)證。在技術(shù)風(fēng)險(xiǎn)可控情況下,基因組編輯技術(shù)在消除馬鈴薯不利性狀如抗低溫糖化、降低丙烯酰胺和龍葵素含量等提升塊莖品質(zhì)方面,以及編輯馬鈴薯特定目標(biāo)性狀基因來(lái)提高抗病、抗逆能力方面將發(fā)揮重要作用。

        5 中國(guó)馬鈴薯遺傳育種現(xiàn)狀

        2014年,中國(guó)馬鈴薯總產(chǎn)量9 551.5萬(wàn)噸,但單產(chǎn)只有16.92 t·hm-2(http://fao.org/faostat),相比發(fā)達(dá)國(guó)家,單產(chǎn)增長(zhǎng)的潛力依然巨大。中國(guó)馬鈴薯育種雖然起步較晚,但經(jīng)過(guò)一代代育種者的不懈努力,從最初的品種引進(jìn)到培育出一系列具有完全自主知識(shí)產(chǎn)權(quán)的品種,品種選育工作取得了重要突破,為中國(guó)馬鈴薯產(chǎn)業(yè)發(fā)展提供了堅(jiān)實(shí)的品種支撐。

        5.1 育種單位和育種歷史

        目前,中國(guó)主要從事馬鈴薯品種選育的單位超過(guò)30家,以科研院所和大學(xué)為主,從事育種的企業(yè)相對(duì)較少。中國(guó)的馬鈴薯育種歷史始于20世紀(jì)30年代的國(guó)外品種和資源引進(jìn)[3],而20世紀(jì)40年代由于戰(zhàn)亂,育種進(jìn)程基本停滯;20世紀(jì)50年代,應(yīng)用了36個(gè)高產(chǎn)并具有晚疫病抗性的引進(jìn)品種,并開(kāi)始了將實(shí)生種子(true potato seed,TPS)應(yīng)用于生產(chǎn)的嘗試;20世紀(jì)60年代,中國(guó)育成了具有完全自主知識(shí)產(chǎn)權(quán)的馬鈴薯新品種,當(dāng)時(shí)的育種目標(biāo)以適應(yīng)性、優(yōu)質(zhì)、抗病和高產(chǎn)為主;到了20世紀(jì)70年代,中國(guó)成為世界上TPS應(yīng)用最廣泛的國(guó)家,這對(duì)中國(guó)西南山區(qū)馬鈴薯發(fā)展起到了積極作用; 20世紀(jì)80年代,育種目標(biāo)聚焦到抗病和高產(chǎn),在此期間,共育成了克新系列、高原系列和壩薯系列等93個(gè)馬鈴薯新品種;20世紀(jì)90年代,育種目標(biāo)開(kāi)始強(qiáng)調(diào)早熟性、加工型新品種的選育,在此期間,共育成了中薯系列、晉薯系列、鄂薯系列、鄭薯系列和青薯系列等67個(gè)馬鈴薯新品種;21世紀(jì)以來(lái),中國(guó)馬鈴薯品種選育進(jìn)程加快,共育成了 362個(gè)馬鈴薯新品種。

        5.2 種質(zhì)資源和育成品種

        目前,中國(guó)各單位共保存了包括國(guó)內(nèi)審定品種、國(guó)外引進(jìn)品種、育種品系、原始栽培種和野生種等在內(nèi)的5 000余份種質(zhì)資源,這些資源大多數(shù)以試管苗形式保存,少部分以實(shí)生種子和塊莖形式保存,其中2 000份左右的資源被系統(tǒng)評(píng)價(jià)過(guò)。資源保存數(shù)量以中國(guó)農(nóng)業(yè)科學(xué)院蔬菜花卉研究所和國(guó)家馬鈴薯改良中心(依托于黑龍江省農(nóng)業(yè)科學(xué)院克山分院)為最多。

        截止到2016年底,根據(jù)品種審定部門(mén)公告統(tǒng)計(jì),中國(guó)共審定馬鈴薯品種611個(gè)(含國(guó)外引進(jìn)品種),其中絕大多數(shù)為鮮食品種,而加工品種以國(guó)外引進(jìn)品種為主。20世紀(jì)60年代育成的克新1號(hào)依然是中國(guó)種植面積最大的品種。

        5.3 育種目標(biāo)和品種輪換

        高產(chǎn)、穩(wěn)產(chǎn)、抗病、耐貯和優(yōu)質(zhì)是中國(guó)馬鈴薯最重要的育種目標(biāo),專用品質(zhì)好、薯形好、芽眼淺、早熟、高產(chǎn)、抗病、抗逆是重點(diǎn)選擇方向。不同的栽培區(qū)育種目標(biāo)各不相同,北方一作區(qū)以中熟和晚熟品種選育為主,東北地區(qū)尤其注重抗晚疫病和黑脛病,華北和西北地區(qū)注重耐旱、抗土傳病害、晚疫病和病毒??;中原二季作區(qū)以早熟或塊莖膨大快、對(duì)日照長(zhǎng)度不敏感的品種選育為主,早熟、高產(chǎn)、休眠期短、抗病毒病和瘡痂病是主要的育種目標(biāo);對(duì)于西南一二季混作區(qū)的高海拔地區(qū),主要是培育高抗晚疫病、癌腫病和粉痂病的中晚熟和晚熟品種,而對(duì)于中低海拔地區(qū),則為以抗晚疫病、病毒病的中熟和早熟品種選育為主;在南方冬作區(qū),品種選育聚焦日照長(zhǎng)度反應(yīng)不敏感、抗晚疫病和耐濕、耐寒和耐弱光的中、早熟品種。

        在育種進(jìn)程中隨著育種目標(biāo)的不斷調(diào)整和新品種推廣應(yīng)用,中國(guó)主栽品種先后經(jīng)歷了四批次的品種輪換:(1)1950—1970年,17世紀(jì)以來(lái)從歐美國(guó)家引入中國(guó)的部分品種成為了適應(yīng)當(dāng)?shù)貤l件的地方品種如河壩洋芋、深眼窩、廣靈里外黃和烏洋芋。20世紀(jì)30和 40年代引進(jìn)篩選出勝利(Triumph)、卡它?。↘atahdin)和巫峽等品種成為了20世紀(jì)50年代的主栽品種。到了20世紀(jì)60年代,主栽品種逐漸被晚熟品種米拉(Mira)、疫不加(Epoka)和阿奎拉(Aquila)及早熟品種白頭翁(Anemone)所替代;20世紀(jì) 60年代后期,自主育成的虎頭、躍進(jìn)和晉薯2號(hào)等幾十個(gè)抗晚疫病高產(chǎn)品種與上述引進(jìn)品種一起成為主栽品種。(2)第二次品種輪換發(fā)生在20世紀(jì)80年代,自主育成的晚熟品種克新1號(hào)、壩薯8號(hào)和高原7號(hào),早熟品種鄭薯2號(hào)、鄭薯4號(hào)和壩薯9號(hào),以及國(guó)外引進(jìn)品種費(fèi)烏瑞它(Favorita)、臺(tái)灣紅皮(Cardinal)、底西芮(Désirée)和中心 24(CIP24)逐漸成為主栽品種。(3)第三次品種輪換發(fā)生在 1980年至 2000年期間,20世紀(jì)80和90年代育成的早熟新品種東農(nóng)303、中薯2號(hào)、鄭薯5號(hào)、鄭薯6號(hào)和川芋早等品種種植面積增長(zhǎng)迅速,引進(jìn)品種大西洋(Atlantic)、夏波蒂(Shepody)、阿格瑞亞(Agria)和斯諾登(Snowden)等加工專用品種和冀張薯5號(hào)(Kondor)、抗疫白(Kennebec)等鮮食品種應(yīng)用于生產(chǎn),到2000年左右實(shí)現(xiàn)了第三次品種輪換。(4)2000年后,加大了專用和早熟新品種選育,育成了新品種300多個(gè),其中中薯3號(hào)和中薯5號(hào)等早熟品種種植面積穩(wěn)定增長(zhǎng),2006年首次國(guó)家級(jí)審定了炸片加工專用品種中薯10號(hào)和中薯11號(hào),2010年前后實(shí)現(xiàn)了品種的第四次輪換。

        在品種輪換過(guò)程中,品種的遺傳背景被不斷拓寬。1983年前,利用6個(gè)常用親本多籽白(292-20)、卡它丁、疫不加、米拉、白頭翁和小葉子育成品種 74個(gè),占這一時(shí)期審定品種總數(shù)的68.8%,而2005年以前,利用上述6個(gè)親本共育成了156個(gè)品種,占同時(shí)期審定品種總數(shù)的45%。另外,國(guó)外品種作為親本資源在中國(guó)馬鈴薯品種選育中占有重要地位,2012年前育成的 379個(gè)審定品種中,含北美親本血緣的占13.7%、歐洲親本血緣的占35.9%,含國(guó)際馬鈴薯中心親本血緣的占17.9%。中國(guó)馬鈴薯品種類(lèi)型不斷豐富,在產(chǎn)量、品質(zhì)、抗病和外觀性狀上有較大改良。

        6 荷蘭馬鈴薯育種水平位居世界前列的關(guān)鍵因素分析

        2014年,荷蘭馬鈴薯總產(chǎn)710.03萬(wàn)噸,不及中國(guó)總產(chǎn)量8%,但其單產(chǎn)達(dá)到45.66 t·hm-2,近中國(guó)單產(chǎn)的3倍(http://fao.org/faostat)。荷蘭的馬鈴薯育種和栽培水平位居世界前列,下面簡(jiǎn)要分析一下其育種特點(diǎn)。

        6.1 參與育種模式(participatory plant breeding)

        荷蘭馬鈴薯育種體系是大學(xué)或研究機(jī)構(gòu)、育種公司和農(nóng)民育種者(farmer breeder/hobby breeder)共同組建而成的,形成了別具荷蘭特色馬鈴薯參與育種模式。荷蘭馬鈴薯育種主要由商業(yè)育種公司作為主體完成,而農(nóng)民育種者在育種體系中扮演重要角色。荷蘭有近一半的農(nóng)民種植馬鈴薯,農(nóng)民是荷蘭馬鈴薯育種的重要參與者。2009年,荷蘭409個(gè)品種用于種薯生產(chǎn),其中293個(gè)品種是荷蘭本國(guó)育成的,而這293個(gè)品種中,有一半左右的品種是由農(nóng)民育種者選育出來(lái)的,占荷蘭種薯生產(chǎn)面積的44%[208]。荷蘭有19家較大的馬鈴薯育種公司,其中13家公司擁有自己的育種體系,14家公司與農(nóng)民育種者進(jìn)行品種選育合作。年繁殖實(shí)生苗數(shù)量超過(guò)5萬(wàn)的、大的育種公司,一般都是既有自己的育種體系,又和農(nóng)民育種者具有合作關(guān)系,而年繁殖實(shí)生苗數(shù)量小于1.5萬(wàn)的、小的育種公司僅僅依靠自由育種者(與公司沒(méi)有合作關(guān)系)以及外國(guó)育種者進(jìn)行品種選育。

        大多數(shù)優(yōu)秀的農(nóng)民育種者都擁有可進(jìn)行種薯生產(chǎn)的、50—80 hm2規(guī)模的農(nóng)場(chǎng),他們具有豐富的優(yōu)質(zhì)種薯生產(chǎn)和優(yōu)良單株選擇經(jīng)驗(yàn)。通常每年冬天,與公司合作的農(nóng)民育種者會(huì)收到來(lái)自育種公司的、含有系譜信息的實(shí)生種子和實(shí)生苗家系,然后他們根據(jù)各自偏好的育種目標(biāo),在與育種公司充分討論的基礎(chǔ)上進(jìn)行材料選擇,然后農(nóng)民育種者對(duì)這些材料進(jìn)行田間種植、性狀評(píng)價(jià)和選擇,3年以后,大約有1%的株系保留下來(lái)并返回育種公司,進(jìn)行后續(xù)的多地多年的田間評(píng)價(jià)及抗病性、品質(zhì)等性狀的室內(nèi)評(píng)價(jià),有時(shí)育種公司會(huì)根據(jù)品種市場(chǎng)需求情況,直接將相關(guān)品系送往目標(biāo)市場(chǎng)國(guó)家進(jìn)行評(píng)價(jià)。經(jīng)過(guò)這樣的程序,育成1個(gè)馬鈴薯品種需要大概12年時(shí)間。育種公司和農(nóng)民育種者的合作育種流程見(jiàn)表8[209]。

        表8 荷蘭育種公司和農(nóng)民育種者的合作育種流程Table 8 Potato breeding program in a collaborative model of company and farmer breeder

        6.2 公立科研機(jī)構(gòu)在育種體系中的角色

        荷蘭設(shè)有很多涉及馬鈴薯遺傳育種和種薯質(zhì)量檢測(cè)的公立科研機(jī)構(gòu)和管理部門(mén),下面以瓦赫寧根大學(xué)及研究中心(Wageningen University and Research,WUR)為例說(shuō)明一下公立科研機(jī)構(gòu)在育種體系中的角色。在馬鈴薯遺傳育種研究方面,WUR主要從事以種質(zhì)擴(kuò)增、改良和創(chuàng)新為核心的前育種(pre-breeding)研究,利用最新的遺傳學(xué)研究成果,進(jìn)行種質(zhì)資源評(píng)價(jià)、親本選配和雜交及育種材料創(chuàng)制和低代品系培育,具體工作分為傳統(tǒng)育種和有機(jī)育種 2個(gè)體系同時(shí)進(jìn)行。傳統(tǒng)育種體系中,無(wú)性一代至無(wú)性三代品系均會(huì)保留一部分塊莖網(wǎng)棚內(nèi)種植,以免退化;有機(jī)育種體系各世代材料均在符合有機(jī)食品種植要求的地塊評(píng)價(jià),一般不在網(wǎng)棚內(nèi)備份繁種。對(duì)于傳統(tǒng)和有機(jī)育種體系的無(wú)性世代評(píng)價(jià),WUR只負(fù)責(zé)早代品系的分子標(biāo)記(晚疫病、病毒病和線蟲(chóng)抗性為主)、田間農(nóng)藝性狀和塊莖品質(zhì)性狀的評(píng)價(jià),一般在第四個(gè)無(wú)性世代評(píng)價(jià)時(shí)就將品系轉(zhuǎn)交給商業(yè)育種公司進(jìn)行后續(xù)工作。WUR每年也會(huì)將部分雜交實(shí)生種子直接提供給公司和農(nóng)民育種者進(jìn)行篩選和評(píng)價(jià)[210],同時(shí)面向育種公司和農(nóng)民育種者進(jìn)行育種技術(shù)和田間選擇技術(shù)的培訓(xùn)。

        6.3 有機(jī)育種體系

        荷蘭的傳統(tǒng)育種體系和中國(guó)差別較小,而有機(jī)育種體系相對(duì)傳統(tǒng)育種體系有較大差別。有機(jī)育種體系是指其培育出來(lái)的馬鈴薯品種符合有機(jī)食品生產(chǎn)標(biāo)準(zhǔn)要求,因此,其育種目標(biāo)就更具挑戰(zhàn)性。對(duì)于有機(jī)栽培的馬鈴薯品種總的要求是在短的生育期內(nèi)快速結(jié)薯,在病害侵襲和單純有機(jī)肥施用情況下,盡可能多的獲得較高經(jīng)濟(jì)產(chǎn)量[211],因此,荷蘭有機(jī)馬鈴薯育種目標(biāo)分為幾個(gè)層次:(1)必須具備性狀:葉片和塊莖具有良好的晚疫病抗性,良好的氮肥利用效率;(2)應(yīng)該具備性狀:立枯病抗性,早疫病抗性,PVY抗性,早熟性,長(zhǎng)休眠期;(3)最好具備性狀:瘡痂病和粉痂病抗性,植株快速封壟以壓制雜草,銀腐病抗性,食味好。為了達(dá)到以上育種目標(biāo),又在不借助轉(zhuǎn)基因技術(shù)的情況下,在早代育種群體即開(kāi)始應(yīng)用分子標(biāo)記進(jìn)行以抗病蟲(chóng)為主的目標(biāo)性狀輔助選擇,以加快育種進(jìn)度。

        7 展望

        隨著生物科學(xué)的迅猛發(fā)展,基礎(chǔ)研究領(lǐng)域取得的科研成果越來(lái)越快地直接在應(yīng)用研究領(lǐng)域應(yīng)用并取得成效,這直接促使了作物綜合育種技術(shù)的不斷成熟和完善,同時(shí)創(chuàng)新育種模式和機(jī)制,利用現(xiàn)有種質(zhì)資源培育突破性、專用型品種將是未來(lái)馬鈴薯遺傳育種發(fā)展的主要方向。

        7.1 基因組學(xué)數(shù)據(jù)在遺傳育種上的應(yīng)用

        馬鈴薯基因組序列已經(jīng)被揭示,雖然獲得的全基因組序列只是源于2個(gè)種的測(cè)序材料,這相對(duì)于自然界中存在廣泛變異的馬鈴薯種質(zhì)資源來(lái)說(shuō)只是冰山一角,但基因組序列對(duì)馬鈴薯重要性狀遺傳學(xué)的促進(jìn)作用已經(jīng)顯現(xiàn)。DM參考基因組序列促進(jìn)了很多重要性狀基因的定位和克隆,基于其開(kāi)發(fā)的SNP芯片已經(jīng)商業(yè)化應(yīng)用。目前,研究者正在著手進(jìn)行馬鈴薯種質(zhì)資源重測(cè)序和攻克四倍體栽培種測(cè)序技術(shù)。在可預(yù)見(jiàn)的未來(lái),隨著包含更多等位變異信息的基因組序列信息的揭示,馬鈴薯主要性狀尤其是多基因控制的、復(fù)雜性狀的遺傳機(jī)制將逐漸被揭示,這會(huì)大大促進(jìn)基于全基因組水平上的標(biāo)記選擇技術(shù)在育種群體評(píng)價(jià)和選擇上的應(yīng)用,從而為育種者在親本組合選配上提供分子水平上的依據(jù),并在早代群體中即可快速鎖定目標(biāo)品系,加快育種進(jìn)度。

        7.2 種質(zhì)資源收集和改良重要性凸顯

        利用基因工程技術(shù)進(jìn)行品種改良,在技術(shù)風(fēng)險(xiǎn)、食物安全、環(huán)境保護(hù)甚至社會(huì)倫理上一直存在爭(zhēng)議,即使在技術(shù)風(fēng)險(xiǎn)得到控制的情況下,轉(zhuǎn)基因食品的釋放是依然一個(gè)慎重和緩慢的過(guò)程。因此,為了培育突破性新品種,收集和挖掘現(xiàn)有馬鈴薯種質(zhì)資源優(yōu)異性狀,將是一個(gè)長(zhǎng)期的基礎(chǔ)性工作。中國(guó)不是馬鈴薯起源國(guó),而且涉及馬鈴薯起源地區(qū)的國(guó)家已經(jīng)限制一些重要資源的釋放,這增加了資源引進(jìn)的難度。作為應(yīng)對(duì)措施,應(yīng)當(dāng)一方面通過(guò)合法途徑從世界上主要馬鈴薯種質(zhì)資源庫(kù)進(jìn)行資源引進(jìn);另一方面,要對(duì)中國(guó)現(xiàn)有種質(zhì)資源進(jìn)行系統(tǒng)評(píng)價(jià),挖掘其應(yīng)用潛力。

        7.3 綜合育種技術(shù)逐漸形成

        目前,中國(guó)乃至世界范圍內(nèi)種植的馬鈴薯品種主要是依靠傳統(tǒng)育種技術(shù)培育而成的,隨著生物學(xué)研究尤其是分子生物學(xué)領(lǐng)域的快速發(fā)展,馬鈴薯育種技術(shù)必將逐漸整合現(xiàn)有技術(shù)方法并吸納最新基因組學(xué)研究成果形成綜合育種技術(shù)。具體來(lái)說(shuō),馬鈴薯綜合育種技術(shù),將以雜交為基礎(chǔ)的傳統(tǒng)育種技術(shù)為基礎(chǔ),以2n配子利用技術(shù)和體細(xì)胞雜交為主的倍性操作技術(shù)為資源改良和創(chuàng)制的途徑,以簡(jiǎn)單性狀和復(fù)雜性狀追蹤及利用的標(biāo)記輔助選擇技術(shù)和基因組選擇技術(shù)為提升親本組配和后代選擇效率的工具,以培育抗病、抗逆、高產(chǎn)、優(yōu)質(zhì)、專用馬鈴薯優(yōu)良品種為目標(biāo),全面促進(jìn)馬鈴薯優(yōu)良品種選育進(jìn)度。

        7.4 專用型品種選育需求持續(xù)增大

        隨著馬鈴薯加工業(yè)的迅速發(fā)展、環(huán)境友好的生產(chǎn)方式的轉(zhuǎn)變及人們對(duì)食品安全和營(yíng)養(yǎng)的關(guān)注度增加,選育特定市場(chǎng)和可持續(xù)農(nóng)業(yè)發(fā)展需求的專用型品種尤顯必要。選育耐旱、耐瘠薄、低成本種植品種,可以提高華北、西北和西南等占中國(guó)馬鈴薯總種植面積70%左右的、土壤瘠薄、經(jīng)濟(jì)不發(fā)達(dá)主產(chǎn)區(qū)的馬鈴薯旱作生產(chǎn)能力,促進(jìn)生態(tài)脆弱區(qū)域水、光、溫、土等自然資源的綜合利用;選育優(yōu)質(zhì)豐產(chǎn)早熟品種,可以在中原二季作區(qū)和南方冬作區(qū)進(jìn)行設(shè)施和保護(hù)地種植,提高種植效益;選育抗病、耐貯藏、優(yōu)質(zhì)品種,可以減少東北、西南、西北、華北等地區(qū)氣傳和土傳病害重發(fā)區(qū)農(nóng)藥施用、產(chǎn)量和貯藏?fù)p失,提高馬鈴薯商品性;選育優(yōu)質(zhì)加工專用品種,改良品種的塊莖干物質(zhì)、淀粉、還原糖等加工品質(zhì)特性,可以提高加工原料生產(chǎn)能力,促進(jìn)馬鈴薯加工業(yè)穩(wěn)定、持續(xù)發(fā)展。

        7.5 商業(yè)化育種模式的嘗試

        具有中國(guó)自主知識(shí)產(chǎn)權(quán)的馬鈴薯品種主要是公益性科研院所和大學(xué)育成的,馬鈴薯企業(yè)鮮有完善的育種體系,多是以種薯繁殖、銷(xiāo)售和加工為主。在市場(chǎng)經(jīng)濟(jì)中,企業(yè)會(huì)最先覺(jué)察到市場(chǎng)需求并開(kāi)發(fā)相關(guān)產(chǎn)品,利用其商業(yè)推廣體系,可以快速將產(chǎn)品推向市場(chǎng),荷蘭馬鈴薯育種模式的成功證明了這一點(diǎn)。隨著馬鈴薯品種應(yīng)用的市場(chǎng)導(dǎo)向機(jī)制的不斷完善,以及科研院所和企業(yè)人才交流及技術(shù)合作的不斷加強(qiáng),企業(yè)會(huì)在中國(guó)馬鈴薯品種選育中扮演越來(lái)越重要的角色,但公益性育種機(jī)構(gòu)與企業(yè)的合作機(jī)制有待于進(jìn)一步探索。

        [1] MULLINS E, MILBOURNE D, PETTI C, DOYLE-PRESTWICH B M, MEADE C. Potato in the age of biotechnology. Trends in Plant Science, 2006, 11(5): 254-260.

        [2] 屈冬玉, 謝開(kāi)云, 金黎平, 龐萬(wàn)福, 卞春松, 段紹光. 中國(guó)馬鈴薯產(chǎn)業(yè)發(fā)展與食物安全. 中國(guó)農(nóng)業(yè)科學(xué), 2005, 38(2): 358-362.

        QU D Y, XIE K Y, JIN L P, PANG W F, BIAN C S, DUANG S G. Development of potato industry and food security in China. Scientia Agricultura Sinica, 2005, 38(2): 358-362. (in Chinese)

        [3] 金黎平, 屈冬玉, 謝開(kāi)云, 卞春松, 段紹光. 我國(guó)馬鈴薯種質(zhì)資源和育種技術(shù)研究進(jìn)展. 種子, 2003, 5: 98-100.

        JIN L P, QU D Y, XIE K Y, BIAN C S, DUAN S G. Advances of potato germplasm and breeding technology in China. Seed, 2003, 5: 98-100. (in Chinese)

        [4] HAWKES J G, FRANCISCO-ORTEGA J. The early history of the potato in Europe. Euphytica, 1993, 70(1): 1-7.

        [5] JOHNS T, ALONSO J G. Glycoalkaloid change during the domestication of the potato, Solanum Section Petota. Euphytica, 1990, 50(3): 203-210.

        [6] GHISLAIN M N, ú?EZ J, HERRERA M R, SPOONER D M. The single Andigenum origin of Neo-Tuberosum potato materials is not supported by microsatellite and plastid marker analyses. Theoretical and Applied Genetics, 2009, 118(5): 963-969.

        [7] SPOONER D M, GHISLAIN M, SIMON R, JANSKY S H, GAVRILENKO T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. The Botanical Review, 2014, 80(4): 283-383.

        [8] HAWKES J G. The Potato: Evolution, Biodiversity, and Genetic Resources.Washington D. C.: Smithsonian Institution Press, 1990.

        [9] PANTA A, PANIS B, YNOUYE C, SWENNEW R, ROCA W M. Development of a PVS2 droplet vitrification method for potato cryopreservation. CryoLetters, 2014, 35(3): 255-266.

        [10] ROCA W M, ESPINOZA N O, ROCA M R, BRYAN J E. A tissue culture method for the rapid propagation of potatoes. American Potato Journal, 1978, 55(12): 691-701.

        [11] GONZALEZ-ARNAO M T, PANTA A, ROCA W M, ESCOBAR R H, ENGELMANN F. Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell, Tissue and Organ Culture, 2007, 92(1): 1-13.

        [12] KACZMARCZYK A, ROKKA V M, KELLER E R J. Potato shoot tip cryopreservation, a review. Potato Research, 2010, 54(1): 45-79.

        [13] VAN DEN BERG R G, MILLER J T, UGARTE M L, KARDOLUS J P, VILLAND J, SPOONER D. Collapse of morphological species in the wild potato Solanum brevicaule complex (Solanaceae: sect. Petota). American Journal of Botany, 1998, 85(1): 92-109.

        [14] COOKE R J. New approaches to potato variety identification. Potato Research, 1999, 42(3): 529-539.

        [15] SALAMAN R N. The early European potato: Its character and place of origin. Journal of the Linnean Society(Botany), 1946, 53: 1-27.

        [16] CASTA?EDA-áLVAREZ N P, DE HAAN S, JUáREZ H, KHOURY C K, ACHICANOY H A, SOSA C C, BERNAU V, SALAS A, HEIDER B, SIMON R, MAXTED N, SPOONER D M. Ex situ conservation priorities for the wild relatives of potato (Solanum L. Section Petota). PLoS ONE, 2015, 10: e0122599.

        [17] JANSKY S. Overcoming hybridization barriers in potato. Plant Breeding, 2006, 125(1): 1-12.

        [18] ESTRADA R N. Frost resistant potato hybrids via Solanum acaule, Bitt. Diploid-Tetraploid crosses. American Potato Journal, 1980, 57(12): 609-619.

        [19] SUáREZ S, CHAVES E, CLAUSEN A, FRANCO J. Solanum tuber-bearing species resistance behavior against Nacobbus aberrans. Journal of Nematology, 2009, 41: 5-10.

        [20] WATANABE K N, ORRILLO M, VEGA S, MASUELLI R, ISHIKI K. Potato germplasm enhancement with disomic tetraploid Solanum acaule. II. Assessment of breeding value of tetraploid F1hybrids between tetrasomic tetraploid S. tuberosum and S. acaule. Theoretical and Applied Genetics, 1994, 88(2): 135-140.

        [21] CARPUTO D, CARDI T, SPEGGIORIN M, ZOINA A, FRUSCIANTE L. Resistance to blackleg and tuber soft rot in sexual and somatic interspecific hybrids with different genetic background. American Potato Journal, 1997, 74(3): 161-172.

        [22] FROST K E, JANSKY S H, ROUSE D I. Transmission of Verticillium wilt resistance to tetraploid potato via unilateral sexual polyploidization. Euphytica, 2006, 149(3): 281-287.

        [23] JANSKY S H, HAMERNIK A, BETHKE P C. Germplasm release: Tetraploid clones with resistance to cold-induced sweetening. American Journal of Potato Research, 2011, 88(3): 218-225.

        [24] SANTINI M, CAMADRO E L, MARCELLáN O N, ERAZZú L E. Agronomic characterization of diploid hybrid families derived from crosses between haploids of the common potato and three wild Argentinian tuber-bearing species. American Journal of Potato Research, 2000, 77(4): 211-218.

        [25] BRADSHAW J E, RAMSAY G. Utilisation of the commonwealth potato collection in potato breeding. Euphytica, 2005, 146(1): 9-19.

        [26] TUCCI M, CARPUTO D, BILE G, FRUSCIANTE L. Male fertility and freezing tolerance of hybrids involving Solanum tuberosum haploids and diploid Solanum species. Potato Research, 1996, 39(3): 345-353.

        [27] LINDQVIST-KREUZE H, CARBAJULCA D, GONZALEZESCOBEDO G, PéREZ W, BONIERBALE M. Comparison of transcript profiles in late blight-challenged Solanum cajamarquense and B3C1potato clones. Molecular Plant Pathology, 2010, 11(4): 513-530.

        [28] BRADSHAW J E, BRYAN G J, RAMSAY G. Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Potato Research, 2006, 49(1): 49-65.

        [29] NARANCIO R, ZORRILLA P, ROBELLO C, GONZALEZ M, VILARó F, PRITSCH C, RIZZA M D. Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum. European Journal of Plant Pathology, 2013, 136(4): 823-835.

        [30] JO K R, ARENS M, KIM T Y, JONGSMA M A, VISSER R G F, JACOBSEN E, VOSSEN J H. Mapping of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX. Theoretical and Applied Genetics, 2011, 123(8): 1331-1340.

        [31] VILLAMON F G, SPOONER D M, ORRILLO M, MIHOVILOVICH E, PéREZ W, BONIERBALE W. Late blight resistance linkages in a novel cross of the wild potato species Solanum paucissectum (series Piurana). Theoretical and Applied Genetics, 2005, 111(6): 1201-1214.

        [32] VAN DER VOSSEN E, SIKKEMA A, HEKKERT B, GROS J, STEVENS P, MUSKENS M, WOUTERS D, PEREIRA A, STIEKEMA W, ALLEFS S. An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. The Plant Journal, 2003, 36: 867-882.

        [33] NAESS K S, BRADEEN M J, WIELGUS M S, HABERLACH T G, MCGRATH M J, HELGESON J P. Resistance to late blight in Solanum bulbocastanum is mapped to chromosome 8. Theoretical and Applied Genetics, 2000, 101(5): 697-704.

        [34] LAFERRIERE T L, HELGESON P J, ALLEN C. Fertile Solanum tuberosum+S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum. Theoretical and Applied Genetics, 1999, 98(8): 1272-1278.

        [35] CARDI T, D'AMBROSIO E, CONSOLI D, PUITE K J, RAMULU K S. Production of somatic hybrids between frost-tolerant Solanum commersonii and S. tuberosum: characterization of hybrid plants. Theoretical and Applied Genetics, 1993, 87(1): 193-200.

        [36] ESTRADA N. Utilization of Solanum brevidens to Transfer PLRV Resistance into the Cultivated Potato, Solanum tuberosum. London: Royal Botanical Gardens, 1991.

        [37] THIEME R, RAKOSY-TICAN E, GAVRILENKO T, ANTONOVA O, SCHUBERT J, NACHTIGALL M, HEIMBACH U, THIEME T. Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theoretical and Applied Genetics, 2008, 116(5): 691-700.

        [38] CAMADRO E L, CARPUTO D, PELOQUIN S J. Substitutes for genome differentiation in tuber-bearing Solanum: Interspecific pollenpistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theoretical and Applied Genetics, 2004, 109(7): 1369-1376.

        [39] DIONNE L A. Studies on the use of Solanum acaule as a bridge between Solanum tuberosum and species in the series Bulbocastana,Cardiophylla and Pinnatisecta. Euphytica, 1963, 12(3): 263-269.

        [40] HERMSEN J G T. Crossability, fertility and cytogenetic studies in Solanum acaule × Solanum bulbocastanum. Euphytica, 1966, 15(2): 149-155.

        [41] SINGSIT C, HANNEMAN R E. Rescuing abortive inter-EBN potato hybrids through double pollination and embryo culture. Plant Cell Reports, 1991, 9(9): 475-478.

        [42] CHEN Q, LYNCH D, PLATT H W, LI H Y, SHI Y, LI H J, BEASLEY J, RAKOSY-TICAN L, THEME R. Interspecific crossability and cytogenetic analysis of sexual progenies of Mexican wild diploid 1EBN species Solanum pinnatisectum and S. cardiophyllum. American Journal of Potato Research, 2004, 81(2): 159-169.

        [43] WATANABE K N, ORRILLO M, VEGA S, VALKONEN J P T, PEHU E, HURTADO A, TANKSLEY S D. Overcoming crossing barriers between nontuber-bearing and tuber-bearing Solanum species: Towards potato germplasm enhancement with a broad spectrum of solanaceous genetic resources. Genome, 1995, 38: 27-35.

        [44] PAZ M M, VEILLEUX R E. Influence of culture medium and in vitro conditions on shoot regeneration in Solanum phureja monoploids and fertility of regenerated doubled monoploids. Plant Breeding, 1999, 118(1): 53-57.

        [45] VAN OS H, ANDRZEJEWSKI S, BAKKER E, BARRENA I, BRYAN G J. Construction of a 10,000-marker ultradense genetic recombination map of potato: Providing a framework for accelerated gene isolation and a genomewide physical map. Genetics, 2006, 173(2):1075-1087.

        [46] POTATO GENOME SEQUENCING CONSORTIUM. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475(7355): 189-195.

        [47] AVERSANO R, CONTALDI F, ERCOLANO M R, GROSSO V, IORIZZO M, TATINO F, XUMERLE L, AVANZATO C, FERRARINI A, DELLEDONNE M, SANSEVERINO W, CIGLIANO R A, CAPELLA-GUTIERREZ G T, FRUSCIANTE L, BRADEEN J M, CARPUTO D. The Solanum commersonii Genome Sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. The Plant Cell, 2015, 27(4): 954-968.

        [48] GEBHARDT C, VALKONEN J P T. Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology, 2001, 39: 79-102.

        [49] SLATER A T, COGAN N O I, HAYES B J, SCHULTZ L, DALE M F B, BRYAN G J, FORSTER J W. Improving breeding efficiency in potato using molecular and quantitative genetics. Theoretical and Applied Genetics, 2014, 127(11): 2279-2292.

        [50] KEARSEY M J, POONI H S. The Genetical Analysis of Quantitative Traits. Cheltenham: Stanley Thornes Ltd, 1998.

        [51] MOOSE S P, MUMM R H. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology, 2008, 147(3): 969-977.

        [52] VAN ECK H J. Genetics of Morphological and Tuber Traits. Amsterdam: Elsevier, 2007.

        [53] PRASHAR A, HORNYIK C, YOUNG V, MCLEAN K, SHARMA S K, DALE M F B, BRYAN G J. Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of tuber shape and eye depth. Theoretical and Applied Genetics, 2014, 127(10): 2159-2171.

        [54] LI X Q, DE JONG H, DE JONG D M, DE JONG W S. Inheritance and genetic mapping of tuber eye depth in cultivated diploid potatoes. Theoretical and Applied Genetics, 2005, 110(6): 1068-1073.

        [55] DE JONG H. Inheritance of russeting in cultivated diploid potatoes. Potato Research, 1981, 24(3): 309-313.

        [56] KLOOSTERMAN B, ABELENDA J A, GOMEZ M M, OORTWIJN M, DE BOER J M, KOWITWANICH K, HORVATH B M, VAN ECK H J, SMACZNIAK C, PRAT S, VISSER R G, BACHEM C W. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 2013, 495(7440): 246-250.

        [57] CELIS-GAMBOA C, STRUIK P C, JACOBSEN E, VISSER R G F. Temporal dynamics of tuber formation and related processes in a crossing population of potato (Solanum tuberosum). Annals of Applied Biology, 2003, 143(2): 175-186.

        [58] BERG J H, EWING E E, PLAISTED R L, MCMURRY S, BONIERBALE M W. QTL analysis of potato tuber dormancy. Theoretical and Applied Genetics, 1996, 93(3): 317-324.

        [59] LEVY D, VEILLEUX R E. Adaptation of potato to high temperatures and salinity-a review. American Journal of Potato Research, 2007, 84(6): 487-506.

        [60] ORTIZ R, HUAMAN Z. Inheritance of Morphological and Tuber Characteristics. Wallingford, UK: CAB International, 1994.

        [61] ANITHAKUMARI A M, NATARAJA K N, VISSER R G F, LINDEN C G. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding, 2012, 30(3): 1413-1429.

        [62] GANGADHAR B H, YU J W, SAJEESH K, PARK S W. A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening. Molecular Genetics and Genomics, 2013, 289(2): 185-201.

        [63] ZHU X, RICHAEL C, CHAMBERLAIN P, BUSSE J S. BUSSAN AJ, JIANG J, BETHKE P C. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects. PLoS ONE, 2014, 9(4): e93381.

        [64] Marczewski W, Hennig J, Gebhardt C. The potato virus S resistance gene Ns maps to potato chromosome VIII. Theoretical and Applied Genetics, 2002, 105(4): 564-567.

        [65] RITTER E, DEBENER T, BARONE A, SALAMINI F, GEBHARDT C. RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Molecular Genetics and Genomics, 1991, 227(1): 81-85.

        [66] H?M?L?INEN H J, WATANABE N K, VALKONEN T J P, ARIHARA A, PLAISTED L R, PEHU E, MILLER L, SLACK A S. Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theoretical and Applied Genetics, 1997, 94(2): 192-197.

        [67] MARCZEWSKI W, FLIS B, SYLLER J, SCH?FER-PREGL R, GEBHARDT C. A major quantitative trait locus for resistance to Potato leafroll virus is located in a resistance hotspot on potato chromosome XI and is tightly linked to N-gene-like markers. Molecular Plant-Microbe Interactions, 2001, 14(12): 1420-1425.

        [68] SIMKO I, JANSKY S, STEPHENSON S, SPOONER D M. Genetics of Resistance to Pests and Diseases. Amsterdam: Elsevier, 2007.

        [69] BROWN C R, YANG C P, MOJTAHEDI H, SANTO G S, MASUELLI R. RFLP analysis of resistance to Columbia root-knot nematode derived from Solanum bulbocastanum in a BC2population. Theoretical and Applied Genetics, 1996, 92(5): 572-576.

        [70] PHILLIPS M S. Inheritance of Resistance to Nematodes. Wallingford: CAB International, 1994.

        [71] RODEWALD J, TROGNITZ B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Molecular Plant Pathology, 2013, 14(7): 740-757.

        [72] SANTA CRUZ J H, HAYNES K G, CHRIST B J. Effects of one cycle of recurrent selection for early blight resistance in a diploid hybrid Solanum phureja-S. stenotomum population. American Journal of Potato Research, 2009, 86(6): 490-498.

        [73] BURKHART C R, CHRIST B J, HAYNES K G. Non-additive genetic variance governs resistance to fusarium dry rot in a diploid hybrid potato population. American Journal of Potato Research, 2007, 84(3): 199-204.

        [74] DEES M W, LYS?E E, ALSHEIKH M, DAVIK J, BRURBERG M B. Resistance to Streptomyces turgidiscabies in potato involves an early and sustained transcriptional reprogramming at initial stages of tuber formation. Molecular Plant Pathology, 2015, 17(5): 703-713.

        [75] PAGET M F, ALSPACH P A, GENET R A, APIOLAZA L A. Genetic variance models for the evaluation of resistance to powdery scab (Spongospora subterranea f. sp. subterranea) from long-term potato breeding trials. Euphytica, 2014, 197(3): 369-385.

        [76] WASTIE R L. Inheritance of Fungal Diseases of Tubers. Wallingford: CAB International, 1994.

        [77] VLEESHOUWERS V G, RAFFAELE S, VOSSEN J H, CHAMPOURET N, OLIVA R, SEGRETIN M E, RIETMAN H, CANO L M, LOKOSSOU A, KESSEL G, PEL M A, KAMOUN S. Understanding and exploiting late blight resistance in the age of effectors. Annual Review of Phytopathology, 2011, 49: 507-531.

        [78] Black W, Mastenbroek C, Mills W R, Peterson L C. A proposal for an international nomenclature of races of Phytophthora infestans and of genes controlling immunity in Solanum demissum derivatives. Euphytica, 1953, 2(3):173-179.

        [79] VAN DER LEE T, TESTA A, VAN'T KLOOSTER J, VAN DEN BERG-VELTHUIS G, GOVERS F. Chromosomal deletion in isolates of Phytophthora infestans correlates with virulence on R3, R10, and R11 potato lines. Molecular Plant-Microbe Interactions, 2001, 14(12): 1444-1452.

        [80] PARK T H, VLEESHOUWERS V G A A, JACOBSEN E, VAN DER VOSSEN E, VISSER R G F. Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): A perspective of cisgenesis. Plant Breeding, 2009, 128(2): 109-117.

        [81] VAN DER VOSSEN E A, GROS J, SIKKEMA A, MUSKENS M, WOUTERS D, WOLTERS P, PEREIRA A, ALLEFS S. The Rpi-blb2 gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. The Plant Journal, 2005, 44(2): 208-222.

        [82] PARK T H, GROS J, SIKKEMA A, VLEESHOUWERS V G, MUSKENS M, ALLEFS S, JACOBSEN E, VISSER R G, VAN DER VOSSEN E A. The late blight resistance locus Rpi-bib3 from Solanum bulbocastanum belongs to a major late blight R gene cluster on chromosome 4 of potato. Molecular Plant-Microbe Interactions, 2005, 18(7): 722-729.

        [83] SONG J, BRADEEN J M, NAESS S K, RAASCH J A, WIELGUS S M, HABERLACH G T, LIU J, KUANG H, AUSTIN-PHILLIPS S, BUELL C R, HELGESON J P, JIANG J. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9128-9133.

        [84] DANAN S, VEYRIERAS J B, LEFEBVRE V. Construction of apotato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biology, 2011, 11: 16.

        [85] GEBHARDT C. Bridging the gap between genome analysis and precision breeding in potato. Trends in Genetics, 2013, 29(4): 248-256.

        [86] CHAMPOURET N. Functional genomics of Phytophthora infestans effectors and Solanum resistance genes[D]. Wageningen: Wageningen University, 2010.

        [87] ZHANG K, XU J, DUAN S G, PANG W F, BIAN C S, LIU J, JIN L. NBS profiling identifies potential novel locus from Solanum demissum that confers broad-spectrum resistance to Phytophthora infestans. Journal of Integrative Agriculture, 2014, 13(8): 1662-1671. [88] BALLVORA A, ERCOLANO M R, WEISS J, MEKSEM K, BORMANN C A, OBERHAGEMANN P, SALAMINI F, GEBHARDT C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. The Plant Journal, 2002, 30(3): 361-371.

        [89] LOKOSSOU A A, PARK T H, VAN ARKEL G, ARENS M, RUYTER-SPIRA C, MORALES J, WHISSON S C, BIRCH P R, VISSER R G, JACOBSEN E, VAN DER VOSSEN E A. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV. Molecular Plant-Microbe Interactions, 2009, 22(6): 630-641.

        [90] HUANG S, VAN DER VOSSEN E A, KUANG H, VLEESHOUWERS V G, ZHANG N, BORM T J, VAN ECK H J, BAKER B, JACOBSEN E, VISSER R G. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. The Plant Journal, 2005, 42(2): 251-261.

        [91] LI G, HUANG S, GUO X, LI Y, YANG Y, GUO Z, KUANG H, RIETMAN H, BERGERVOET M, VLEESHOUWERS V G, VAN DER VOSSEN E A, QU D, VISSER R G, JACOBSEN E, VOSSEN J H. Cloning and characterization of R3b: Members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Molecular Plant-Microbe Interactions, 2011, 24(10): 1132-1142.

        [92] OOSUMI T, ROCKHOLD D R, MACCREE M M, DEAHL K L, MCCUE K F, BELKNAP W R. Gene Rpi-bt1 from Solanum bulbocastanum confers resistance to late blight in transgenic potatoes. American Journal of Potato Research, 2009, 86(6): 456-465.

        [93] LOKOSSOU A A, RIETMAN H, WANG M, KRENEK P, VAN DER SCHOOT H, HENKEN B, HOEKSTRA R, VLEESHOUWERS V G, VAN DER VOSSEN E A, VISSER R G, JACOBSEN E, VOSMAN B. Diversity, distribution, and evolution of Solanum bulbocastanum late blight resistance genes. Molecular Plant-Microbe Interactions, 2010, 23(9): 1206-1216.

        [94] VLEESHOUWERS V G, RIETMAN H, KRENEK P, CHAMPOURET N, YOUNG C, OH S K, WANG M, BOUWMEESTER K, VOSMAN B, VISSER R G, JACOBSEN E, GOVERS F, KAMOUN S, VAN DER VOSSEN E A. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE, 2008, 3(8): e2875.

        [95] WANG M, ALLEFS S, BERG R G, VLEESHOUWERS V G A A, VOSSEN E A G, VOSMAN B. Allele mining in Solanum: Conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics, 2008, 116(7): 933-943.

        [96] FOSTER S J, PARK T H, PEL M, BRIGNETI G, SLIWKA J, JAGGER L, VAN DER VOSSEN E, JONES J D. Rpi-vnt1.1, a Tm-2(2) homolog from Solanum venturii, confers resistance to potato late blight. Molecular Plant-Microbe Interactions, 2009, 22(5): 589-600.

        [97] ?LIWKA J, ?WI?TEK M, TOMCZY?SKA I, STEFA?CZYK E, CHMIELARZ M, ZIMNOCH-GUZOWSKA E. Influence of genetic background and plant age on expression of the potato late blight resistance gene Rpi-phu1 during incompatible interactions with Phytophthora infestans. Plant Pathology, 2013, 62(5): 1072-1080.

        [98] BARKER H. Extreme resistance to potato virus V in clones of Solanum tuberosum that are also resistant to potato viruses Y and A: Evidence for a locus conferring broad-spectrum potyvirus resistance. Theoretical and Applied Genetics, 1997, 95(8): 1258-1262.

        [99] JONES R A C. Strain group specific and virus specific hypersensitive reactions to infection with potyviruses in potato cultivars. Annals of Applied Biology, 1990, 117(1): 93-105.

        [100] HAMALAINEN J H, KEKARAINEN T, GEBHARDT C, WATANABE K N, VALKONEN J P. Recessive and dominant genes interfere with the vascular transport of potato virus A in diploid potatoes. Molecular Plant-Microbe Interactions, 2000, 13(4): 402-412.

        [101] DE JONG W, FORSYTH A, LEISTER D, GEBHARDT C, BAULCOMBE D C. A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. Theoretical and Applied Genetics, 1997, 95(1): 246-252.

        [102] MARCZEWSKI W, HENNIG J, GEBHARDT C. The potato virus S resistance gene Ns maps to potato chromosome VIII. Theoretical and Applied Genetics, 2002, 105(4): 564-567.

        [103] TOMMISKA J T, H?M?L?INEN H J, WATANABE N K, VALKONEN T J P. Mapping of the gene Nxphuthat controlshypersensitive resistance to potato virus X in Solanum phureja IvP35. Theoretical and Applied Genetics, 1998, 96(6): 840-843.

        [104] MARCZEWSKI W, FLIS B, SYLLER J, STRZELCZYK-?YTA D, HENNIG J, GEBHARDT C. Two allelic or tightly linked genetic factors at the PLRV.4 locus on potato chromosome XI control resistance to potato leafroll virus accumulation. Theoretical and Applied Genetics, 2004, 109(8): 1604-1609.

        [105] VELáSQUEZ A C, MIHOVILOVICH E, BONIERBALE M. Genetic characterization and mapping of major gene resistance to potato leafroll virus in Solanum tuberosum ssp. andigena. Theoretical and Applied Genetics, 2007, 114(6): 1051-1058.

        [106] H?M?L?INEN H J, WATANABE N K, VALKONEN T J P, ARIHARA A, PLAISTED L R, PEHU E, MILLER L, SLACK A S. Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theoretical and Applied Genetics, 1997, 94(2): 192-197.

        [107] BRIGNETI G, GARCIA-MAS J, BAULCOMBE C D. Molecular mapping of the potato virus Y resistance gene Rystoin potato. Theoretical and Applied Genetics, 1997, 94(2): 198-203.

        [108] FINKERS-TOMCZAK A, BAKKER E, DE BOER J, VAN DER VOSSEN E, ACHENBACH U, GOLAS T, SURYANINGRAT S, SMANT G, BAKKER J, GOVERSE A. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.). Theoretical and Applied Genetics, 2011, 122(3): 595-608.

        [109] GEBHARDT C, MUGNIERY D, RITTER E, SALAMINI F, BONNEL E. Identification of RFLP markers closely linked to the H1 gene conferring resistance to Globodera rostochiensis in potato. Theoretical and Applied Genetics, 1993, 85(5): 541-544.

        [110] KREIKE C M, KONING J R A, VINKE J H, OOIJEN J W, STIEKEMA W J. Quantitatively-inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theoretical and Applied Genetics, 1994, 88(6): 764-769.

        [111] VAN DER VOORT R J, WOLTERS P, FOLKERTSMA R, HUTTEN R, VAN ZANDVOORT P, VINKE H, KANYUKA K, BENDAHMANE A, JACOBSEN E, JANSSEN R, BAKKER J. Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theoretical and Applied Genetics, 1997, 95(5): 874-880.

        [112] BRADSHAW E J, HACKETT A C, MEYER C R, MILBOURNE D, MCNICOL W J, PHILLIPS S M, WAUGH R. Identification of AFLP and SSR markers associated with quantitative resistance to Globodera pallida (Stone) in tetraploid potato (Solanum tuberosum subsp. tuberosum) with a view to marker-assisted selection. Theoretical and Applied Genetics, 1998, 97(1): 202-210.

        [113] ROUPPE VAN DER VOORT J, VAN DER VOSSEN E, BAKKER E, OVERMARS H, VAN ZANDVOORT P, HUTTEN R, KLEIN LANKHORST R, BAKKER J. Two additive QTLs conferring broad-spectrum resistance in potato to Globodera pallida are localized on resistance gene clusters. Theoretical and Applied Genetics, 2000, 101(7): 1122-1130.

        [114] JACOBS J M E, ECK H J, HORSMAN K, ARENS P F P, VERKERK-BAKKER B, JACOBSEN E, PEREIRA A, STIEKEMA W J. Mapping of resistance to the potato cyst nematode Globodera rostochiensis from the wild potato species Solanum vernei. Molecular Breeding, 1996, 2(1): 51-60.

        [115] LEISTER D, BALLVORA A, SALAMINI F, GEBHARDT C. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 1996, 14(4): 421-429.

        [116] KREIKE C M, KONING J R A, VINKE J H, OOIJEN J W, GEBHARDT C, STIEKEMA W J. Mapping of loci involved in quantitatively inherited resistance to the potato cyst-nematode Globodera rostochiensis pathotype Ro1. Theoretical and Applied Genetics, 1993, 87(4): 464-470.

        [117] KREIKE C M, KOK-WESTENENG A A, VINKE J H, STIEKEMA W J. Mapping of QTLs involved in nematode resistance, tuber yield and root development in Solanum sp. Theoretical and Applied Genetics, 1996, 92(3): 463-470.

        [118] VAN DER VOORT R J, LINDEMAN W, FOLKERTSMA R, HUTTEN R, OVERMARS H, VAN DER VOSSEN E, JACOBSEN E, BAKKER J. A QTL for broad-spectrum resistance to cyst nematode species (Globodera spp.) maps to a resistance gene cluster in potato. Theoretical and Applied Genetics, 1998, 96(5): 654-661.

        [119] TUNG P X. Genetic variation for bacterial wilt resistance in a population of tetraploid potato. Euphytica, 1992, 61(1): 73-80.

        [120] YU Y, YE W, HE L, CAI X, LIU T, LIU J. Introgression of bacterial wilt resistance from eggplant to potato via protoplast fusion and genome components of the hybrids. Plant Cell Reports, 2013, 32(11): 1687-1701.

        [121] KIM-LEE H, MOON J S, HONG Y J, KIM M S, CHO H M. Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. American Journal of Potato Research, 2005, 82(2): 129-137.

        [122] CHEN L, GUO X, XIE C, HE L, CAI X, TIAN L, SONG B, LIU J.Nuclear and cytoplasmic genome components of Solanum tuberosum + S. chacoense somatic hybrids and three SSR alleles related to bacterial wilt resistance. Theoretical and Applied Genetics, 2013, 126(7): 1861-1872.

        [123] FOCK I, COLLONNIER C, LAVERGNE D, VANIET S, AMBROISE A, LUISETTI J, KODJA H, SIHACHAKR D. Evaluation of somatic hybrids of potato with Solanum stenotomum after a long-term in vitro conservation. Plant Physiology & Biochemistry, 2007, 45(3/4): 209-215.

        [124] CHUNG Y S, HOLMQUIST K, SPOONER D M, JANSKY S H. A test of taxonomic and biogeographic predictivity: Resistance to soft rot in wild relatives of cultivated potato. Phytopathology, 2011, 101(2): 205-212.

        [125] WANNER L A, KIRK W W. Streptomyces – from basic microbiology to role as a plant pathogen. American Journal of Potato Research, 2015, 92(2): 236-242.

        [126] KHATRI B B, TEGG R S, BROWN P H, WILSON C R. Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabiei-induced responses in the potato periderm. Plant Pathology, 2011, 60(4): 776-786.

        [127] WILSON C R, TEGG R S, WILSON A J, LUCKMAN G A, EYLES A, YUAN Z Q, HINGSTON L H, CONNER A J. Stable and extreme resistance to common scab of potato obtained through somatic cell selection. Phytopathology, 2010, 100(5): 460-467.

        [128] SALAMAN R N. The inheritance of colour and other characters in the potato. Journal of Genetics, 1910, 1(1): 7-46.

        [129] JONG H D. Inheritance of anthocyanin pigmentation in the cultivated potato: A critical review. American Potato Journal, 1991, 68(9): 585-593.

        [130] GEBHARDT C, RITTER E, DEBENER T, SCHACHTSCHABEL U, WALKEMEIER B, UHRIG H, SALAMINI F. RFLP analysis and linkage mapping in Solanum tuberosum. Theoretical and Applied Genetics, 1989, 78(1): 65-75.

        [131] VAN ECK H J, JACOBS J M E, DIJK J, STIEKEMA W J, JACOBSEN E. Identification and mapping of three flower colour loci of potato (S. tuberosum L.) by RFLP analysis. Theoretical and Applied Genetics, 1993, 86(2): 295-300.

        [132] DE JONG W S, EANNETTA N T, DEJONG D M, BODIS M. Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theoretical and Applied Genetics, 2004, 108(3): 423-432.

        [133] DE JONG W S, DE JONG D M, DE JONG H, KALAZICH J, BODIS M. An allele of dihydroflavonol 4-reductase associated with the ability to produce red anthocyanin pigments in potato (Solanum tuberosum L.). Theoretical and Applied Genetics, 2003, 107(8): 1375-1383.

        [134]JUNG C S, GRIFFITHS H M, DE JONG D M, CHENG S, BODIS M, DE JONG W S. The potato P locus codes for flavonoid 3′,5′-hydroxylase. Theoretical and Applied Genetics, 2004, 110(2): 269-275.

        [135] ZHANG Y, CHENG S, JONG D M, GRIFFITHS H, HALITSCHKE R, DE JONG W S. The potato R locus codes for dihydroflavonol 4-reductase. Theoretical and Applied Genetics, 2009, 119(5): 931-937.

        [136] JUNG C S, GRIFFITHS H M, JONG D M, CHENG S, BODIS M, KIM T S, DE JONG W S. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theoretical and Applied Genetics, 2009, 120(1): 45-57.

        [137] MASSON M F. Mapping, combining abilites, heritabilities and heterosis with 4x × 2x crosses in potato. Madison: University of Wisconsin-Madison, 1985.

        [138] DE JONG H, BURNS V J. Inheritance of tuber shape in cultivated diploid potatoes. American Journal of Potato Research, 1993, 70: 267-283.

        [139] LI L, PAULO M J, STRAHWALD J, LüBECK J, HOFFERBERT H R, TACKE E, JUNGHANS H, WUNDER J, DRAFFEHN A, EEUWIJK F, GEBHARDT C. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theoretical and Applied Genetics, 2008, 116(8): 1167-1181.

        [140] SCHREIBER L, NADER-NIETO A C, SCHONHALS E M, WALKEMEIER B, GEBHARDT C. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). Genes Genomes Genetics, 2014, 4(10): 1797-1811.

        [141] WIBERLEY-BRADFORD A E, BUSSE J S, JIANG J, BETHKE P C. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin. BMC Research Notes, 2014, 7: 801.

        [142] LIN Y, LIU T, LIU J, LIU X, OU Y, ZHANG H, LI M, SONNEWALD U, SONG B, XIE C. Subtle regulation of potato acid invertase activity by a protein complex of invertase, invertase inhibitor, and sucrose nonfermenting1-related protein kinase. Plant Physiology, 2015, 168(4): 1807-1819.

        [143] URBANY C, STICH B, SCHMIDT L, SIMON, BERDING H, JUNGHANS H, NIEHOFF K, BRAUN A, TACKE E, HOFFERBERT H, LüBECK J, STRAHWALD J, GEBHARDT C. Associationgenetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration. BMC Genomics, 2011, 12(1): 1-14.

        [144] MONNEVEUX P, RAMíREZ D A, PINO M. Drought tolerance in potato (S.tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Science, 2013, 205-206: 76-86.

        [145] WEISZ R, KAMINSKI J, SMILOWITZ Z. Water deficit effects on potato leaf growth and transpiration: Utilizing fraction extractable soil water for comparison with other crops. American Potato Journal, 1994, 71(12): 829-840.

        [146]ANITHAKUMARI A M, DOLSTRA O, VOSMAN B, VISSER R G F, LINDEN C G. In vitro screening and QTL analysis for drought tolerance in diploid potato. Euphytica, 2011, 181(3): 357-369.

        [147] KONDRAK M, MARINCS F, ANTAL F, JUHASZ Z, BANFALVI Z. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biology, 2012, 12: 74.

        [148] ZHANG N, YANG J, WANG Z, WEN Y, WANG J, HE W, LIU B, SI H, WANG D. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS ONE, 2014, 9(4): e95489.

        [149] STONE J M, PALTA J P, BAMBERG J B, WEISS L S, HARBAGE J F. Inheritance of freezing resistance in tuber-bearing Solanum species: Evidence for independent genetic control of nonacclimated freezing tolerance and cold acclimation capacity. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(16): 7869-7873.

        [150] AHN Y, ZIMMERMAN J L. Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant, Cell & Environment, 2006, 29(1): 95-104.

        [151] SIMKO I, COSTANZO S, HAYNES K G, CHRIST B J, JONES R W. Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theoretical and Applied Genetics, 2004, 108(2): 217-224.

        [152] BRADSHAW J E, MACKAY G R. Breeding Strategies for Clonally Propagated Potatoes. Wallingford: Cab International, 1994.

        [153] 金黎平, 楊宏福. 馬鈴薯遺傳育種中的染色體倍性操作. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào), 1996, 1: 70-75.

        JIN L P, YANG H F. Chromosomal manipulation in potato genetics and breeding. Journal of Agricultutal Biotechnology, 1996, 1: 70-75. (in Chinese)

        [154] HOUGAS R W, PELOQUIN S J. The potential of potato haploids in breeding and genetic research. American Journal of Potato Research, 1958, 35: 701-707.

        [155] HOUGAS R W, PELOQUIN S J, GABERT A C. Effect of seed-partent and pollinator on frequency of haploids in Solannum tuberosum. Crop Science, 1964, 4: 593-595.

        [156] HERMSEN J G T, VERDENIUS J. Selection from Solanum tuberosum group phureja of genotypes combining high-frequency haploid induction with homozygosity for embryo-spot. Euphytica, 1973, 22(2): 244-259.

        [157] HOUGAS R W, PELOQUIN S J. Crossability of Solannum tuberosum haploids with diploid Solanum species. European Potato Journal, 1960, 3: 325-330.

        [158] CHASE S C. Analytical breeding of Solanum tuberosum. Canadian Journal of Genetics and Cytology, 1963, 5: 359-363.

        [159] YEH B P, PELOQUIN S J, HOUGAS R W. Meiosis in Solanum tuberosum haploids and haploid-haploid F1hybrids. Canadian Journal of Genetics and Cytology, 1964, 6: 393-402.

        [160] 屈冬玉, 朱德蔚, 王登社, 高占旺, Ramanna M S, Jacobsen E. 馬鈴薯2n配子發(fā)生的遺傳分析. 園藝學(xué)報(bào), 1995, 22(1): 61-66. QU D Y, ZHU D W, WANG D S, GAO Z W, RAMANNA M S, JACOBSEN E. Genetic analysis of 2n pollen formation in potato. Acta Horticulturae Sinica, 1995, 22(1): 61-66. (in Chinese)

        [161] STELLY D M, PELOQUIN S J, PALMER R G, CRANE C F. Mayer’s hemalum-methy salicylate: A stain-clearing technique for observations within whole ovules. Stain Technology, 1984, 59: 155-161.

        [162] ERAZZú L E, CAMADRO E L. Direct and indirect detection of 2n eggs in hybrid diploid families derived from haploid tbr × wild species crosses. Euphytica, 2006, 155(1): 57-62.

        [163] WEBER B, JANSKY S. Resistance to Alternaria solani in hybrids between a Solanum tuberosum haploid and S. raphanifolium. Phytopathology, 2012, 102: 214-221.

        [164] QU D, ZHU D, RAMANNA M S, JACOBSEN E. A comparison of progeny from diallel crosses of diploid potato with regard to the frequencies of 2n-pollen grains. Euphytica, 1995, 92(3): 313-320.

        [165] MURPHY A M, JONG H, TAI G C C. Transmission of resistance to common scab from the diploid to the tetraploid level via 4x-2x crosses in potatoes. Euphytica, 1995, 82(3): 227-233.

        [166] PARK T H, KIM J B, HUTTEN R C B, VAN ECK H J, JACOBSEN E, VISSER R G F. Genetic positioning of centromeres using half-tetrad analysis in a 4x-2x cross population of potato. Genetics, 2007, 176(1): 85-94.

        [167] MENDIBURU A O, PELOQUIN S J. The significance of 2n gametesin potato breeding. Theoretical and Applied Genetics, 1977, 49(2): 53-61.

        [168] WEISZ R, KAMINSKI J, SMILOWITZ Z. Interspecific somatic hybrids Solanum villosum (+) S. tuberosum, resistant to Phytophthora infestans. Journal of Plant Physiology, 2013, 170(17): 1541-1548.

        [169] THIEME R, RAKOSY-TICAN E, NACHTIGALL M, SCHUBERT J, HAMMANN T, ANTONOVA O, GAVRILENKO T, HEIMBACH U, THIEME T. Characterization of the multiple resistance traits of somatic hybrids between Solanum cardiophyllum Lindl. and two commercial potato cultivars. Plant Cell Reports, 2010, 29(10): 1187-1201.

        [170] LUO Z W, HACKETT C A, BRADSHAW J E, MCNICOL J W, MILBOURNE D. Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics, 2001, 157(3): 1369-1385.

        [171] ZHANG L H, MOJTAHEDI H, KUANG H, BAKER B, BROWN C R. Marker-assisted selection of columbia root-knot nematode resistance introgressed from Solanum bulbocastanum. Crop Science, 2007, 47(5): 2021-2026.

        [172] KASAI K, MORIKAWA Y, SORRI V A, VALKONEN J P, GEBHARDT C, WATANABE K N. Development of SCAR markers to the PVY resistance gene Ryadgbased on a common feature of plant disease resistance genes. Genome, 2000, 43(1): 1-8.

        [173] SORRI A V, WATANABE N K, VALKONEN T J P. Predicted kinase-3a motif of a resistance gene analogue as a unique marker for virus resistance. Theoretical and Applied Genetics, 1999, 99(1): 164-170.

        [174] FULLADOLSA A C, NAVARRO F M, KOTA R, SEVERSON K, PALTA J P, CHARKOWSKI A O. Application of marker assisted selection for potato virus Y resistance in the university of wisconsin potato breeding program. American Journal of Potato Research, 2015, 92(3): 444-450.

        [175] MORI K, SAKAMOTO Y, MUKOJIMA N, TAMIYA S, NAKAO T, ISHII T, HOSAKA K. Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five disease and pest resistance genes in potato. Euphytica, 2011, 180(3): 347-355.

        [176] SZAJKO K, STRZELCZYK-?YTA D, MARCZEWSKI W. Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes: Mapping and marker-assisted selection validation for PVY resistance in potato breeding. Molecular Breeding, 2014, 34(1): 267-271.

        [177]WITEK K, STRZELCZYK-?YTA D, HENNIG J, MARCZEWSKI W. A multiplex PCR approach to simultaneously genotype potato towards the resistance alleles Ry-f sto and Ns. Molecular Breeding, 2006, 18(3): 273-275.

        [178] MARCZEWSKI W, STRZELCZYK-?YTA D, HENNIG J, WITEK K, GEBHARDT C. Potato chromosomes IX and XI carry genes for resistance to potato virus M. Theoretical and Applied Genetics, 2006, 112(7): 1232-1238.

        [179] KIM H, LEE H, JO K, MORTAZAVIAN S M M, HUIGEN D J, EVENHUIS B, KESSEL G, VISSER R G F, JACOBSEN E, VOSSEN J H. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theoretical and Applied Genetics, 2012, 124(5): 923-935.

        [180] XU J, WANG J, PANG W F, BIAN C S, DUAN S G, LIU J, HUANG S, JIN L, QU D. The potato R10 resistance specificity to late blight is conferred by both a single dominant R gene and quantitative trait loci. Plant Breeding, 2013, 132(4): 407-412.

        [181] COLTON L M, GROZA H I, WIELGUS S M, JIANG J. Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Science, 2006, 46(2): 589-594.

        [182] WANG M, ALLEFS S, BERG R G, VLEESHOUWERS V G A A, VOSSEN E A G, VOSMAN B. Allele mining in Solanum: Conserved homologues of Rpi-blb1 are identified in Solanum stoloniferum. Theoretical and Applied Genetics, 2008, 116(7): 933-943.

        [183] ZHU S, LI Y, VOSSEN J H, VISSER R G F, JACOBSEN E. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Research, 2012, 21(1): 89-99.

        [184] SANETOMO R, HOSAKA K. A maternally inherited DNA marker, descended from Solanum demissum (2n = 6x = 72) to S. tuberosum (2n = 4x = 48). Breeding Science, 2011, 61(4): 426-434.

        [185] 朱文文, 徐建飛, 李廣存, 段紹光, 劉杰, 卞春松, 龐萬(wàn)福, De Jong W, 金黎平. 馬鈴薯塊莖形狀基因CAPS標(biāo)記的開(kāi)發(fā)與驗(yàn)證. 作物學(xué)報(bào), 2015, 41(10): 1529-1536.

        ZHU W W, XU J F, LI G C, DUAN S G, LIU J, BIAN C S, PANG W F, DE JONG W, JIN L P. Development and verification of a CAPS marker linked to tuber shape gene in potato. Acta Agronomica Sinica, 2015, 41(10): 1529-1536. (in Chinese)

        [186] MILCZAREK D, FLIS B, PRZETAKIEWICZ A. Suitability of molecular markers for selection of potatoes resistant to Globodera spp. American Journal of Potato Research, 2011, 88(3): 245-255.

        [187] WHITWORTH J L, NOVY R G, HALL D G, CROSSLIN J M, BROWN C R. Characterization of broad spectrum potato virus Y resistance in a Solanum tuberosum ssp. andigena-derived population and select breeding clones using molecular markers, grafting, and field inoculations. American Journal of Potato Research, 2009, 86(4):286-296.

        [188] BERNARDO R. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Science, 2008, 48(5): 1649-1664.

        [189] HEFFNER E L, LORENZ A J, JANNINK J L, SORRELLS M E. Plant breeding with genomic selection: Gain per unit time and cost. Crop Science, 2010, 50(5): 1681-1690

        [190] MEUWISSEN T H, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829.

        [191] WONG C K, BERNARDO R. Genomewide selection in oil palm: Increasing selection gain per unit time and cost with small populations. Theoretical and Applied Genetics, 2008, 116(6): 815-824.

        [192] ZHONG S, DEKKERS J C, FERNANDO R L, JANNINK J L. Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: A Barley case study. Genetics, 2009, 182(1): 355-364.

        [193] VOS P, UITDEWILLIGEN J, VOORRIPS R, VISSER, R, VAN ECK H. Development and analysis of a 20K SNP array for potato (Solanum tuberosum ): An insight into the breeding history. Theoretical and Applied Genetics, 2015, 128(12): 2387-2401.

        [194] WALTZ E. USDA approves next-generation GM potato. Nature Biotechnology, 2015, 33(1): 12-13.

        [195] PERLAK F J, STONE T B, MUSKOPF Y M, PETERSEN L J, PARKER G B, MCPHERSON S A, WYMAN J, LOVE S, REED G, BIEVER D, FISCHHOFF D A. Genetically improved potatoes: Protection from damage by Colorado potato beetles. Plant Molecular Biology, 1993, 22(2): 313-321.

        [196] REED G L, JENSEN A S, RIEBE J, HEAD G, DUAN J J. Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: Comparative efficacy and non-target impacts. Entomologia Experimentalis et Applicata, 2001, 100(1): 89-100.

        [197] LAWSON E C, WEISS J D, THOMAS P E, KANIEWSKI W K. NewLeaf Plus? Russet Burbank potatoes: replicase-mediated resistance to potato leafroll virus. Molecular Breeding, 2001, 7(1): 1-12.

        [198] SOUBRIER F, CAMERON B, MANSE B, SOMARRIBA S, DUBERTRET C, JASLIN G, JUNG G, CAER C L, DANG D, MOUVAULT J M, SCHERMAN D, MAYAUX J F, CROUZET J. pCOR: A new design of plasmid vectors for nonviral gene therapy. Gene Therapy, 1999, 6(8): 1482-1488.

        [199] SCHOUTEN H J, KRENS F A, JACOBSEN E. Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Reports, 2006, 7(8): 750-753.

        [200] OLIVEIRA P H, MAIRHOFER J. Marker-free plasmids for biotechnological applications - implications and perspectives. Trends Biotechnology, 2013, 31(9): 539-547.

        [201] JACOBSEN E, SCHOUTEN H J. Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step by step approach. Potato Research, 2008, 51(1): 75-88.

        [202] JANSEN R, EMBDEN J D A V, GAASTRA W, SCHOULS L M. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6): 1565-1575.

        [203] HUANG S, WEIGEL D, BEACHY R N, LI J. A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48(2): 109-111.

        [204] LEDFORD H. CRISPR, the disruptor. Nature, 2015, 522(7554): 20-24.

        [205] BUTLER N M, ATKINS P A, VOYTAS D F, DOUCHES D S. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas system. PLoS ONE, 2015, 10(12): e0144591.

        [206] WANG S, ZHANG S, WANG W, XIONG X, MENG F, CUI X. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 2015, 34(9): 1473-1476.

        [207] GAO F, SHEN X Z, JIANG F, WU Y, HAN C. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nature Biotechnology, 2016, 34(7): 768-773.

        [208] ALMEKINDERS C J M, MERTENS L, LOON J P, LAMMERTS VAN BUEREN E T. Potato breeding in the Netherlands: A successful participatory model with collaboration between farmers and commercial breeders. Food Security, 2014, 6(4): 515-524.

        [209] VAN BUEREN E T L. A collaborative breeding strategy for organic potatoes in the Netherlands. Ecology and Farming: International IFOAM-Magazine, 2010, 2: 50-53.

        [210] VAN BUEREN L E T, ENGELEN C, HUTTEN R. Participatory potato breeding model involving organic farmers and commercial breeding companies in the Netherlands. Corvallis: 7 t h Organic Seed Growers Conference, 2014.

        [211] TIEMENS-HULSCHER M, DELLEMAN J, EISING J, VAN BUEREN E T L. Potato Breeding: A practical Manual for the Potato Chain. Den Haag: Ardappelwereld BV, 2013.

        (責(zé)任編輯 李莉)

        Advances and Perspectives in Research of Potato Genetics and Breeding

        XU JianFei, JIN LiPing
        (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing 100081)

        Potato, the third most important food crop, plays a key role in global and China’s food security. Improvement of varieties is a base for sustainable development of potato industry. Potatoes frequently suffer from diverse biotic and abiotic stress, so it is urgent to breed new varieties with better disease resistance, stress tolerance, tuber yield and quality as well as specific usage to meet the needs of potato processing and people nutrition. Potato breeding is a system combining germplasm evaluation and utilization, major traits genetics analysis, breeding technology application and variety extension and crop management together. Within a global conservation strategy there are about 65,000 accessions. Using a homozygous doubled-monoploid potato clone, 86% of the 844-megabase genome sequence are revealed and assembled, and 39,031 protein-coding genes are predicted. At present, re-sequencing of potato accessions is in process. Common cultivated potato is an asexual propagation tetraploid with tetrasomic inheritance and high heterozygosity. Nevertheless, inheritance of many major traits involving plant development and morphology, tuber quality, disease resistance and stress tolerance are revealed. A lot of genes determining potato major traits aremapped and cloned. Potato breeding technology involves conventional breeding, ploidy manipulation, marker-assisted selection, genetic engineering and promising genomic selection for complex traits. Since 1949, China potato breeding has achieved great progress that is reflected on growth of number of registered varieties. Dutch potato breeding ranks among the best in world and participatory potato breeding model is a successful practice for commercial breeding. In the future, it is a trend to breed superior and specific purpose varieties based on improvement of integrated breeding technology, innovation of breeding model and germplasm utilization.

        potato; breeding; genetics; perspectives; advances

        2016-08-10;接受日期:2017-01-17

        國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-10)

        聯(lián)系方式:徐建飛,E-mail:xujianfei@caas.cn。通信作者金黎平,E-mail:jinliping@caas.cn

        猜你喜歡
        抗性種質(zhì)基因組
        華南地區(qū)最大農(nóng)作物種質(zhì)資源保護(hù)庫(kù)建成
        牛參考基因組中發(fā)現(xiàn)被忽視基因
        一個(gè)控制超強(qiáng)電離輻射抗性開(kāi)關(guān)基因的研究進(jìn)展
        亞麻抗白粉病種質(zhì)資源的鑒定與篩選
        甲基對(duì)硫磷抗性菌的篩選及特性研究
        貴州玉米種質(zhì)資源遺傳多樣性及核心種質(zhì)庫(kù)構(gòu)建
        紅錐種質(zhì)早期生長(zhǎng)表現(xiàn)
        甜玉米常見(jiàn)病害的抗性鑒定及防治
        用于黃瓜白粉病抗性鑒定的InDel標(biāo)記
        基因組DNA甲基化及組蛋白甲基化
        遺傳(2014年3期)2014-02-28 20:58:49
        亚洲色偷偷综合亚洲av伊人| 永久免费观看的黄网站在线| 久久久免费看少妇高潮| 少妇做爰免费视频了| 嫖妓丰满肥熟妇在线精品| 久久精品国产亚洲婷婷| av资源在线永久免费观看| 免费看奶头视频的网站| 久久亚洲精品国产精品婷婷| 大香蕉国产av一区二区三区| 精品久久久bbbb人妻| 成人国产精品免费视频| 91福利国产在线观看网站| 射进去av一区二区三区| 草色噜噜噜av在线观看香蕉| 丰满少妇在线观看网站| 国产永久免费高清在线观看视频| 蜜桃国产精品视频网站| 国产成人小视频| 国产精品麻花传媒二三区别| 免费人人av看| 99久久婷婷国产一区| 激烈的性高湖波多野结衣| 欧美三级一区| 少妇特殊按摩高潮不断| 中文字幕一区二区精品视频| 五月综合缴情婷婷六月| 丝袜美女污污免费观看的网站| 久久精品国产亚洲av试看| 少妇真人直播免费视频| 1000部夫妻午夜免费| 精品久久久久88久久久| 一区二区三区四区黄色av网站| 国产两女互慰高潮视频在线观看| 粉嫩少妇内射浓精videos| 日韩av在线不卡观看| 日本精品视频免费观看| 国产亚洲av无码专区a∨麻豆| 国产精品国产三级国产av创 | 乱码精品一区二区三区| 中文字幕乱码人妻无码久久久1|