時云朵,孫豪,曾東,倪學勤,潘康成
(1.四川省水產(chǎn)學校,成都611730;2.雅安市農(nóng)業(yè)局,四川雅安625000;3.四川農(nóng)業(yè)大學動物醫(yī)學院,成都611130)
腸道菌群與腸道免疫系統(tǒng)相互作用研究進展
時云朵1,孫豪2,3,曾東3,倪學勤3,潘康成3
(1.四川省水產(chǎn)學校,成都611730;2.雅安市農(nóng)業(yè)局,四川雅安625000;3.四川農(nóng)業(yè)大學動物醫(yī)學院,成都611130)
腸道菌群是一個龐大而復(fù)雜的微生態(tài)系統(tǒng),腸壁內(nèi)存在為數(shù)眾多、功能強大的免疫細胞,兩者相互作用,相互制約,維持動態(tài)平衡狀態(tài)。文章主要從腸道菌群的分布、腸道免疫系統(tǒng)的組成、腸道菌群的免疫功能及腸道免疫系統(tǒng)對正常菌群的耐受機制等方面研究腸道菌群與腸道免疫系統(tǒng)的相互關(guān)系。
腸道菌群;腸道免疫;黏膜;免疫耐受
Abstract:Intestinal microflora is a huge and complex micro-ecosystem.There are numerous and powerful lymphocytes.They interact and restrict each other,and maintain dynamic equilibrium in the intestinal wall.This paper focused on the distribution of intestinal flora,the composition of the intestinal immune system,intestinal flora immune function and the immune tolerance mechanisms of intestinal system for gut microbiota to elaborate the relationship between the intestinal flora and the intestinal immune system.
Key words:gut microbiota;intestinal immune;mucosa;immune tolerance
宿主與腸道微菌群共享一組核心基因與代謝路徑[1]。腸道菌群的某些遺傳元件與宿主的生理生化路徑所需基因呈現(xiàn)功能補充關(guān)系,而這些基因在人類基因組內(nèi)可能編碼不完整或丟失,涉及新陳代謝、黏膜免疫等相關(guān)基因,從而調(diào)節(jié)機體免疫器官發(fā)育、提高機體非特異性和特異性免疫、激活巨噬細胞活性、調(diào)控細胞因子合成分泌、增強紅細胞免疫功能及協(xié)同頡頏病原菌入侵等[2]。同時,免疫系統(tǒng)對腸道菌群又有調(diào)控和制約作用,對正常菌表現(xiàn)為免疫耐受,對病原菌則表現(xiàn)為免疫排斥。本文就腸道菌群與腸道免疫系統(tǒng)的相作關(guān)系作以綜述。
胃腸道菌群是機體內(nèi)最龐大、最復(fù)雜的微生態(tài)系統(tǒng)。成人腸道內(nèi)定居著數(shù)以萬億計的微生物,是機體細胞數(shù)的10倍,其基因組是人類基因組的150倍,在共同進化過程中與宿主建立了共生關(guān)系,胃腸道里微生物種類達4 000余種,其中細菌達1 000余種,主要由厭氧菌、兼性厭氧菌和需氧菌組成,專性厭氧菌>99%[3-6]。因結(jié)構(gòu)及功能特性以及黏膜免疫系統(tǒng)的影響,導(dǎo)致菌群在不同腸段中定植種類存在差異,在胃和小腸內(nèi),主要以梭菌Ⅸ群、鏈球菌和乳桿菌等為優(yōu)勢菌群,細菌數(shù)達10~107cfu·g-1;盲腸、結(jié)腸和直腸中的優(yōu)勢菌群是厚壁菌門和擬桿菌門,細菌數(shù)量為1010~1012cfu·g-1[7]。
腸道是機體與外環(huán)境接觸最為密切的組織器官之一,也是機體最大的免疫器官,腸黏膜是機體與抗原發(fā)生相互作用的主要場所[8]。此外,腸道菌群也是腸道免疫系統(tǒng)的重要組成部分[3]。腸道免疫系統(tǒng)由腸上皮細胞(iEC)、菌膜、腸上皮內(nèi)淋巴細胞(iIEL)、固有層淋巴細胞(LPL)及派氏淋巴結(jié)(PP)等組成。腸道免疫的誘導(dǎo)部位是iEC和PP。iEC有消化吸收、攝取和釋放SIgA、提呈抗原、分泌細胞因子等功能;PP位于腸黏膜下,是腸道特異性免疫場所。腸道免疫的效應(yīng)部位是iIEL和LPL。iIEL是機體內(nèi)最大的淋巴細胞群和腸道免疫系統(tǒng)的主力軍,其中>90%是CD3+T細胞,通過Fas受體消除入侵病原體,并分泌細胞因子調(diào)節(jié)淋巴細胞和上皮細胞功能;LPL主要為分泌SIgA的漿細胞和CD4+T細胞[9]。腸道免疫的誘導(dǎo)物是腸道菌群和食物源抗原。微生物相關(guān)性分子模式(PAMP)被機體免疫系統(tǒng)模式識別受體(PRRs)識別,激活核轉(zhuǎn)錄因子NF-κB,調(diào)控細胞因子分泌,上調(diào)免疫細胞協(xié)同刺激因子的表達和增強抗原提呈功能[10]。
無菌動物胃腸道蠕動減慢、體積增大、小腸絨毛增長、腸壁變薄、相關(guān)淋巴組織不發(fā)達、上皮淋巴細胞、黏膜中IgA+漿細胞和CD4+T細胞減少、抗原呈遞細胞的MHCⅡ表達下降,當被移植菌群后,腸道收縮、絨毛變短、血管增生、淋巴細胞聚集到黏膜、淋巴細胞對抗原的反應(yīng)速度和強度增加[12-15]。
研究表明,菌群可分泌信號交流分子促進菌群定植和宿主信號傳遞基因的表達[16]。隨著腸道菌群的定植,黏膜免疫系統(tǒng)結(jié)構(gòu)發(fā)生變化,免疫細胞數(shù)量增加并分化[17]。另外腸道菌群及其衍生物能通過PRRs誘導(dǎo)黏液及抗菌肽等分子表達;表明腸道菌群能促進腸道免疫系統(tǒng)的發(fā)育[18]。
健康個體腸道菌群能調(diào)節(jié)T、B淋巴細胞等刺激先天性免疫和獲得性免疫或阻止不適當?shù)叵忍煨悦庖吆瞳@得性免疫來維持腸道穩(wěn)態(tài);梭狀芽孢桿菌等G+菌能夠促進小鼠免疫反應(yīng),尤其能誘導(dǎo)調(diào)節(jié)T細胞及T17細胞的增殖分化,并促進腸道Th17細胞產(chǎn)生IL-17[19-20]。腸道菌群在誘導(dǎo)B細胞合成與釋放SIgA的過程中起關(guān)鍵作用,而SIgA是腸道菌群影響宿主的主要關(guān)鍵因子,在腸道菌群中SIgA反應(yīng)缺乏記憶特性,但速度較快[21]。
細胞因子是由免疫細胞產(chǎn)生的,具有調(diào)節(jié)免疫、炎癥及造血功能的小分子蛋白質(zhì),包括白介素(ILs)、腫瘤壞死因子(TNFs)、干擾素(IFNs)、轉(zhuǎn)化生長因子(TGF)和趨化因子等。Julio等研究表明,腸道菌群能夠誘導(dǎo)豬腸道上皮細胞內(nèi)IFN-α、IFN-β、IL-6、TNF-α的表達,并能顯著上調(diào)源于PP的APCs細胞表面分子的表達[22]。Yamashita等研究表明,腸道菌群促進腸系膜淋巴結(jié)及PP的增殖[23]。腸道菌群誘導(dǎo)NK細胞產(chǎn)生IL-22,促進機體黏膜免疫[24]。此外,腸道菌群通過下調(diào)DC細胞miR-10a的表達,增強DC細胞對前炎性細胞因子的耐受[25]。
腸道微生物能夠上調(diào)小鼠各腸斷內(nèi)多種基因的表達,其中與免疫相關(guān),如CCL5(RANTES)和CXCL9(MIG)等及腸道屏障功能相關(guān)的基因,如SPRR1A和MUC2等,且大多數(shù)發(fā)生于小腸黏膜;腸道菌群能夠誘導(dǎo)黏蛋白(MUC2、4、13)及抗菌基因(REG3γ、REG3β、NOX1)的表達,鞏固黏膜屏障[26]。
TLRs有向細胞基底膜極化的特性,并因配基誘導(dǎo),使腸上皮細胞頂點沒有TLRs的表達[27]。研究表明,不同種類TLRs具有各自精確的定位,TLR3、TLR7、TLR8、TLR9被局限在細胞內(nèi),TLR5定位于細胞基底膜的外側(cè)表面,TLR2、TLR4則在腸上皮細胞中表達較少甚至缺失[28]。腸道免疫系統(tǒng)具有選擇性,對腸道菌群產(chǎn)生耐受,有助于腸道正常菌群的存活。由腸道菌群引起的一些前炎性反應(yīng)被宿主免疫系統(tǒng)或腸道菌群本身快速地弱化,如腸道菌群通過TLR2能誘導(dǎo)前炎性細胞因子與抗炎性細胞因子的合成與釋放,但是否與之有關(guān)還有待進一步研究。
腸道菌群可通過阻斷IκB-α的泛素化抑制NF-κB信號途徑,最終引起胃腸道黏膜對腸道菌群原發(fā)性刺激的獨特耐受[29]。
宿主的部分基因,如CD4、MHCⅡ、IL-10、TGF-β和NOD2等均可弱化TLRs信號及炎癥反應(yīng),使免疫系統(tǒng)對共生菌群產(chǎn)生耐受[30]。完整的NOD2信號抑制NF-κB信號,尤其是對NF-κB的c-Rel亞基作用,NOD2的缺乏可引起針對來自腸道菌群普通抗原的Th1反應(yīng)。研究表明,給動物口服某種抗原可使動物針對該抗原的遲發(fā)性變態(tài)反應(yīng)下調(diào),呈現(xiàn)口服免疫耐受現(xiàn)象,但在MHCⅡ類分子或IL-10基因敲除小鼠中不能觀察到此現(xiàn)象,應(yīng)用抗CD4的單克隆抗體處理過的動物也有類似情況[31]。
厭氧菌共生菌群,如B.thetaiotaomicron的抗炎性效應(yīng)能使腸道菌群耐受共生菌鞭毛蛋白誘導(dǎo)的前炎性反應(yīng),即共生菌群之間的相互作用也是免疫耐受的一種機制[32]。
共生菌群有Ⅲ和Ⅳ型分泌系統(tǒng),可通過該系統(tǒng)與宿主聯(lián)系,傳遞細菌效應(yīng)分子到腸上皮細胞,從而調(diào)節(jié)宿主信號的輸出[33]。Granato等研究表明,正常菌群缺乏毒力因子,但擁有延長因子Tu及鞭毛蛋白等從而改變免疫途徑,免疫系統(tǒng)產(chǎn)生的黏蛋白酶及共生菌表面的多糖和糖蛋白使得免疫系統(tǒng)對菌群的免疫受到抑制,在此過程中多聚糖和黏蛋白形成的結(jié)構(gòu)扮演受體的角色,并能促進細菌有效的粘附于腸壁,這為競爭性排斥提供了分子基礎(chǔ),也解釋了各腸段定植不同菌群的現(xiàn)象[34]。
腸道菌群可激活調(diào)節(jié)性T細胞的抑制調(diào)節(jié)活性,從而使黏膜中DCs及調(diào)節(jié)性T細胞對其耐受,這利于共生菌群定植腸道,最終導(dǎo)致口服耐受[35]。Cukrowska等研究表明,給剛出生的無菌小豬接種非致病性大腸桿菌,在初期可見腸粘膜通透性增加、細菌一過性易位到腸系膜淋巴結(jié)、產(chǎn)生特異性抗體,5~10 d后,局部和全身的免疫反而被抑制,出現(xiàn)限自性的、可控的生理性炎癥反應(yīng)并最終達到免疫耐受[36]。
腸道菌群對宿主健康、代謝和免疫等的有益作用已被公認,然而菌群與宿主之間究竟是如何作用,其詳細機制還有待進一步研究,同時腸道菌群與疾病關(guān)系也是今后一段時間的研究熱點,因此在繼續(xù)基礎(chǔ)研究的同時,尋找高效的益生菌、益生元、合生元及開發(fā)其他手段(糞便移植)維持、調(diào)節(jié)、恢復(fù)腸道菌群平衡也至關(guān)重要。
[1]Hemarajata P,Versalovic J.Effects of probiotics on gut microbiota∶mechanisms of intestinal immunomodulation and neuromodulation[J].Therapeutic Advances in Gastroenterology,2013,6(1)∶39-51.
[2]Lepage P,Leclerc M C,Joossens M,et al.A metagenomic insight into our gut's microbiome[J].Gut,2013,62(1)∶146-158.
[3]Doré J,Corthier G.The human intestinal microbiota[J].Gastroentérologie Clinique Et Biologique,2010,34(1)∶7-15.
[4]Qin J J,Li R Q,Raes J,et al.A human gut microbial gene catalogue established by metagenomic sequencing[J].Nature,2010,464∶59-65.
[5]Ley R E,Hamady M,Lozupone C,et al.Evolution of mammals and their gut microbes[J].Science,2008,320(5 883)∶1 647-1 651.
[6]Hooper L V,Gordon J I.Commensal host-bacterial relationships in the gut[J].Science,2001,292(5 519)∶1 115-1 118.
[7]Ley R E,Peterson D A,Gordon J I.Ecological and evolutionary forces shaping microbial diversity in the human intestine[J].Cell,2006,124(4)∶837-848.
[8]Pabst R,Russell M W,Brandtzaeg P.Tissue distribution of lymphocytes and plasma cells and the role of the gut[J].Trends in Immunology,2008,29(5)∶206-208.
[9]徐凱進,李蘭娟.腸道正常菌群與腸道免疫[J].國際流行病學傳染病學雜志,2005,32(3)∶181-183.
[10]Hooper L V,Gordon J I.Commensal host-bacterial relationships in the gut[J].Science,2001,292(5 519)∶1 115-1 118.
[11]Round J L,Mazmanian S K.The gut microbiome shapes intestinal immune responses during health and disease[J].Nature Reviews Immunology,2009,9(5)∶313-323.
[12]Macpherson A J,Uhr T.Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria[J].Science,2004,303(5 664)∶1 662-1 665.
[13]Suzuki H,Jeong K I,Itoh K,et al.Regional variations in the distributions of small intestinal intraepithelial lymphocytes in germfree and specific pathogen-free mice[J].Experimental and Molecular Pathology,2002,72(3)∶230-235.
[14]Stappenbeck T S,Hooper L V,Gordon J I.Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells[J].Proceedings of the National Academy of Sciences,2002,99(24)∶15 451-15 455.
[15]Merritt J,Qi F,Goodman S D,et al.Mutation of luxS affects biofilm formation in Streptococcus mutans[J].Infection and Immunity,2003,71(4)∶1 972-1 979.
[16]Yamanaka T,Helgeland L,Farstad I N,et al.Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer's patches[J].The Journal of Immunology,2003,170(2)∶816-822.
[17]Hooper L V,JMacpherson A.Immune adaptations that maintain homeostasis with the intestinal microbiota[J].Nature Reviews Immunology,2010,10∶159-169.
[18]Tanabe S.The effect of probiotics and gut microbiota on Th17 cells[J].International Reviews of Immunology,2013,32(5-6)∶511-525.
[19]Montalvillo E,Garrote J A,Bernardo D,et al.Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system[J].Rev Esp Enferm Dig,2014,106(5)∶334-345.
[20]Molloy M J,Bouladoux N,Belkaid Y.Intestinal microbiota∶shaping local and systemic immune responses[C].Seminars in immunology.Academic Press,2012,24(1)∶58-66.
[21]Turroni F,Ventura M,Buttó L F,et al.Molecular dialogue between the human gut microbiota and the host∶a Lactobacillus and Bifidobacterium perspective[J].Cellular and Molecular Life Sciences,2014,71(2)∶183-203.
[22]Villena J,Chiba E,Vizoso-Pinto M G,et al.Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells[J].BMC Microbiology,2014,14∶126.
[23]Yamashita M,Ukibe K,Uenishi H,et al.Lactobacillus helveticus SBT2171,a cheese starter,regulates proliferation and cytokine production of immune cells[J].Journal of Dairy Science,2014,97(8)∶4 772-4 779.
[24]Satoh-Takayama N,Vosshenrich C A J,Lesjean-Pottier S,et al.Microbial flora drives interleukin 22 production in intestinal NKp46+cells that provide innate mucosal immune defense[J].Immunity,2008,29(6)∶958-970.
[25]Xue X,Feng T,Yao S,et al.Microbiota downregulates dendritic cell expression of miR-10a,which targets IL-12/IL-23p40[J].The Journal of Immunology,2011,187(11)∶5 879-5 886.
[26]Johansson M E V,Phillipson M,Petersson J,et al.The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria[J].Proceedings of the National Academy of Sciences,2008,105(39)∶15 064-15 069.
[27]Lundin A,Bok C M,Aronsson L,et al.Gut flora,Toll-like receptors and nuclear receptors∶a tripartite communication that tunes innate immunity in large intestine[J].Cellular Microbiology,2008,10(5)∶1 093-1 103.
[28]Qian C,Cao X.Regulation of Toll-like receptor signaling pathways in innate immune responses[J].Annals of the New York Academy of Sciences,2013,1 283∶67-74.
[29]Neish A S,Gewirtz A T,Zeng H,et al.Prokaryotic regulation of epithelial responses by inhibition of IkB-a ubiquitination[J].Science,2000,289(5 484)∶1 560-1 563.
[30]Kelly D,Conway S,Aminov R.Commensal gut bacteria∶mechanisms of immune modulation[J].Trends in Immunology,2005,26(6)∶326-333.
[31]Dongarrà M L,Rizzello V,Muccio L,et al.Mucosal immunology and probiotics[J].Current Allergy and Asthma Reports,2013,13(1)∶19-26.
[32]Kelly D,Campbell J I,King T P,et al.Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA[J].Nature Immunology,2004,5∶104-112.
[33]Nagai H,Roy C R.Show me the substrates∶modulation of host cell function by type IV secretion systems[J].Cellular Microbiology,2003,5(6)∶373-383.
[34]Granato D,Bergonzelli G E,Pridmore R D,et al.Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533(La1)to human intestinal cells and mucins[J].Infection and Immunity,2004,72(4)∶2 160-2 169.
[35]Hart A L,Kamm M A,Knight S C,et al.Quantitative and functional characteristics of intestinal-homing memory T cells∶analysis of Crohn's disease patients and healthy controls[J].Clinical and Experimental Immunology,2004,135(1)∶137-145.
[36]Cukrowska B,Kozáková H,Reháková Z,et al.Specific antibody and immunoglobulin responses after intestinal colonization of germ-free piglets with non-pathogenic Escherichia coli O86[J].Immunobiology,2001,204(4)∶425-433.
Interaction between Gut Microbiota and Intestinal Immune System
SHI Yunduo1,SUN Hao2,3,ZENG Dong3,NI Xueqin3,PAN Kangcheng3
(1.Sichuan Fishery School,Chengdu 611730,China;2.Ya'an City Bureau of Agriculture,Ya'an 625000,Sichuan China;3.College of Veterinary Medicine,Sichuan Agricultural University,Chengdu 611130,China)
S852.6;S852.4
A
1001-0084(2017)09-0007-04
2017-05-30
時云朵(1989-),女,河北石家莊人,碩士研究生,研究方向為動物微生態(tài)。