李先良 李居寧 李傲 夏濤
摘要:為研究XTH基因與棉花(Gossypium spp.)纖維伸長的關(guān)系,克隆了兩個(gè)XTH基因,分別命名為GhXTH1(GenBank:AY189971)和GhXTH2(GenBank:JN968478)。GhXTH1編碼區(qū)全長870 bp,編碼289個(gè)氨基酸,GhXTH1全長885 bp,編碼294個(gè)氨基酸。序列分析表明,GhXTH1和GhXTH2均存在XTH家族保守序列DEIDFEFLG。生物信息學(xué)分析表明,GhXTH1和GhXTH2均含有信號(hào)肽。跨膜結(jié)構(gòu)預(yù)測(cè)表明,GhXTH1和GhXTH2均在N端存在跨膜螺旋。系統(tǒng)發(fā)生學(xué)分析表明,GhXTH1與擬南芥XTH6、XTH7親緣關(guān)系較近,GhXTH2與擬南芥XTH9親緣關(guān)系較近。半定量分析表明,GhXTH1和GhXTH2均隨著棉花纖維發(fā)育表達(dá)量降低,GhXTH2比GhXTH1表達(dá)量高。
關(guān)鍵詞:棉花(Gossypium spp.)纖維;木葡聚糖轉(zhuǎn)移/水解酶;克隆;表達(dá)分析;伸長
中圖分類號(hào):S562;Q78 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2017)04-0756-06
棉花(Gossypium spp.)纖維是由胚珠表皮細(xì)胞發(fā)育而來,成熟纖維細(xì)胞長度可為其直徑的1 000~3 000倍,有的可達(dá)35~40 mm[1]。海島棉(Gossypium barbadense,Gb)成熟棉纖比陸地棉(Gossypium hirsutum,Gh)長,但在開花后24 d,陸地棉纖維長度比海島棉纖維長[2]。棉纖維細(xì)胞的伸長開始于開花當(dāng)天[3-5],纖維細(xì)胞伸長速率最大的階段發(fā)生在開花后6~12 d和15~20 d,兩個(gè)階段伸長量可達(dá)最終長度的80%[6]。
棉纖細(xì)胞伸長由細(xì)胞內(nèi)膨壓驅(qū)動(dòng),并伴以細(xì)胞壁松弛過程。細(xì)胞內(nèi)滲透溶質(zhì)增加,促進(jìn)細(xì)胞內(nèi)滲透壓增加,使細(xì)胞吸收大量水分,從而使細(xì)胞膨壓增加,使細(xì)胞滲透壓增加的溶質(zhì)主要是可溶性糖、蘋果酸鹽及鉀離子(K+)[7]。磷酸丙酮酸羧化酶(PEPC)[8]、胞間連絲[9,10]、蔗糖酶(Vacuelar invertase)[11]、水通道蛋白[12]與棉纖細(xì)胞膨壓產(chǎn)生或增加有關(guān)。
棉纖細(xì)胞壁是由纖維素、半纖維素和結(jié)構(gòu)蛋白組成的動(dòng)態(tài)網(wǎng)絡(luò)。半纖維素木葡聚糖是植物細(xì)胞初生壁的結(jié)構(gòu)多糖,木葡聚糖鏈通過共價(jià)氫鍵綁附到纖維素鏈上,將臨近纖維素微纖絲交聯(lián)起來[13]。微纖絲之間木葡聚糖交聯(lián)結(jié)構(gòu)是細(xì)胞伸長的主要限制因素之一。該交聯(lián)結(jié)構(gòu)可以被木葡聚糖轉(zhuǎn)移/水解酶(Xyloglucan endotransglucosylase/Hydrolase,XTH)解開并重新連接,從而降低細(xì)胞伸長的阻力,因此XTH能通過松弛細(xì)胞壁進(jìn)而促進(jìn)細(xì)胞伸長。重組擬南芥(Arabidopsis thaliana,At)XTH14和XTH26加到根系上,展現(xiàn)出對(duì)根系細(xì)胞伸長明顯的促進(jìn)作用[14]。在擬南芥中,超表達(dá)AtXTH18、AtXTH19、AtXTH20能刺激下胚軸伸長[15];在棉花中,超表達(dá)GhXTH1能增強(qiáng)XTH活性,使棉花纖維長度增加15%~20%[16]。XTH基因在棉花纖維中表達(dá)存在時(shí)間特異性和品種特異性[17],在海島棉和陸地棉花棉花纖維中表達(dá)存在差異[18]。XTH基因表達(dá)模式與棉花纖維長度存在關(guān)聯(lián)。
本研究從陸地棉中克隆分離兩個(gè)XTH基因,對(duì)其進(jìn)行序列分析、系統(tǒng)發(fā)生學(xué)分析和表達(dá)分析,以期為了解XTH基因及其家族與棉花纖維伸長之間的關(guān)系奠定基礎(chǔ),從而為棉花纖維品質(zhì)改良特別長度品質(zhì)改良提供候選基因。
1 材料與方法
1.1 試驗(yàn)材料
所用的棉花材料為陸地棉珂字201、華棉99,海島棉為軍海1號(hào)。分別取開花后4、9、14、19、24 d棉瓣放入液氮,然后存入-80 ℃冰箱備用。大腸桿菌(Escherichia coli)菌株DH5α為實(shí)驗(yàn)室保存,中間載體pMD18-T購于寶生物工程(大連)有限公司。
1.2 總RNA的提取與cDNA的合成
棉花纖維總RNA用熱硼酸法提取[19],并按DNase I試劑盒所示方法處理總RNA,以去除其中DNA,然后用15 μL DEPC ddH2O溶解,分光光度計(jì)測(cè)定RNA濃度。最后按照Promega反轉(zhuǎn)錄酶體系進(jìn)行操作,合成第1鏈cDNA,反轉(zhuǎn)錄后的cDNA保存于-20 ℃。
1.3 GhXTH1和GhXTH2克隆
在NCBI中有一個(gè)XTH全長編碼序列(AY189971),另外還存在一個(gè)EST序列(DV848907)。對(duì)于AY189971,根據(jù)其全長序列,從兩端設(shè)計(jì)引物(GhXET-OE-F:5′-AAAGTCGACATTCTCTTTCTGTTTCTCTGGTTTA-3′;GhXET-OE-R:5′-AAAGGTACCTCAGATGATGGACATGCACTC-3′),以14 d棉花纖維cDNA為模板,PCR擴(kuò)增后測(cè)序。對(duì)于DV848907,將其與AtXTH序列比對(duì),發(fā)現(xiàn)該段EST序列與AtXTH基因5′端同源程度較高,而且同源區(qū)包含起始密碼子。根據(jù)此段EST序列設(shè)計(jì)引物進(jìn)行3′RACE(Rapid-amplification of cDNA ends),測(cè)序得到一段DNA序列,以該序列與EST序列拼接翻譯,發(fā)現(xiàn)以EST序列的第三個(gè)堿基開始翻譯能翻譯出一個(gè)完整蛋白序列。在該序列內(nèi)存在兩個(gè)起始密碼子,以第一個(gè)起始密碼子翻譯到蛋白序列長度相對(duì)符合XTH蛋白序列長度。RACE方法見參考文獻(xiàn)[20]。
1.4 GhXTH生物信息學(xué)分析
利用ClustalW軟件進(jìn)行多序列對(duì)齊和排序, 使用GenDOC和MEGA5.0軟件輸出同源比對(duì)和進(jìn)化樹構(gòu)建結(jié)果[21];用SingaIP進(jìn)行信號(hào)肽預(yù)測(cè)[22];用ProtParam計(jì)算蛋白質(zhì)的相對(duì)分子質(zhì)量和理論等電點(diǎn)[23];利用TMHMM預(yù)測(cè)蛋白質(zhì)的跨膜結(jié)構(gòu)域。
1.5 GhXTH1和GhXTH2表達(dá)分析
UBQ7為RT-PCR分析內(nèi)參基因,設(shè)計(jì)引物序列為:GhUBI-RT-F:GAAGGCATTCCACCTGACCAAC;GhUBI-RT-F:CTTGACCTTCTTCTTCTTGTGCTTG。GhXTH引物序列為:GhXTH1-RT-F:TCCGTGACAGC
AGATGAGATC;GhXTH1-RT-R:TGGTGCAAACTTA
ACTCCGAC。GhXTH2引物序列為:GhXTH2-RT-F:GGTTTCCGTGACAGCAGATG;GhXTH2-RT-F:GTGCAAACTTAACTCCGACATT。PCR產(chǎn)物在1.0%的瓊脂糖凝膠上進(jìn)行電泳。
2 結(jié)果與分析
2.1 GhXTH1和GhXTH2全長序列克隆和分析
GhXTH1在NCBI中存在一個(gè)全長序列(AY189971),根據(jù)該序列設(shè)計(jì)引物進(jìn)行PCR擴(kuò)增,擴(kuò)增產(chǎn)物進(jìn)行瓊脂糖凝膠電泳(圖1A),片段大小在750~1 000 bp間。測(cè)序結(jié)果表明,該序列與AY189971存在一個(gè)堿基差別,但蛋白序列完全相符。將該基因命名為GhXTH1。
在NCBI存在GhXTH的一個(gè)EST序列DV848907,將該序列與擬南芥中XTH序列比對(duì),發(fā)現(xiàn)該序列覆蓋該基因的5′端,因此,僅需要進(jìn)行3′-RACE可得到該基因全長序列,根據(jù)試劑盒(SMARTTM RACE cDNA Amplification Kit)說明書,進(jìn)行3′-RACE,擴(kuò)增片段進(jìn)行瓊脂糖凝膠電泳(圖1B)。將該片段測(cè)序,測(cè)序后所得序列與EST拼接,將所得序列在Premier軟件進(jìn)行翻譯,發(fā)現(xiàn)從第3個(gè)堿基開始能翻譯出一個(gè)蛋白序列。以第一個(gè)起始密碼子為起始,能翻譯出289個(gè)氨基酸(aa)。以編碼該序列的DNA序列為模板設(shè)計(jì)引物,用該引物進(jìn)行PCR擴(kuò)增(圖1C),對(duì)該片段進(jìn)行測(cè)序,所得序列與前面的拼接序列完全吻合。將該序列提交NCBI庫(JN968478)。
2.2 GhXTH1和GhXTH2蛋白特征分析
GhXTH1全長序列包含289個(gè)氨基酸,GhXTH2包含294個(gè)氨基酸。將擬南芥和其他幾種植物中XTH與克隆得到XTH多序列比對(duì)。結(jié)果表明,棉花XTH序列與其他XTH序列有比較高的保守性,所有序列都存在維持XTH活性的保守序列DEIDFEFLG[24,25],但有些序列與之相差1~2個(gè)氨基酸(圖2)。GhXTH1保守序列與此相差1個(gè)氨基酸,第3個(gè)氨基酸由異亮氨酸(I)變成了亮氨酸(L);GhXTH2保守序列與此相差2個(gè)氨基酸,第1個(gè)氨基酸從天冬氨酸(D)變成天冬酰胺(N),第3個(gè)氨基酸從異亮氨酸變成苯丙氨酸(F)。擬南芥XTH家族中多個(gè)XTH保守序列存在1~2個(gè)氨基酸變化。
XTH是一種細(xì)胞壁蛋白,因此,對(duì)所獲得的兩個(gè)棉花XTH進(jìn)行信號(hào)肽預(yù)測(cè)、亞細(xì)胞定位預(yù)測(cè)及等電點(diǎn)等蛋白特征分析。有助于了解其生物學(xué)功能。經(jīng)Protparam程序預(yù)測(cè),GhXTH1理論分子質(zhì)量33.07 ku,理論等電點(diǎn)(pI)為6.38,GhXTH2理論分子質(zhì)量33.61 ku,理論pI為5.40。通過SignalP 4.1 Server預(yù)測(cè),顯示GhXTH1和GhXTH2在N端均存在一段信號(hào)肽(圖3),位置位于第1~25 aa。該信號(hào)肽的作用是將該蛋白定位至細(xì)胞壁。TMHMM預(yù)測(cè)GhXTH1和GhXTH2均存在1個(gè)跨膜結(jié)構(gòu)(圖4),該跨膜結(jié)構(gòu)位于N端,在蛋白序列中信號(hào)肽的后面。N-糖基化對(duì)維持XTH活性具有重要作用[26]。用NetNGlyc 1.0 Server分析GhXTH1和GhXTH2中 N(天冬酰胺)-糖基化位點(diǎn)。結(jié)果表明,GhXTH1存在1個(gè)糖基化位點(diǎn),GhXTH2有兩個(gè)糖基化位點(diǎn),GhXTH1和GhXTH2保守序列DEIDFEFLG后面均存在1個(gè)糖基化位點(diǎn)。
2.3 GhXTH1和GhXTH2系統(tǒng)發(fā)育分析
為了解GhXTH1、GhXTH2與擬南芥XTH之間進(jìn)化關(guān)系,進(jìn)行系統(tǒng)發(fā)育分析(圖6)。AtXTHs可以分3類,大部分Ⅰ類XTH成員包含4個(gè)外顯子,Ⅱ類XTH成員具有2或3個(gè)外顯子,Ⅲ類XTH成員具有4或5個(gè)外顯子,且3類XTH C端存在特征序列[25]。但隨著AtXTHs與水稻XTHs(OsXTHs)疊加系統(tǒng)發(fā)生分析發(fā)現(xiàn),Ⅰ類和Ⅱ類XTH成員分歧已不明顯[27];Ⅲ類顯示具有木葡聚糖水解酶活性而不是轉(zhuǎn)糖基酶活性[28]。但酶活性分析表明Ⅲ類酶并不都具有水解酶活性,番茄中的一個(gè)Ⅲ類XTH(SIXTH5)表現(xiàn)出轉(zhuǎn)糖基酶活性[29]。因此,XTH系統(tǒng)發(fā)生學(xué)分類與其活性之間并無關(guān)系。GhXTH1與AtXTH6、AtXTH親緣關(guān)系較近,GhXTH2與AtXTH9親緣關(guān)系較近,均屬于Ⅰ/Ⅱ類XTH。
2.4 GhXTH1和GhXTH2在棉花纖維發(fā)育中的表達(dá)分析
為獲得兩個(gè)XTH在不同棉花纖維中隨發(fā)育時(shí)期的表達(dá)模式,用克隆到兩個(gè)XTH序列設(shè)計(jì)引物,進(jìn)行半定量分析,以了解兩個(gè)XTH在陸地棉和海島棉棉花纖維發(fā)育中的表達(dá)模式(圖7)。結(jié)果表明,GhXTH1和GhXTH2在陸地棉和海島棉表達(dá)量均隨著棉花纖維發(fā)育而下降。在棉花纖維發(fā)育的初生壁時(shí)期,細(xì)胞伸長較快,XTH大量表達(dá)能松弛初生細(xì)胞壁進(jìn)而釋放因細(xì)胞伸長而產(chǎn)生的阻力。在陸地棉和海島棉中,GhXTH2表達(dá)量比對(duì)應(yīng)發(fā)育時(shí)期GhXTH1表達(dá)量高。
3 討論
利用傳統(tǒng)PCR技術(shù)和RACE技術(shù),從棉花纖維中分離到兩個(gè)XTH基因,分別命名為GhXTH1和GhXTH2。序列比對(duì)發(fā)現(xiàn)它們均存在XTH家族保守基序DEIDFEFLG,該基序不僅在XTH家族中保守,在XTH所隸屬的GH16家族中也相對(duì)保守[30,31]。從擬南芥和水稻XTH家族保守序列看,該基序在某些位點(diǎn)有些變化。因此,GhXTH1和GhXTH2在該基序上有1~2氨基酸殘基變化不影響其成為XTH家族成員。
擬南芥XTH家族包含33個(gè)成員,從系統(tǒng)發(fā)生學(xué)角度可分為3類[32],GhXTH1和GhXTH2均屬于其中Ⅰ類(Group Ⅰ/Ⅱ)。Ⅰ類XTH具有一個(gè)共同特征,XTH基因由4個(gè)外顯子組成,其保守基序位于3個(gè)外顯子上。但系統(tǒng)發(fā)育分類與XTH活性無關(guān)[29],在水稻中,Ⅲ類中兩個(gè)XTH(OsXTH19,OsXTH20)僅表現(xiàn)出水解酶活性,而Ⅰ類中的OsXTH1具有內(nèi)轉(zhuǎn)移酶活性和水解酶活性[33]。系統(tǒng)發(fā)生分析顯示,GhXTH1與AtXTH6、AtXTH7親緣關(guān)系密切,而GhXTH2與AtXTH9親緣關(guān)系較近。將GhXTH1和具有水解酶活性XTH(TmNGX1)進(jìn)行三維結(jié)構(gòu)比較可知,其在負(fù)責(zé)水解活性的保守環(huán)狀結(jié)構(gòu)上存在差異,因此,GhXTH1主要是轉(zhuǎn)糖基酶活性[17]。AtXTH9活性還無報(bào)道,但從系統(tǒng)發(fā)生分析看,AtXTH9、GhXTH2與GhXTH1關(guān)系較近,它們?cè)诿富钚陨蠎?yīng)該是類似的,AtXTH9表達(dá)受遠(yuǎn)紅光的正調(diào)控[34]。因此,GhXTH2的表達(dá)有可能受到紅外光的正調(diào)控。
XTH具有多種生理功能,包括有細(xì)胞生長[15,16,35]、水果軟化[29,36]、器官脫落[37,38]、維管形成[39-42]等。水稻3個(gè)XTH酶活性類型不同,將它們?cè)谒局谐磉_(dá)或抑制表達(dá),均不能明顯改變水稻表型,說明這3個(gè)XTH存在功能冗余[33]。GhXTH1和GhXTH2在棉纖中有較高的表達(dá),說明其與棉花纖維發(fā)育有關(guān)。GhXTH1在具有更長棉花纖維的棉花品種或者海島棉中上調(diào)表達(dá)[17],說明GhXTH1與棉纖伸長有關(guān),GhXTH1在棉花中超表達(dá)后,棉纖轉(zhuǎn)糖基酶活性增加,成熟纖維長度也有增加。GhXTH2在棉花纖維中表達(dá)高于GhXTH1,因此,GhXTH2在棉花纖維伸長方面的作用可能比GhXTH1強(qiáng),但也不能排除GhXTH1和GhXTH2在棉花纖維伸長方面存在功能冗余。
4 結(jié)論
獲得了兩個(gè)全長木葡聚糖轉(zhuǎn)移/水解酶基因GhXTH1和GhXTH2全長cDNA序列,GhXTH1和GhXTH2均含有信號(hào)肽和跨膜結(jié)構(gòu),這表明其是定位于質(zhì)膜上的分泌性蛋白。GhXTH1和GhXTH2均含有XTH家族的保守基序DEIDFEFLG,且在基序后存在糖基化位點(diǎn),該基序和糖基化是XTH產(chǎn)生活性必需的,這說明所獲得兩個(gè)序列具有該家族的一般特性。系統(tǒng)發(fā)生學(xué)分析表明,GhXTH1與擬南芥XTH6、XTH7親緣關(guān)系較近,GhXTH2與擬南芥XTH9親緣關(guān)系較近。GhXTH1和GhXTH2均隨著棉花纖維發(fā)育表達(dá)量降低,GhXTH2比GhXTH1表達(dá)量高。
參考文獻(xiàn):
[1] MAUNEY J R. Cotton Physiology (The Cotton Foundation Reference Book Series No 1)[M].Memphis:Cotton Foundation,1987.
[2] 徐 雯.棉花紫色酸性磷酸酶基因的克隆及功能分析[D].武漢:華中農(nóng)業(yè)大學(xué),2012.
[3] BEASLEY C A.Developmental morphology of cotton flower sand seed as seen with the scanning electron microscope[J].Amer J Bot,1975,62(6):584-592.
[4] STEWART J M.Fiber Initiation on the Cotton Ovule(Gossypium hirsutum)[J].Amer J Bot,1975,62(7):723-730.
[5] JOSHI P A.,STEWART J M,GRAHAM E T.Localization of β-glycerophosphatase activity in cotton fiber during differentiation[J].Proto Plasma,1985,125(1):75-85.
[6] MEINERT M C,DELMER D P.Changes in bioehemical composition of the cell wall in cotton fiber during development[J].Plant Physiol,1977,59(6):1088-1097.
[7] RUAN Y L,CHOUREY P S,DELMER P D,et al. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed[J].Plant Physiol,1997,115(2):375-385.
[8] LI X R,WANG L,RUAN Y L.Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation[J].J Exp Bot,2010, 61(1):287-295.
[9] RUAN Y L,LLEWELLYN D J,F(xiàn)URBANK R T. The Control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin[J].Plant Cell,2001, 13(1):47-60.
[10] RUAN Y L,XU S M,WHITE R,et al. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover[J].Plant Physiol,2004,136(4):4104-4113.
[11] WANG L,LI X R,LIAN H,et al. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively[J].Plant Physiol,2010,154(2):744-756.
[12] MAUREL C,SANTONI V,LUU D T,et al. The cellular dynamics of plant aquaporin expression and functions[J].Curr Opin Plant Biol,2009,12(6):690-698.
[13] VISSENBERG K,F(xiàn)RY S C,PAULY M,et al. XTH acts at the microfibril-matrix interface during cell elongation[J].J Exp Bot,2005,56:673-683.
[14] MARIS A,SUSLOV D,F(xiàn)RY S C,et al. Enzymic characterization of two recombinant xyloglucan endotransglycosylase/hydrolase(XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension[J].J Exp Bot,2009,60(13):3959-3972.
[15] MIEDES E,SUSLOV D,VANDENBUSSCHE F,et al.Xyloglucan endotransglucosylase/hydrolase(XTH)overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls[J].J Exp Bot,2013,64(8):2481-2497.
[16] LEE J,BURNS T H,LIGHT G,et al. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation[J].Planta,2010,232:1191-1205.
[17] MICHAILIDIS G,ARGIRIOUS A,DARZENTAS N,et al.Analysis of xyloglucan endotransglycosl-ase/hydrolase(XTH) genes from allotetraploid(Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation[J].J Plant Physiol,2009,166:403-416.
[18] GHAZI Y,BOUROT S,ARIOLI T,et al. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality[J].Plant Cell Physiol,2009,50(7):1364-1381.
[19] 武耀廷,劉進(jìn)元.一種高效提取棉花不同組織總RNA的熱硼酸改良法[J].棉花學(xué)報(bào),2004,16(2):67-71.
[20] LI X L,XIA T,HUANG J,et al. Distinct biochemical activities and heat shock responses of twoUDP-glucose sterol glucosyltransferases in cotton[J].Plant Sci,2014,219-220(1):1-8.
[21] TAMURA K,PETERSON D,PETERSON N,et al.MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J].Mol Biol Evol,2011,28(10):2731-2739.
[22] BENDTSEN J D,NIELSEN H,VON HEIJNE G,et al. Improved prediction of signal peptides:SignalP 3.0[J].J Mol Biol,2004, 340(4):783-795.
[23] GASTEIGER E,GATTIKER A,HOOGLAND C,et al.Ex-PASy:The proteomics server for in depth protein knowledge and analysis[J].Nucl Acid Res,2003,31:3784-3788.
[24] YOKAYAMA R,NISHITANI K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis[J].Plant Cell Physiol,2001,42:1025-1033.
[25] ROSE J K C,BRAAM J,F(xiàn)RY S C,et al. The XTH family of enzymes involved in xylo-glucan endotransglucosylation and endohydrolysis:Current perspectives and a new unifying nomenclature[J].Plant Cell Physiol,2002,43:1421-1435.
[26] HENRIKSSON H,DENMAN S E,CAMPUZANA I D G,et al.N-linked glycosylation of native and recombinant cauliflower xyloglucan endotransglycosylase 16A[J].Biochem J,2003,375: 61-73.
[27] YOKOYAMA R,ROSE J K C,NISHITANI K. A surprising diversity and abundence of xyloglucan endotransglucosylase/hydrolases in rice. Cassification and expression analysis[J].Plant physiol,2004,134(3):1088-1099.
[28] TABUCHI A,MORI H,KAMISAKA S,et al. A new type of endoxyloglucan transferase devoted to xyloglucan hydrolysis in the cell wall of azuki bean epicotyls[J].Plant Cell Physiol,2001, 42:154-161.
[29] SALADI?魪 M,ROSE J K C,COSGROVE D J,et al. Characterization of a new xyloglucan endotransglucosylase/hydrolase(XTH) from ripening tomato fruit and implications for the diverse models of enzymic action[J].Plant J,2006,47:282-295.
[30] HENRISSAT B,COUTINHO P M,DAVIES G J. A census for carbohydrate-active enzymes in the genome of Arabidopsis thaliana[J].Plant Mol Biol,2001,47:55-72.
[31] CANTAREL B L,COUTINHO P M,RANCUREL C,et al. The carbohydrate-active enzymes database(CAZy):An expert resource for glycogenomics[J].Nucleic Acids Res,2009,37:233-238.
[32] BAUMANN M J,EKLOF J M,MICHEL G,et al.Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases:Biological implications for cell wall metabolism[J].Plant Cell,2007,19(6):1947-1963.
[33] HARA Y,YOKOYAMA R,OSAKABE K,et al. Function of xyloglucan endotrans-glucosylase/hydrolases in rice[J].Ann Bot,2014,114:1309-1318.
[34] SASIDHARAN R,CHINNAPPA C C,STAAL M,et al. Light quality-mediated petoile elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases[J].Plant Physiol,2010,154:978-990.
[35] HARADA T,TORII Y,MORITA S,et al. Cloning, characterization,and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening[J].J Exp Bot,2011,62(2):815-823.
[36] HAN Y,ZHU Q G,ZHANG Z K,et al. Analysis of xyloglucan endotransglycosylase/hydrolase(XTH) genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening[J].PLoS One,2014,10(4):e0123668.
[37] SINGH A P,TRIPATHI S K,NATH P,et al. Petal abscission in rose is associated with the differential expression of two ethylene responsive xyloglucan endotransglucosylase/hydrolase genes RbXTH1,and RbXTH2[J].J Exp Bot,2011,62:5091-5103.
[38] TSUCHIYA M,SATOH S,IWAI H. Distribution of XTH,expansin,and secondary-wall-related CesA in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum)[J].Front Plant Sci,2015,6:1-9.
[39] MATSUI A,YOKOYAMA R,SEKI M,et al.AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements[J].Plant J,2005,42:525-534.
[40] BOURQUIN V,NISHIKUBO N,ABE H,et al. Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues[J].Plant Cell,2002, 14:3073-3088.
[41] NISHIKUBO N,TAKAHASHI J,ROOS A A,et al. Xyloglucan endotransglycosylase-mediated xyloglucan rearrangements in developing wood of hybrid aspen[J].Plant Physiol,2011,155: 399-413.
[42] WANG B,ZHANG D. Association of allelic variation in PtoXET16A with growth and wood properties in Populus tomentosa[J].Int J Mol Sci,2014,15(9):16949-16974.