劉玉星,朱明娟
(新疆輕工職業(yè)技術(shù)學(xué)院,新疆 烏魯木齊 830021)
石墨烯量子點(diǎn)的制備及應(yīng)用
劉玉星,朱明娟
(新疆輕工職業(yè)技術(shù)學(xué)院,新疆 烏魯木齊 830021)
石墨烯量子點(diǎn)( GQDs)作為石墨烯家族的最新一員,除了繼承石墨烯的優(yōu)異性能,還因量子限制效應(yīng)和邊界效應(yīng)而顯現(xiàn)出一系列新的特性,引起了化學(xué)、物理、材料和生物等各領(lǐng)域科研工作者的廣泛關(guān)注。GQDs 的制備方法通常分自上而下和自下而上的方法。對(duì)其各種制備方法和應(yīng)用分別進(jìn)行了介紹,并結(jié)合各種應(yīng)用對(duì) GQDs的要求給出了制備方法的建議。指出了GQDs研究中存在的問(wèn)題及發(fā)展方向。
石墨烯量子點(diǎn);制備方法;應(yīng)用; 綜述
石墨烯量子點(diǎn)( GQDs)是準(zhǔn)零維的納米材料,作為石墨烯家族的最新一員,由于其顯著的量子限域效應(yīng)和邊界效應(yīng),使其具有良好的化學(xué)惰性、生物相容性和較低的生物毒性,可以取代傳統(tǒng)在半導(dǎo)體量子點(diǎn),應(yīng)用到生物成像、疾病檢測(cè)、光電器件等領(lǐng)域,且近年來(lái)受到了越來(lái)越多的科研工作者的廣泛關(guān)注[1-6]。目前制備GQDs 的方法一般可以分為兩類 : 自 上 而 下 法 (Top-down)和 自 下 而 上 法(Bottom-up)[7]。Top-down 法是通過(guò)物理或化學(xué)方法將大尺寸的石墨烯破碎成小尺寸的石墨烯量子點(diǎn),破碎的方法主要包括水熱法、溶劑熱法、強(qiáng)酸氧化法和電化學(xué)法等方法。Bottom-up 法是以小分子為前體, 通過(guò)一系列化學(xué)反應(yīng)逐步合成尺寸較大的GQDs,其制備方法包括燃燒熱法、支架法、微波法等。根據(jù)文獻(xiàn)中GQDs最新的研究進(jìn)展,本文對(duì)GQDs的各種制備方法和應(yīng)用領(lǐng)域進(jìn)行了綜述。
1.1 水熱法
水熱法[8]是制備 GQDs 中較為常用的一種方法,制備過(guò)程分為三個(gè)階段:首先將 GO 熱還原為石墨烯;然后在混酸中將石墨烯氧化;最后將氧化后的石墨烯在弱堿性條件(pH=8)下進(jìn)行水熱處理, 去除含氧基團(tuán), 導(dǎo)致片層破裂生成 GQDs, 并離心或者過(guò)濾提純(如圖 1所示)。
圖1 水熱法制GQDs反應(yīng)機(jī)理圖Fig.1mechanism for thepreparation of GQDs by hydrothermal method
水熱法制備 GQDs的機(jī)理是:在石墨烯片層邊緣和孔洞位置引入了大量的羧(COOH),在基底位置引入了環(huán)氧基(C-O-C)和羰基(C=O)。由于羰基對(duì)不穩(wěn)定, 在水熱條件下可以除去環(huán)氧鍵上的氧原子,從而破碎成 GQDs。Pan 等[9]和 Li 等[10]又分別對(duì)這種三步水熱法進(jìn)行了改進(jìn),Pan 等[9]將水熱的弱堿性條件改為pH>12 的強(qiáng)堿性,使產(chǎn)物尺寸減到 1.5~5 nm;Li 等[12]用pEG 對(duì)產(chǎn)物 GQDs 進(jìn)行表面鈍化修飾, 將熒光量子產(chǎn)率提高到 28%。
1.2 電化學(xué)法
電化學(xué)法也是碳量子點(diǎn)制備普遍采用的一種方法[11-14]。電化學(xué)法制備GQDs的機(jī)理是由石墨烯片層上的物理或化學(xué)缺陷提供電化學(xué)氧化位點(diǎn), 通過(guò)電極施加足夠的電位, 驅(qū)動(dòng)水電離出羥基和氧自由基將碳晶格氧化,在石墨烯基面上產(chǎn)生呈線性排列的環(huán)氧基、羧基、羥基等含氧基團(tuán), 同時(shí)使堆疊石墨烯片層之間間距增大。由于線性排列的含氧基團(tuán)自身的表面張力,石墨烯被破碎成GQDs。2006 年,Zhou 等首次通過(guò)電化學(xué)途徑,以修飾了多壁碳納米管(MWCNTs)的碳紙為工作電極,以含有四丁基高氯酸銨的乙腈溶液作為電解液,通過(guò)循環(huán)伏安掃描使工作電極反復(fù)氧化-還原一段時(shí)間后,經(jīng)過(guò)純化分離得到了粒徑2.8±0.5 nm的 C-dots[15]。
1.3 碳纖維剝離法
碳纖維剝離法是指以碳纖維為碳源, 剝離得到GQDs, 其基本原理是通過(guò)化學(xué)或物理方法使石墨烯片層碎化, 碳纖維結(jié)構(gòu)被破壞, 最終導(dǎo)致碳纖(CF)橫向和縱向裂解, 產(chǎn)生GQDs。Peng等[16]利用化學(xué)剝離樹(shù)脂基碳纖維一步制得不同粒徑的GQDs,該法得到的GQDs的尺寸為1~3 nm,1~-3層石墨稀的厚度,具有半導(dǎo)體的性質(zhì),結(jié)晶度高,能很好的溶解在水和其他溶劑中。該方法最大的特點(diǎn)就是可以通過(guò)控制反應(yīng)中的溫度可以得到不同尺寸、發(fā)不同顏色熒光的GQDs。Li 等[17]利用二甲基亞砜溶液較高的表面張力, 在超聲波的作用下使石墨烯片層剝離, 然后通過(guò)離心處理、微孔濾膜抽濾等方法除去殘余大片層, 得到GQDs 上清液。
1.4 溶劑熱法
溶劑熱法的機(jī)理與水熱法基本相同,是一種低耗費(fèi)、環(huán)境友好和無(wú)毒的制備碳點(diǎn)的方法。其主要區(qū)別是使用了N,N-二甲基甲酰胺(DMF)等有一定還原性的有機(jī)溶劑替代水作為溶劑, 在破碎GO的同時(shí)使其得到還原。Zhu等用了一種一步溶劑熱法將GO切割變成能發(fā)出綠色熒光的GQDs[18]。他們將GO溶于DMF溶液中,超聲0.5 h后,200 °C 下加熱 5 h,便得到預(yù)期想要的 GQDs,量子產(chǎn)率能達(dá)到 11.4%。
2.1 溶液化學(xué)法
Li等[19-21]用溶液化學(xué)法精確控制形貌和尺寸合成了GQDs,但是該方法實(shí)驗(yàn)步驟復(fù)發(fā)而且制得的GQDs的水溶性和大尺寸不可兼得。大致步驟是用苯衍生物逐步反應(yīng)生成聚苯樹(shù)突狀前體,再經(jīng)過(guò)氧化得到石墨稀基,最后得到石墨稀量子點(diǎn)。值得注意的是為了避免氧化時(shí)苯基的重排和產(chǎn)物的聚集,在氧化前要連接上增溶基團(tuán)并且要事先設(shè)計(jì)好前體上苯基間的連通性。
2.2 超聲波法和微波法
作為具有高能量的技術(shù),微波和超聲波剪切能夠?qū)⒋蟮氖┗牧锨懈畛?GQDs,從而有效地縮短合成時(shí)間。2011年,Li 等在強(qiáng)酸或強(qiáng)堿環(huán)境中,通過(guò)超聲將葡萄糖轉(zhuǎn)變?yōu)?C-dots[22]。Zhu 等提出了一種簡(jiǎn)便的基于微波處理的碳點(diǎn)合成方法[23]。他們將不同量的聚乙二醇 200(PEG200)和糖與去離子水混合,將其置于 500W 的微波爐里加熱。隨著反應(yīng)的進(jìn)行,溶液由無(wú)色變?yōu)樽厣?,說(shuō)明了 C-dots 的形成(如文獻(xiàn)[23]中圖 1-7)。Qu等以檸檬酸和尿素為前體,在750 W下微波處理,得到了高質(zhì)量的C-dots[24]。
2.3 熱解炭化法
該類方法以低熔點(diǎn)有機(jī)物作為碳源,采用適宜長(zhǎng)鏈有機(jī)物作包被劑,通過(guò)高溫處理得到表面功能化的 C-dots。Chi 等[25]通過(guò)對(duì)檸檬酸進(jìn)行炭化,制備出橫向尺寸為15 nm,厚度0.5~2.0 nm 的GQDs,且其量子產(chǎn)率相對(duì)較高。Yang 等以殼聚糖為碳源,在 180℃條件下水熱碳化12 h,得到了氨基功能化的 C-dots[26]。Zhang等以抗壞血酸為碳源,通過(guò)簡(jiǎn)單的水熱碳化處理得到了直徑約為 2.0 nm 的C-dots[27]。
3.1 化學(xué)傳感器
石墨烯量子點(diǎn)具有極好的性質(zhì)就是光致發(fā)光,經(jīng)由不同方法合成的GQDs,能發(fā)射出不同顏色的螢光,包括藍(lán)光、綠光、黃光等等[28-30]。研究發(fā)現(xiàn),石墨烯量子點(diǎn)及其衍生物與無(wú)機(jī)物或有機(jī)物通過(guò)螯合,能量共振轉(zhuǎn)移等其它作用導(dǎo)致熒光猝滅[31-33]。在外部物理或化學(xué)刺激的條件下,通過(guò)監(jiān)控碳點(diǎn)的熒光強(qiáng)度的變化,碳點(diǎn)可以用來(lái)檢測(cè)一些物質(zhì)和物質(zhì)的含量,如:PO43-[34]、DNA[35]、凝血酶[36]、亞硝酸鹽[37]、葡萄糖[38]、生物巰基化合物[39]、Fe3+[40]、Ag+[41]、Hg2+[42]和 Cu2+[43,44]等。
3.2 生物傳感器
GQDs較低的生物毒性、優(yōu)良的溶解性和生物相容性為其作為生物傳感器提供了可能。Zhao等[45]以石墨烯為受體,以小鼠抗人免疫球蛋白mIgG結(jié)合的GQDs 為抗體,制造了免疫傳感器,用以檢測(cè)人類免疫球蛋白G (IgG)。馬紅燕等[46]通過(guò)高溫裂解檸檬酸的方法并經(jīng)過(guò)PEG2000修飾鈍化合成了石墨烯量子點(diǎn),在pH = 7.40 的Tris-HCl 緩沖液介質(zhì)中,腎上腺色腙對(duì)量子點(diǎn)熒光有很強(qiáng)的猝滅作用,據(jù)此建立了以石墨烯量子點(diǎn)為熒光探針定量測(cè)定腎上腺色腙的新方法。Ran[47]等制備了銀修飾的石墨烯量子點(diǎn),遇半膀胺酸淬滅,用于艾滋病檢測(cè)。
3.3 熒光成像
碳點(diǎn)在體外[48]、體內(nèi)生物成像方面的應(yīng)用,最早是由 Sun 課題組[48]報(bào)道的。此項(xiàng)研究引起許多石墨烯領(lǐng)域研究者的廣泛關(guān)注。 Zhang 等[49]將 GQDs用于干細(xì)胞標(biāo)記, 發(fā)現(xiàn)GQDs可以比較容易地進(jìn)入干細(xì)胞,表現(xiàn)了極低的生物毒性, 并且可以產(chǎn)生清晰穩(wěn)定的影像。hu等[50]將400μg 量子產(chǎn)率為11.4%的GQDs加入150 μL人體骨肉瘤細(xì)胞培養(yǎng)基中, 通過(guò)共焦熒光顯微鏡可以清晰得看到細(xì)胞內(nèi)部亮綠色,而且細(xì)胞的活性沒(méi)有明顯減弱。
3.4 藥物輸運(yùn)
GQDs繼承了石墨烯出色的藥物/基因承載能力的同時(shí),其更小的尺寸更容易被細(xì)胞吸收,具有更好的生物相容性,從而減少了細(xì)胞毒性作用。因此GQDs 是安全、有效并且可見(jiàn)的傳遞載體。Wang 等[51]人通過(guò)實(shí)驗(yàn)證明了尺寸約為 30 nm 的 GQDs 能有效加速阿霉素積聚到細(xì)胞核,顯著提高了阿霉素的 DNA 切割活性,并改善了細(xì)胞毒性。值得注意的是DOX/GQD 結(jié)合物對(duì)抗藥性的 MCF-7 癌細(xì)胞也十分有效。
3.5 光催化劑
由于GQDs 具有的比表面積和無(wú)毒等優(yōu)點(diǎn),GQDs與無(wú)機(jī)半導(dǎo)體材料復(fù)合表現(xiàn)出優(yōu)異的光催化劑效果。Saud 等人[52]發(fā)現(xiàn)將GQDs 固定于TiO2納米纖維上可顯現(xiàn)出優(yōu)異的光催化性能,并能應(yīng)用與污水處理中。李冬輝等人[53]以檸檬酸為碳源,尿素作為氮源,通過(guò)水熱法制備出尺寸均勻、高熒光的N摻雜石墨烯量子點(diǎn)( N-GQDs), 在可見(jiàn)光下對(duì)亞甲基藍(lán)進(jìn)行光催化降解比亞甲基藍(lán)的自身降解更快,在短時(shí)間內(nèi)( 120 min) 降解率可以達(dá)到82.5%。
石墨烯量子點(diǎn)自發(fā)現(xiàn)短短幾年內(nèi),從制備方法到光電器件、傳感器、生物成像等方面應(yīng)用都研究取得一定進(jìn)展。不過(guò),還有很多問(wèn)題亟待解決,有很大發(fā)展空間。例如:如何改善GQDs 的制備方法以及對(duì)GQDs進(jìn)行巧妙的化學(xué)修飾以及恰當(dāng)功能化處理, 以提高其量子產(chǎn)率, 增強(qiáng)熒光強(qiáng)度, 具備更好的生物相容性, 在深化生物成像、免疫檢測(cè)、藥物運(yùn)輸、催化劑等領(lǐng)域應(yīng)用的同時(shí), 不斷拓展新的應(yīng)用范圍。綜上所述,隨著科研工作者對(duì)石墨烯量子點(diǎn)合成方法,光學(xué)和電子性能調(diào)節(jié)等方面更深入的研究,必將大大推動(dòng)石墨烯量子點(diǎn)傳感器、催化劑、醫(yī)學(xué)和生物等各領(lǐng)域的應(yīng)用范圍。
[1]Wang Y, Hu A. Carbon quantum dots: synthesis,properties and applications [J].Journal of Materials Chemistry C,2014,2( 34) : 6921-6 939.
[2]Lin L, Rong M, Luo F. et al. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications [J].TrAC Trends in Analytical Chemistry,2014,54: 83-102.
[3]Luop G,Yang F,Yang S T,et al.Carbon-based Quantum Dots for Fluoresence Imaging of Cells and Tissyre[J].RSC Advances,2014, 4( 21) : 10791-10807.
[4]Li H,Kang Z,Liu Y,et al.Carbon Nanodots:Synthesis,properties and Applications[J].Journal of Materials Chemistry,2012,22( 46) :24230 -24253.
[5]Shen J,Zhu Y,Yang X,et al. Graphene Quantum Dots:Emergent Nanolights for Bioimaging, Sensors,Catalysis andphotovoltaic Devices[J].Chemical Communications,2012,48 ( 31) : 3686-3699.
[6]Baker S N, Baker G A. Luminescent Carbon Nanodots:Emergent Nanolights[J].Angewandte Chemie International Edition,2010, 49 ( 38) : 6 726 -6744.
[7]Zheng X T, Luo K Q, et al. Glowing graphene quantum dots and carbon dots:properties, syntheses, and biological applications[J]. Small, 2015, 11(14): 1620–1636.
[8]Ponomarenko L A, Schedin F.et al,Chaotic Dirac Billiard in Graphene Quantum Dots[J]. Science. 2008, 320+356.
[9]Pan D, Guo L, Zhang J, et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence[J]. J. Mater. Chem., 2012, 22(8): 3314–3318.
[10]Sheng J, Zhu Y, Yang X, et al. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated bypolyethylene glycol and theirphotoelectric conversion under near-infrared light[J]. New J. Chem., 2012, 36(1): 97–101.
[11]Li Y, Hu Y, Zhao Y, et al. An electrochemical avenue to greenluminescent graphene quantum dots aspotential electron-acceptors forphotovoltaics[J]. Adv. Mater., 2011, 23(6): 776–780.
[12]Lu J, Yang J, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009, 3(8): 2367–2375.
[13]Zhou J G, Booker C, Li R Y, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes ( MWCNTs) [J].J Am Chem Soc,2007,129( 4) :744-745.
[14]Zhao Q L, Zhang Z L, Huang B H, et al. Facilepreparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite[J]. Chem Commun, 2008, 41:5116-5118.
[15]Zhou J, Booke C.et al. An electrochemical avenue to blue minescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J].Journal of the American Chemical Society, 2007, 129:744-745.
[16]Peng J, Gao W, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Lett., 2012, 12(2): 844-849.
[17]Shi H Y. Graphene quantum dots derived fromplatelet graphite nanofibers by liquid-phase exfoliation[J]. Acta Materialia. 2014, 78(2): 314–319.
[18]Zhu S J, Zhang J H, Qiao C Y, et al. Strongly greenphotoluminescent graphene quantum dots for bioimaging applications [J]. Chem Commun, 2010, 47 (24):6858 6860.
[19]Li L S, Yan X. Colloidal graphene quantum dots [J]. Jphys Chem Lett, 2010,1(17): 2572-2576.
[20]Yan X, Cui X, Li L. Synthesis of large, stable colloidal graphene quantum dots with tunable size[J]. J. Am. Chem. Soc., 2010,132(17): 5944–5945.
[21]Yan X, Cui X, Li B S, et al. Large,solution-processable graphene quantum dots as light absorbers forphotovoltaics[J]. Nano Lett, 2010, 10(5):1869-1873.
[22]Li H, He X, Kang Z, et al. One-step ultrasonic synthsis of water-soluble carbon nanoparticles with excellentphotolumi nescentproperties[J].Carbon,2011, 49:605-609.
[23]Zhu H, Wang X, Li Y,et al.Microwave synthesis of fluorescent carbon nanopartcles with electrochemiluminescenceproperties[J]. Chemical Communications,2009,(34): 5118-5120.
[24]Wang X, Qu K, Xu B,et al.Microwave assisted one-step green synthesis of cell-permeable multicolorphotoluminescent carbon dots without surfacepassivation reagents[J]. Journal of Materials Chemistry, 2011, 21:2445-2450.
[25]Dong YQ, Shao JW, Chen CQ, Li H, Wang RX, Chi YW, Lin XM, Chen GN (2012) Blue luminescent graphene quantum dots and graphene oxideprepared by tuning the carbonization degree of citric acid[J]. Carbon 50(12):4738–4743
[26]Yang Y, Cui J, M.,et al. One-Step Synthesis ofAmino-Functionalized Fluorescent Carbon Nanoparticles by Hydrothermal Carbonization of Chitosan[J]. Chemical Communications, 2012, 48: 380-382.
[27]Zhang B, Liu C y, Liu Y.Novel One-Step Approach to Synthesize Fluorescent Carbon Nanoparticles[J]. European Journal of Inorganic Chemistry, 2010, 2010: 4411-4414.
[28]Shen J,Zhu Y,Chen C,et al. Facilepreparation and up conversion luminescence of grapheme quantum dots [ J]. Chem Commun,2011,47:2580-2582.
[29]Li Y,Hu Y,Zhao Y., et al. An Electrochemical Avenue to GreenLuminescent Graphene Quantum Dots aspotential Electron-Ac - ceptors forphotovoltaics [ J]. Adv Mater,2011,23:776 -780.
[30]Zhang M,Bai L,Shang W. et al. Facile synthesis of water-soluble, highly graphene quantum dots as a robust biological label for stem cells.J MaterChem,2012,22:7461-7467.
[31]Chakraborti H,Sinha S,Ghosh S.,et al. Interfacing water soluble nanomaterials with fluorescence chemosensing:Graphene quantum dot to detect Hg2+in 100% aqueous solution [J].Materials Letters,2013, 97:78 -80.
[32]Qu Z,Zhou X,Gu L. ,et al. Boronic Acid Functionalized Graphene Quantum Dots as Fluorescentprobe for Selective and Sensitive Glucose Determination in Microdialysate [J].Chem Commun,2013, 49:9830 -9832.
[33]Zhou Y, Qu Z, Zeng Y ,et al. A novel composite of grapheme quantum dots and molecularly imprintedpolymer for fluorescent detection ofparanitrophenol [J].Biosensors and Bioelectronics ,2014, 52:317-323.
[34]Zhao H X, Liu L Q, Liu Z D, et al. Highly selective detection ofphosphate in very complicated matrixes with an off on fluorescentprobe of europium-adjusted carbon dots[J] .Chemical Communications, 2011, 47(9):2604–2606.
[35]Li H , Zhang Y , Wang L, et al. Nucleic acid detection using carbon nanoparticles as a fluorescent sensingplatform [J].Chemical Communications, 2011, 47(3):961–963.
[36]Liu J, Li J, Jiang Y, Yang S, Tan W, Yang R.Combination of π-π stacking and electrostatic repulsion between carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid and sensitive detection of thrombin[J] .Chemical Communications, 2011,47(40): 11321–11323.
[37]Lin Z, Xue W, Chen H, et al.peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing[J] .Analytical Chemistry, 2011, 83(21):8245–8251.
[38]Shi W B, Wang Q L, Long Y J, et al. Carbon nanodots asperoxidase mimetics and their applications to glucose detection [J].Chemical Communications, 2011, 47(23):6695–6697.
[39]Zhou L, Lin Y H, Huang Z Z, et al. Carbon nanodots asfluorescenceprobes for rapid、sensitive and label-free detection of Hg2+and biothiols in complex matrice [J].Chemical Communications, 2012,48(8):1147–1149.
[40]Qu S, Chen H, Zheng X, et al. Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities[J] .Nanoscale, 2013, 5(12):5514–551
[41]Li H, Zhai J, et al. Detection of Silver(I) Ion in Aqueous Solution Using Carbon Nanoparticles as a Cheap, Effective Fluorescent Sensingplatform[J] .Langmuir, 2011, 27(8):4305–4308.
[42]Li H; Zhai J; Tian J; et al. Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury (II) ion in aqueous solution[J] .Biosensors and Bioelectronics,2011,26,4656–4660.
[43]Liu S,Tian J Q,Wang L,et al. Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich,photoluminescentpolymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions[J] .Advanced Materials,2012,24(15):2037–2041.
[44]Qu Q, Zhu A W, Shao X Q, et al. Development of a carbon quantum
dots-based fluorescent Cu2+probe suitable for living cell imaging[J] .Chemical Communications, 2012, 48(44):5473–5475.
[45]Zhao H, Chang Y, Liu M, et al. A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chem[J]. Commun., 2013, 49(3): 234–236.
[46]馬紅燕,等. 石墨烯量子點(diǎn)熒光探針測(cè)定腎上腺色腙 [J].發(fā)光學(xué)報(bào),2016,37(2):230-235
[47]Ran X, Sun H,pu F, Ren J, Qu X. Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols[J].. Chem Commun. ,2013, 49(11): 1079–1081
[48]Sun Yp, Zhou B, Lin Y, et al. Quantum-Sized Carbon Dots for Bright and Colorfulphotoluminescence [J].Journal of the American Chemical Society, 2006, 128(24):7756–7757.
[49]Zhang M, Bai L, Shang W, et al. Facile synthesis of water- soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells[J]. J. Mater. Chem. , 2012, 22(15): 7461-7467.
[50]Peng J, Gao W, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Lett. , 2012,12(2): 844-849.
[51]Wang C, Wu C, Zhou X, et al. Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots[J]. Sci. Rep. 2013, 3:2852-2860.
[52]Saudp S,Pant B,Alam A M,et al. Carbon quantum dots anchored TiO2nanofibers: Effectivephotocatalyst for waste water treatment[J].Ceramics International,2015,41( 9 ) :11953-11959.
[53]李冬輝,樊潔心,王曉敏,等. N 摻雜石墨烯量子點(diǎn)的制備及其光催化降解性能[J].新型炭材料, 2015 ,30 (6):545-549.
Preparation and Application of Graphene Quantum Dots
LIU Yu-xing, ZHU Ming-juan
(Xinjiang Vocational College of Light Industry, Xinjiang Urumqi 830021, China)
Graphene quantum dots(GQDs) as a new member of the graphene family, in addition to inheriting the excellentproperties of graphene,show a series of new features due to quantum confinement effect and boundary effect, so it has caused the attention of chemical,physic, material and biological researchers. In thispaper, variouspreparation methods and application of graphene quantum dots were introduced. At last, existingproblems in the research of GQDs werepointed out as well as development direction.
Graphene quantum dots;preparation method; Application; Review
TQ 201
: A
: 1671-0460(2017)02-0319-04
2016-12-13
劉玉星(1981-),女,新疆烏魯木齊人,講師,碩士,2007 畢業(yè)于新疆大學(xué)物理化學(xué)專業(yè),研究方向:碳材料制備及應(yīng)用。E-mail:xjlyx2016@163.com。