文德重,周敏,薛松,姜愛俠,黃日太(上海交通大學(xué)醫(yī)學(xué)院附屬仁濟醫(yī)院,上海007; 上海交通大學(xué)醫(yī)學(xué)院附屬兒童醫(yī)學(xué)中心)
成年小鼠心臟c-kit+干細(xì)胞的分離及誘導(dǎo)分化
文德重1,周敏1,薛松1,姜愛俠2,黃日太1
(1上海交通大學(xué)醫(yī)學(xué)院附屬仁濟醫(yī)院,上海200127;2 上海交通大學(xué)醫(yī)學(xué)院附屬兒童醫(yī)學(xué)中心)
目的 從成年小鼠心臟中分離、純化c-kit+干細(xì)胞,并觀察其誘導(dǎo)分化結(jié)果。方法 取C57BL/ 6雄性小鼠3只,取心臟組織,將心臟解離成單個細(xì)胞。采用CD45磁珠、c-kit磁珠分選得到c-kit+干細(xì)胞。鑒定細(xì)胞純度,觀察細(xì)胞表型。觀察所得心臟c-kit+干細(xì)胞球的形成情況,對其進行誘導(dǎo)分化,采用RT-PCR法觀察誘導(dǎo)分化細(xì)胞血管平滑肌細(xì)胞的標(biāo)志物α-SMA和sm-22α、血管內(nèi)皮細(xì)胞標(biāo)志物vWF、心肌細(xì)胞標(biāo)志物cTnT、心臟干細(xì)胞標(biāo)志物c-kit,觀察誘導(dǎo)分化的細(xì)胞表型。結(jié)果 心臟c-kit+干細(xì)胞c-kit+純度為89.3%,心臟干細(xì)胞表面表達(dá)c-kit抗體。原代c-kit+干細(xì)胞生長緩慢,傳代后細(xì)胞生長較快,懸浮培養(yǎng)可形成心臟c-kit+干細(xì)胞球。與誘導(dǎo)第0天比較,誘導(dǎo)分化第14 d時心臟干細(xì)胞α-SMA、sm-22α、vWF、cTnT mRNA相對表達(dá)量升高,c-kit mRNA相對表達(dá)量降低,P均<0.05。心臟c-kit+干細(xì)胞在心肌細(xì)胞誘導(dǎo)分化培養(yǎng)基中培養(yǎng)14 d左右可見cTnT陽性細(xì)胞。心臟干細(xì)胞在無LIF的培養(yǎng)基中培養(yǎng)14天可見vWF、α-SMA陽性細(xì)胞。結(jié)論 成功從成年小鼠心臟分離心臟c-kit+干細(xì)胞,所得c-kit+干細(xì)胞c-kit+純度高,可成功誘導(dǎo)分化為心肌細(xì)胞、血管平滑肌細(xì)胞及血管內(nèi)皮細(xì)胞。
心臟干細(xì)胞;c-kit+干細(xì)胞;干細(xì)胞移植;缺血性心臟病
缺血性心臟病的發(fā)病率呈上升趨勢[1]。干細(xì)胞移植修復(fù)梗死心肌是一種新興的治療方法。研究[2~4]表明,心肌梗死后,心臟干細(xì)胞移植可有效抑制心肌細(xì)胞的凋亡,改善患者心功能,同時移植后的心臟干細(xì)胞可分化為血管細(xì)胞和心肌細(xì)胞,改善缺血心肌的血液供應(yīng)情況。心臟干細(xì)胞可取自患者自身,解決了臨床關(guān)于胚胎干細(xì)胞的倫理、免疫排斥和致畸問題[5],是目前細(xì)胞移植的研究熱點。c-kit是一種干細(xì)胞因子受體,是干細(xì)胞的經(jīng)典特征性標(biāo)記。普通的剪碎消化分離心臟干細(xì)胞的方法操作時間長、細(xì)胞損傷大,不利于細(xì)胞存活。建立一種簡便、經(jīng)濟的干細(xì)胞分離方式,是目前亟需解決的問題。我們采用一種由蛇形冷凝管、循環(huán)水浴鍋、蠕動泵簡易組合的裝置,從成年C57BL/ 6小鼠心臟分離、純化c-kit+干細(xì)胞,并觀察其誘導(dǎo)分化結(jié)果,并鑒定其功能。
1.1 實驗動物、試劑及儀器 6~8周齡SPF 級C57BL/ 6雄性小鼠3只,體質(zhì)量18~20 g之間,購于上海杰思捷實驗動物有限公司。蛇形冷凝管、蠕動泵、循環(huán)水浴鍋。心肌灌注液的配制: 配制500 mL心肌灌注液,灌注液含113 mmol/L NaCl、4.7 mmol/L KCl、0.6 mmol/L KH2PO4、0.6 mmol/L Na2HPO4、1.2 mmol/L MgSO4、10 mmol/L Na-HEPES、12 mmol/L NaHCO3、10 mmol/L KHCO3、0.032 mmol/L酚紅、30 mmol/L牛磺酸、5.5 mmol/L D-葡萄糖。心肌消化液的配制:用上述心肌灌注液,配制含1 mg/mL Ⅱ型膠原酶、50 μmol/L CaCl2的消化液、0.22 μm濾網(wǎng)過濾除菌,4 ℃保存。心臟干細(xì)胞全培養(yǎng)基制備:DMEM/F12,10%胎牛血清,100 U/mL 青霉素和100 μg/mL 鏈霉素,10 ng/mL LIF,bFGF(10 ng/mL),EGF(20 ng/mL),1% ITS,1% B-27,0.5% N-2。心肌誘導(dǎo)分化培養(yǎng)基制備:α-MEM,10% FBS,1 μmol/L地塞米松,50 μg/mL 抗壞血酸,1 mmol/L β-磷酸甘油,1% 雙抗。
1.2 心臟c-kit+干細(xì)胞的分離、純化及培養(yǎng) 取C57BL/ 6雄性小鼠3只,麻醉下無菌條件于升主動脈第一分支游離心臟,懸掛灌流裝置,預(yù)冷灌注液灌注去除血液后,切換成心肌消化液,心肌消化液灌注前氧飽和10~15 min,37 ℃灌注10 min,流量控制為4 mL/min。經(jīng)該裝置灌流10 min后,心臟變白,松軟。將心臟轉(zhuǎn)移至預(yù)冷含2%FBS的DMEM-F12-Ham′s培養(yǎng)基中,并用剪刀將心臟分離成小塊,將心臟解離成單個細(xì)胞。40 μm濾網(wǎng)過濾,300 g/min離心1 min去除心肌細(xì)胞。330 g/min離心7 min,去除上清,沉淀重懸于CD45磁珠分選buffer中,并加入CD45磁珠孵育30 min,MACS分選CD45-細(xì)胞。在CD45-細(xì)胞中STEM CELL c-kit磁珠分選試劑盒分選c-kit+細(xì)胞。分選得到的c-kit+干細(xì)胞接種于6孔板中,37 ℃、5% CO2孵箱中培養(yǎng)。
1.3 心臟c-kit+干細(xì)胞純度分析及其表型鑒定
1.3.1 心臟c-kit+干細(xì)胞純度分析 采用流式細(xì)胞術(shù)。胰酶消化“1.2”中分選得到的心臟c-kit+干細(xì)胞P1代細(xì)胞,1% BSA封閉5 min,重懸于100 μL PBS中,分別加入抗小鼠c-kit PE、CD45 FITC流式抗體2 μL,4 ℃避光孵育30 min,1 mL PBS洗滌,重懸于100 μL PBS,流式細(xì)胞儀檢測分選后心臟c-kit+干細(xì)胞純度。實驗重復(fù)3次,取平均值。
1.3.2 心臟c-kit+干細(xì)胞表型鑒定 采用免疫熒光染色法?!?.2”中分選得到的心臟c-kit+干細(xì)胞 P1代細(xì)胞制成細(xì)胞爬片,1∶200濃度的兔抗鼠c-kit免疫熒光抗體4 ℃過夜孵育,1∶500濃度的594驢抗兔二抗,常溫避光染色1 h,DAPI染色15 min,封片,免疫熒光顯微鏡拍片,觀察分選后的心臟干細(xì)胞表面是否表達(dá)c-kit抗體,如表達(dá)c-kit抗體染色為紅色。
1.4 心臟c-kit+干細(xì)胞球的形成情況觀察 將傳代培養(yǎng)得到的心臟c-kit+干細(xì)胞置于超低吸附板中,使用去除LIF的全培養(yǎng)基懸浮培養(yǎng)2~3天后,顯微鏡觀察心臟c-kit+干細(xì)胞成球形成情況。
1.5 心臟c-kit+干細(xì)胞球的誘導(dǎo)分化情況觀察
1.5.1 心臟c-kit+干細(xì)胞球的誘導(dǎo)分化 將“1.4”中形成的心臟c-kit+干細(xì)胞球接種于1 μg/mL層粘連蛋白包被的爬片上,心肌誘導(dǎo)培養(yǎng)基培養(yǎng)。誘導(dǎo)當(dāng)天記為第0 天,貼壁誘導(dǎo)8 d 后撤除地塞米松、抗壞血酸、磷酸甘油,繼續(xù)培養(yǎng)至14 d,進行心肌方向誘導(dǎo)分化。接種于1 μg/mL層粘連蛋白包被的爬片上的干細(xì)胞球,去除LIF的全培養(yǎng)基培養(yǎng)14 d,進行血管內(nèi)皮和平滑肌細(xì)胞方向分化。
1.5.2 誘導(dǎo)分化的細(xì)胞分化標(biāo)志物檢測及表型觀察 ①細(xì)胞分化標(biāo)志物檢測:采用RT-PCR法。分別取適量誘導(dǎo)第0天、誘導(dǎo)第14天的細(xì)胞,分別采用血管平滑肌細(xì)胞的標(biāo)志物α-SMA和sm-22α、血管內(nèi)皮細(xì)胞標(biāo)志物vWF、心肌細(xì)胞標(biāo)志物cTnT、心臟干細(xì)胞標(biāo)志物c-kit等的引物進行PCR 擴增。樣品電泳完畢后,將凝膠放入ChemiDoc MP 凝膠成像系統(tǒng)觀察拍照。然后使用ImageJ軟件進行灰度值分析。②細(xì)胞分化表型觀察:采用免疫熒光染色法。 將誘導(dǎo)分化的心肌細(xì)胞、血管平滑肌細(xì)胞、血管內(nèi)皮細(xì)胞的爬片拿出,分別加入1∶200濃度的兔單克隆抗體α-SMA、兔單克隆抗體vWF、鼠單克隆抗體cTnT免疫熒光抗體,4 ℃過夜孵育,分別加入1∶500濃度的594驢抗兔二抗、488驢抗兔二抗、488驢抗鼠二抗常溫避光染色1 h,DAPI染色15 min,封片,免疫熒光顯微鏡拍片,觀察細(xì)胞分化情況。鏡下可見vWF陽性細(xì)胞說明細(xì)胞已誘導(dǎo)分化為血管內(nèi)皮細(xì)胞、鏡下可見α-SMA陽性細(xì)胞說明細(xì)胞已誘導(dǎo)分化為血管平滑肌細(xì)胞。
2.1 心臟c-kit+干細(xì)胞純度和表型 心臟c-kit+干細(xì)胞c-kit+純度為89.3%,CD45+陽性細(xì)胞純度為0.0%。鏡下可見分選后的心臟干細(xì)胞表面表達(dá)c-kit抗體。
2.2 心臟c-kit+干細(xì)胞球形成情況 原代c-kit+干細(xì)胞分離后生長緩慢,2~3 d貼壁,10~14 d可長到80%,傳代后生長較快,2~3 d可長到80%。懸浮培養(yǎng)2~3 d時可見心臟c-kit+干細(xì)胞相互聚集,形成心臟c-kit+干細(xì)胞球。非心臟干細(xì)胞逐漸死亡。將心臟c-kit+干細(xì)胞球接種到laminin包被的板中,心臟干細(xì)胞很快貼壁,并從干細(xì)胞球中爬出細(xì)胞,向四周擴散。
2.3 不同誘導(dǎo)分化時間的心臟c-kit+干細(xì)胞α-SMA、 sm-22α、vWF、cTnT、c-kit mRNA相對表達(dá)量比較及誘導(dǎo)分化結(jié)果 不同誘導(dǎo)分化時間細(xì)胞α-SMA 、 sm-22α、vWF、cTnT、c-kit mRNA相對表達(dá)量比較見表1。
心臟c-kit+干細(xì)胞在心肌細(xì)胞誘導(dǎo)分化培養(yǎng)基中培養(yǎng)14天左右,免疫熒光染色鑒定,可見cTnT陽性細(xì)胞。心臟干細(xì)胞在無LIF的培養(yǎng)基中培養(yǎng)14天,免疫熒光染色可見vWF、α-SMA陽性細(xì)胞。
表1 不同誘導(dǎo)分化時間細(xì)胞α-SMA 、 sm-22α、vWF、cTnT、c-kit的mRNA相對表達(dá)量比較±s)
注:與誘導(dǎo)分化第0天相比,*P<0.05 ,**P<0.01。
2003年Beltrami等[6]發(fā)現(xiàn)心臟c-kit+干細(xì)胞能夠自我更新,在體外可分化為心肌細(xì)胞、內(nèi)皮細(xì)胞、平滑肌細(xì)胞,心肌注射心臟c-kit+干細(xì)胞后可改善梗死心臟的心功能,為梗死后心功能恢復(fù)提供新的治療思路。隨后研究又發(fā)現(xiàn)了一些其他不同類型的干細(xì)胞,如sca-1+、側(cè)群干細(xì)胞、心肌球干細(xì)胞等細(xì)胞[7~9]。但是有研究認(rèn)為,c-kit+較sca-1+干細(xì)胞具有更強的組織修復(fù)能力[10, 11]。c-kit+干細(xì)胞因此也成為了干細(xì)胞移植的備選種子細(xì)胞,成為研究熱點。
Langendorff消化酶灌流裝置為心臟解離的經(jīng)典方法,但是其價格昂貴,體積大,不能放于超凈臺中,無法保證分離過程中的無菌,而限制了其使用。普通的剪碎消化解離心臟的方法又因消化時間較長,需要反復(fù)消化[12],而對心臟干細(xì)胞損傷較大,不利于干細(xì)胞存活。組織塊爬細(xì)胞的分離方法,需要將心臟組織塊剪碎后種植到培養(yǎng)板里,待細(xì)胞從組織塊中爬出后再消化分離,所需時間較長[13],不適合急性分離。本實驗中我們使用冷凝管進行心肌灌注、酶解,同樣可以起到文獻[14]中Langendorff灌流、酶解的效果,且由于冷凝管體積較小,鐵架臺固定后可放于超凈臺中,可以為分離過程提供相對清潔的環(huán)境而避免細(xì)菌污染。心臟灌注10 min后,心臟變白、變軟,吸管輕輕吹打可將心臟解離成單個細(xì)胞,消化效果較好。消化液灌注前進行氧飽和10~15 min,可在灌注過程中為干細(xì)胞供氧,減輕心臟干細(xì)胞的缺氧損傷。心臟肥大細(xì)胞也表達(dá)c-kit表面標(biāo)志[15],所以實驗中應(yīng)通過分離CD45+細(xì)胞去除心臟干細(xì)胞中肥大細(xì)胞的干擾。經(jīng)CD45和c-kit磁珠雙分選后得到的心臟c-kit+干細(xì)胞c-kit+純度純度為89.3%。說明經(jīng)磁珠分選后,可以得到較純的心臟c-kit+干細(xì)胞,經(jīng)CD45磁珠分選得到CD45-細(xì)胞,可以去除同樣表達(dá)c-kit的肥大細(xì)胞的干擾,保證了心臟原位干細(xì)胞的純度。我們將分選的心臟干細(xì)胞培養(yǎng)24 h后更換培養(yǎng)孔,此時心臟干細(xì)胞由于尚未貼壁,可進一步去除成纖維、內(nèi)皮等易于貼壁的細(xì)胞,進一步提高分選后的純度。分選后的心臟干細(xì)胞呈小、圓、亮的細(xì)胞,折光性強,2~3 d貼壁,增殖速度較慢,傳代后增殖速度較快,可傳10代以上,懸浮培養(yǎng)后可在培養(yǎng)基中形成球,與文獻中報道一致[6, 16]。在培養(yǎng)中我們發(fā)現(xiàn),細(xì)胞干性會有丟失,純度下降,可能與細(xì)胞過密生長,傳代不及時,導(dǎo)致細(xì)胞分化有關(guān),與ES培養(yǎng)過程中易于分化相似。雖然過去人們認(rèn)為心臟c-kit+細(xì)胞是心肌干細(xì)胞,但是近期Sultana等[17]研究發(fā)現(xiàn),心臟c-kit+細(xì)胞不是心肌干細(xì)胞,而是內(nèi)皮祖細(xì)胞。Liu等[18]利用譜系示蹤技術(shù)發(fā)現(xiàn),心臟c-kit+細(xì)胞在心肌損傷后很少分化為心肌細(xì)胞,而是分化為內(nèi)皮細(xì)胞和炎癥細(xì)胞。我們在心臟干細(xì)胞培養(yǎng)過程中,發(fā)現(xiàn)在去除維持細(xì)胞干性的LIF后,心臟干細(xì)胞可自發(fā)向血管內(nèi)皮細(xì)胞和平滑肌細(xì)胞分化,免疫熒光染色可見vWF和α-SMA陽性細(xì)胞,RT-PCR結(jié)果顯示vWF、α-SMA、sm-22α表達(dá)較培養(yǎng)第0天明顯增強,印證了心臟c-kit+細(xì)胞不是心肌干細(xì)胞,而是內(nèi)皮祖細(xì)胞的結(jié)論。但是分選后的c-kit+細(xì)胞在心肌細(xì)胞分化培養(yǎng)基中還是可以分化為表達(dá)心肌細(xì)胞特殊標(biāo)志的細(xì)胞,RT-PCR顯示cTnT表達(dá)呈強陽性,免疫熒光可以看到cTnT陽性細(xì)胞。雖然c-kit+細(xì)胞向內(nèi)皮細(xì)胞自發(fā)分化的潛能大于向心肌細(xì)胞分化的潛能,但仍具有多向分化潛能。
我們在實驗中使用冷凝管成功解離了心臟,心臟灌注后可解離成單個細(xì)胞,解離效果較好,重復(fù)性好,方法簡便且經(jīng)濟。最終成功從成年小鼠心臟分離心臟c-kit+干細(xì)胞,所得c-kit+干細(xì)胞c-kit+純度高,且培養(yǎng)后能形成心臟c-kit+干細(xì)胞球,可成功誘導(dǎo)分化為心肌細(xì)胞、血管平滑肌細(xì)胞及血管內(nèi)皮細(xì)胞。但心臟干細(xì)胞移植后存活率、分化率低的問題仍需進一步解決。
[1] Writing Group M, Lloyd-Jones D, Adams RJ, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association[J]. Circulation, 2010,121(7):46-215.
[2] Ellison GM, Vicinanza C, Smith AJ, et al. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair[J]. Cell, 2013,154(4):827-842.
[3] Tang XL, Rokosh G, Sanganalmath SK, et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction[J]. Circulation, 2010,121(2):293-305.
[4] Dawn B, Stein AB, Urbanek K, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function[J]. Proc Natl Acad Sci U S A, 2005,102(10):3766-3771.
[5] Barad L, Schick R, Zeevi-Levin N. Human embryonic stem cells vs human induced pluripotent stem cells for cardiac repair[J]. Can J Cardiol, 2014,30(11):1279-1287.
[6] Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration[J]. Cell, 2003,114(6):763-776.
[7] Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction[J]. Proc Natl Acad Sci U S A, 2003,100(21):12313-12318.
[8] Oyama T, Nagai T, Wada H, et al. Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo[J]. J Cell Biol, 2007,176(3):329-341.
[9] Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart[J]. Cir Res, 2004,95(9):911-921.
[10] Linke A, Muller P, Nurzynska D, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function[J]. Proc Natl Acad Sci U S A, 2005,102(25):8966-8971.
[11] Anversa P, Kajstura J, Leri A, et al. Life and death of cardiac stem cells: a paradigm shift in cardiac biology[J]. Circulation, 2006,113(11):1451-1463.
[12] French KM, Davis ME. Isolation and expansion of c-kit-positive cardiac progenitor cells by magnetic cell sorting[J]. Methods Mol Biol, 2014,118(1):39-50.
[13] Chen L, Wang Y, Pan Y, et al. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury[J]. Biochem Biophys Res Commun, 2013,431(3):566-571.
[14] Fransioli J, Bailey B, Gude NA, et al. Evolution of the c-kit-positive cell response to pathological challenge in the myocardium[J]. Stem Cells, 2008,26(5):1315-1324.
[15] Ellison GM, Torella D, Dellegrottaglie S, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart[J]. J Am Coll Cardiol, 2011,58(9):977-986.
[16] Smith AJ, Lewis FC, Aquila I, et al. Isolation and characterization of resident endogenous c-kit+cardiac stem cells from the adult mouse and rat heart[J]. Nat Protoc, 2014,9(7):1662-1681.
[17] Sultana N, Zhang L, Yan J, et al. Resident c-kit(+) cells in the heart are not cardiac stem cells[J]. Nat Commun, 2015(6):8701.
[18] Liu Q, Yang R, Huang X, et al. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes[J]. Cell Res, 2016,26(1):119-130.
Isolation and differentiation of c-kit+cardiac stem cells from adult mice
WENDezhong1,ZHOUMin,XUESong,JIANGAixia,HUANGRitai
(1RenjiHospital,ShanghaiJiaotongUniversitySchoolofMedicine,Shanghai200127,China)
Objective To isolate the c-kit+stem cells from the hearts of adult mice, and to explore the induced differentiation of cardiac stem cells (CSC). Methods The freshly isolated hearts were obtained from 3 male C57BL/6 mice, and the hearts were dissected into single cells. The c-kit+stem cells were isolated from the CD45-cells by magnetic microbeads. Flow cytometric analysis and Immunofluorescence were used to measure the purity and the phenotype of c-kit+cells. The cell purity was determined and cell phenotype was observed. The c-kit+cells were cultured in suspension medium to form the CardioStem sphere. RT-PCR was used to analyze the expression of the smooth muscle cells marker (α-SMA and sm-22α), endothelial cells marker (vWF), myocardial cells marker (cTnT) and cardiac stem cells marker (c-kit) after differentiation. Immunofluorescence was used to measure the phenotypes after the differentiation. Results The purity of c-kit+reached 89.3%, and the cardiac stem cells expressed the c-kit antibody. The primary cells grew slowly, but faster after being passaged. When cultured in suspension, the cells can form the CardioStem sphere. The expression of α-SMA, sm-22α, vWF, and cTnT mRNA was significantly increased, but the expression of c-kit mRNA was significantly decreased on day 14 as compared with that on day 0 after differentiation (allP<0.05). cTnT-positive cells were observed in cardiomyocyte-induced differentiation medium for about 14 days in cardiac c-kit+stem cells. vWF positive cells and α-SMA positive cells were observed in the medium without LIF on day 14. Conclusion Highly purified c-kit+CSCs can be isolated and cultured from the hearts of adult C57BL mice, c-kit+CSCs can be differentiated into cardiomyocytes, smooth muscle cells, and endothelial cells.
cardiac stem cells; c-kit+stem cells; stem cell transplantation; ischemic heart disease
上海市科學(xué)技術(shù)委員會資助項目(134119a5602)。
文德重(1990-),男,醫(yī)學(xué)碩士,主要研究方向為心肌損傷的修復(fù)。E-mail: wendezhongwencong@163.com
黃日太(1970-),男,博士,碩士生導(dǎo)師、主任醫(yī)師,主要研究方向為房顫的治療和心肌損傷修復(fù)。E-mail: ahtai1018@yahoo.com
10.3969/j.issn.1002-266X.2017.07.005
R541.75
A
1002-266X(2017)07-0016-04
2016-11-30)