王 俊,申立中,楊永忠,畢玉華,萬明定
?
基于響應(yīng)曲面法的非道路用高壓共軌柴油機(jī)設(shè)計(jì)點(diǎn)優(yōu)化標(biāo)定
王 俊1,申立中1※,楊永忠2,畢玉華1,萬明定1
(1. 昆明理工大學(xué)云南省內(nèi)燃機(jī)重點(diǎn)實(shí)驗(yàn)室,昆明 650500;2. 昆明云內(nèi)動(dòng)力股份有限公司,昆明 650500)
針對(duì)柴油機(jī)采用高壓共軌系統(tǒng)帶來標(biāo)定與優(yōu)化工作量顯著增加的問題,基于Box-Behnken設(shè)計(jì)與響應(yīng)面法對(duì)處于標(biāo)定階段的一款非道路用高壓共軌柴油機(jī)進(jìn)行了研究。以該柴油機(jī)設(shè)計(jì)點(diǎn)為例,在最大轉(zhuǎn)矩轉(zhuǎn)速1 600 r/min與額定功率轉(zhuǎn)速2 600 r/min的全負(fù)荷工況下,選取主噴油量、預(yù)噴油量、主噴正時(shí)以及噴油壓力4個(gè)標(biāo)定變量為因子,在滿足設(shè)計(jì)指標(biāo)與相關(guān)約束的條件下進(jìn)行了優(yōu)化標(biāo)定。試驗(yàn)結(jié)果表明:基于響應(yīng)曲面法建立的柴油機(jī)各二階響應(yīng)面回歸模型具有良好的準(zhǔn)確性和預(yù)測(cè)能力,決定系數(shù)2、調(diào)整決定系數(shù)2以及預(yù)測(cè)決定系數(shù)2均在0.92以上,試驗(yàn)值與預(yù)測(cè)值的最大偏差不超過3.07 %;優(yōu)化之后得出的標(biāo)定變量組合使得該非道路用高壓共軌柴油機(jī)的最大轉(zhuǎn)矩達(dá)到200.7 N?m,額定功率達(dá)到40.1 kW,滿足其設(shè)計(jì)指標(biāo),同時(shí)有效燃油消耗率、空燃比、最高氣缸壓力以及最高排氣歧管氣體溫度均在許可的約束范圍之內(nèi),表明將響應(yīng)曲面法用于非道路用高壓共軌柴油機(jī)設(shè)計(jì)點(diǎn)的優(yōu)化標(biāo)定是可行的。
柴油機(jī);標(biāo)定;優(yōu)化;非道路;高壓共軌;響應(yīng)面法
中國已于2016年4月1日起執(zhí)行非道路移動(dòng)機(jī)械用柴油機(jī)第三階段排放法規(guī)[1]。為了應(yīng)對(duì)此排放法規(guī)的實(shí)施,現(xiàn)在部分廠家已經(jīng)開始采用電控高壓共軌系統(tǒng)替代直列泵、電控單體泵、電控軸向柱塞分配泵等傳統(tǒng)的電控燃油噴射系統(tǒng)。
隨著電控高壓共軌系統(tǒng)的采用,諸如噴油壓力、主噴正時(shí)、主噴油量、預(yù)噴正時(shí)、預(yù)噴油量等標(biāo)定變量均可調(diào)節(jié),這將導(dǎo)致標(biāo)定工程師難以找到最佳的標(biāo)定變量組合同時(shí)滿足非道路用柴油機(jī)的設(shè)計(jì)指標(biāo)和耐久性約束條件。此外,傳統(tǒng)的標(biāo)定方法,如單變量搜索法或者單變量掃值法,一次只針對(duì)一個(gè)標(biāo)定變量進(jìn)行優(yōu)化,對(duì)于多個(gè)標(biāo)定變量其結(jié)果只是不同組合的相對(duì)最優(yōu)解,其標(biāo)定結(jié)果未必能夠使得發(fā)動(dòng)機(jī)的性能達(dá)到最優(yōu)狀態(tài)。
現(xiàn)今多數(shù)的發(fā)動(dòng)機(jī)優(yōu)化標(biāo)定,首先采用非參數(shù)式的建模方法(如支持向量機(jī)、徑向基函數(shù)、神經(jīng)網(wǎng)絡(luò)等)擬合標(biāo)定模型,然后采用智能優(yōu)化算法(如遺傳算法、蟻群算法、模擬退火算法等)進(jìn)行尋優(yōu)[2-10],最后通過試驗(yàn)驗(yàn)證優(yōu)化的有效性。但是非參數(shù)式模型不能輸出描述模型結(jié)構(gòu)或模型系統(tǒng)的信息[11],并且采用這種方法的不足還在于需要大量的試驗(yàn)數(shù)據(jù)來擬合模型[12],模型的精度由對(duì)象、建模所用數(shù)據(jù)量以及模型參數(shù)調(diào)整共同決定[13]。遺傳算法、自適應(yīng)神經(jīng)模糊推理算法等智能優(yōu)化算法也存在理論復(fù)雜、算法本身的參數(shù)優(yōu)化問題、過早收斂等問題[14]。
傳統(tǒng)的多項(xiàng)式建模方法在模型的復(fù)雜性和計(jì)算效率上具有良好的折中,廣泛用于柴油機(jī)標(biāo)定的擬合模型、經(jīng)驗(yàn)?zāi)P鸵话阆拗茷槎A多項(xiàng)式[11]。響應(yīng)曲面法(response surface methodology,RSM)是利用合理的試驗(yàn)設(shè)計(jì)方法并通過試驗(yàn)得到一定數(shù)據(jù),采用多元二次回歸方程來擬合因子與響應(yīng)值之間的函數(shù)關(guān)系,通過對(duì)回歸方程的分析來尋求最優(yōu)參數(shù),解決多變量問題的一種統(tǒng)計(jì)方法。國內(nèi)外的學(xué)者采用RSM對(duì)發(fā)動(dòng)機(jī)的性能優(yōu)化、標(biāo)定以及建模等方面進(jìn)行了相關(guān)研究。Mallamo等[15]使用RSM優(yōu)化了一臺(tái)非道路帶共軌燃油系統(tǒng)的柴油機(jī)性能。在優(yōu)化中使用了4個(gè)標(biāo)定因子(主噴正時(shí)、預(yù)噴2持續(xù)期、預(yù)噴1正時(shí)、預(yù)噴1持續(xù)期),每個(gè)因子具有3個(gè)水平值,對(duì)氮氧化物(nitrogen oxides,NOx)、微粒(particulate matter,PM)、噪聲以及有效燃油消耗率進(jìn)行了優(yōu)化。Dvorak等[16]以缸徑、行程、進(jìn)氣歧管長(zhǎng)度、進(jìn)氣歧管截面積、進(jìn)氣門直徑以及排氣門直徑為因子,以功率為響應(yīng),利用響應(yīng)曲面法優(yōu)化了發(fā)動(dòng)機(jī)的性能。Montgomery等[17]利用RSM以噴油壓力、增壓壓力、排氣再循環(huán)(exhaust gas recirculation,EGR)率、噴油正時(shí)以及多次噴射參數(shù)為因子,對(duì)重載柴油機(jī)的NOx、氮氧化物+碳?xì)洌╪itrogen oxides + hydrocarbon,NOx+HC)、PM排放以及有效燃油消耗率進(jìn)行了優(yōu)化。Lee等[18-19]也做了類似的研究。Win等[20]針對(duì)單缸柴油機(jī)利用RSM設(shè)計(jì)了以柴油機(jī)轉(zhuǎn)速、負(fù)荷以及噴油正時(shí)為因子,以柴油機(jī)輻射噪聲、有效燃油消耗率、煙度、HC以及NOx排放為響應(yīng)的全析因試驗(yàn)方案,研究了各個(gè)因子對(duì)輸出響應(yīng)的影響關(guān)系,并進(jìn)行了優(yōu)化。Qin等[21]、劉振明等[22]基于響應(yīng)曲面近似模型對(duì)高壓共軌柴油機(jī)噴射系統(tǒng)參數(shù)進(jìn)行了優(yōu)化設(shè)計(jì),得到了噴油系統(tǒng)參數(shù)的最優(yōu)組合。此外,Ghasemiazar 等[23]通過試驗(yàn)設(shè)計(jì)與RSM方法對(duì)非道路車輛的振動(dòng)進(jìn)行了敏感性分析,并進(jìn)行了優(yōu)化。
由于非道路用柴油機(jī)的排放限制低于道路用柴油機(jī)的相關(guān)標(biāo)準(zhǔn),因此,在非道路用柴油機(jī)標(biāo)定優(yōu)化的方面研究相對(duì)較少。為此,針對(duì)處于標(biāo)定階段的一款非道路用高壓共軌柴油機(jī),采用RSM對(duì)其設(shè)計(jì)點(diǎn)進(jìn)行了優(yōu)化標(biāo)定研究。選取對(duì)柴油機(jī)性能影響較大的4個(gè)標(biāo)定變量:主噴油量、預(yù)噴油量、主噴正時(shí)以及噴油壓力,在最大轉(zhuǎn)矩轉(zhuǎn)速1 600 r/min全負(fù)荷工況,以設(shè)計(jì)指標(biāo)轉(zhuǎn)矩與有效燃油消耗率、以表征最低冒煙限制的空燃比(其值不小于17.5)以及耐久性約束條件最高氣缸壓力與排氣歧管氣體溫度為響應(yīng)[24];在額定功率轉(zhuǎn)速2 600 r/min全負(fù)荷工況,也以設(shè)計(jì)指標(biāo)功率與有效燃油消耗率、空燃比、最高氣缸壓力以及最高排氣歧管氣體溫度為響應(yīng),選取各試驗(yàn)因子合理的水平值,基于Minitab軟件利用響應(yīng)曲面設(shè)計(jì)分別得到轉(zhuǎn)速1 600與2 600 r/min下的試驗(yàn)設(shè)計(jì)矩陣,并進(jìn)行了相應(yīng)的試驗(yàn),得到了各響應(yīng)的二階響應(yīng)面回歸模型,以響應(yīng)曲面圖的形式分析了4個(gè)標(biāo)定變量對(duì)柴油機(jī)性能的影響,并分別以目標(biāo)轉(zhuǎn)矩和目標(biāo)功率為定目標(biāo)、在有效燃油消耗率最小、空燃比最大以及最高氣缸壓力和排氣歧管氣體溫度為約束的原則下,得出了4個(gè)標(biāo)定變量相應(yīng)的取值,并通過試驗(yàn)驗(yàn)證了優(yōu)化方法的有效性。
試驗(yàn)機(jī)型配備中國寧波威孚天力增壓技術(shù)有限公司的HP48排氣旁通渦輪增壓器,燃油供給系統(tǒng)采用中國重汽集團(tuán)重慶燃油噴射系統(tǒng)有限公司的共軌系統(tǒng)。利用中國常州易控汽車電子有限公司的ECKA標(biāo)定軟件對(duì)該發(fā)動(dòng)機(jī)進(jìn)行噴油參數(shù)調(diào)整。該機(jī)型的基本設(shè)計(jì)參數(shù)見表1。其他的臺(tái)架設(shè)備包括中國杭州弈科機(jī)電公司的WE31N水渦流測(cè)功機(jī)、FCM瞬態(tài)油耗測(cè)量?jī)x以及EIM0311D測(cè)控儀,奧地利·AVL公司的GH13P預(yù)熱塞式缸內(nèi)壓力傳感器、AVL microIFEM電荷放大器、AVL622燃燒分析儀,中國上海同圓發(fā)動(dòng)機(jī)測(cè)試設(shè)備有限公司的TOCEIL- LFE300進(jìn)氣流量計(jì),美國OMEGA儀器儀表有限公司的K型熱電偶以及英國德魯克有限公司的PTX1400與中國杭州聚控科技有限公司的HJK-007壓力變送器等,設(shè)備的量程、精度以及不確定度具體見表2所示。
表1 發(fā)動(dòng)機(jī)基本設(shè)計(jì)參數(shù)
表2 測(cè)試設(shè)備的主要特性參數(shù)
在轉(zhuǎn)速1 600和2 600 r/min下,分別選取主噴油量、預(yù)噴油量、主噴正時(shí)以及噴油壓力4個(gè)因子合理的水平值,實(shí)際值與相應(yīng)的編碼水平如表3所示。實(shí)際值與編碼水平的相互轉(zhuǎn)換公式為:
式中actual為因子的實(shí)際值;min為因子的最小值;max為因子的最大值;coded為因子的編碼值。
Box-Behnken設(shè)計(jì)是響應(yīng)曲面設(shè)計(jì)的方法之一,適用于因素?cái)?shù)在3~7個(gè)范圍內(nèi)的試驗(yàn),其主要優(yōu)點(diǎn)是試驗(yàn)次數(shù)少,效率較高,且所有因素不會(huì)同時(shí)處于高水平。由于主噴油量、預(yù)噴油量、主噴正時(shí)以及噴油壓力4個(gè)標(biāo)定變量均處于高水平時(shí),可能導(dǎo)致過低的空燃比、過高的氣缸壓力。因此,基于Minitab軟件采用Box-Behnken設(shè)計(jì)方法,按照表3的因子水平,在轉(zhuǎn)速1 600 r/min下,以轉(zhuǎn)矩、有效燃油消耗率、空燃比、最高氣缸壓力以及最高排氣歧管氣體溫度為響應(yīng);在轉(zhuǎn)速2 600 r/min下,以功率、有效燃油消耗率、空燃比、最高氣缸壓力以及排氣歧管氣體溫度為響應(yīng),分別進(jìn)行相應(yīng)的試驗(yàn)設(shè)計(jì)。為了盡可能減小試驗(yàn)誤差以及提高模型的擬合精度,在2個(gè)轉(zhuǎn)速下均仿行3次,根據(jù)試驗(yàn)設(shè)計(jì),每個(gè)轉(zhuǎn)速均進(jìn)行81次試驗(yàn),其中72個(gè)試驗(yàn)點(diǎn)是析因點(diǎn),9個(gè)試驗(yàn)點(diǎn)為區(qū)域的中心點(diǎn)。
表3 轉(zhuǎn)速1 600與2 600 r/min時(shí)Box-Behnken設(shè)計(jì)各因子水平值
考慮到燃燒噴射系統(tǒng)的控制和響應(yīng)精度,預(yù)噴壓力不作單獨(dú)設(shè)置,而是與主噴噴油壓力相等。在電子控制單元(electronic control unit,ECU)控制策略中,預(yù)噴噴油壓力與主噴噴油壓力均使用相同的控制脈譜,通過調(diào)節(jié)共軌壓力設(shè)定值來改變噴油壓力。已有的研究表明,預(yù)噴正時(shí)對(duì)有柴油機(jī)的動(dòng)力性和經(jīng)濟(jì)性影響相對(duì)較小[25-26],而主要影響柴油機(jī)的噪聲、燃燒過程以及污染物排放[27-31],因此,在此研究中,并未考慮預(yù)噴正時(shí)對(duì)柴油機(jī)各性能參數(shù)的影響。
2.1 建立模型
一般來講,二階模型對(duì)于用來近似大多數(shù)發(fā)動(dòng)機(jī)系統(tǒng)設(shè)計(jì)問題中的真實(shí)響應(yīng)曲面已經(jīng)足夠[11],因此根據(jù)上述的Box-Behnken設(shè)計(jì),進(jìn)行相應(yīng)的試驗(yàn),并基于逐步法對(duì)因子與響應(yīng)之間的關(guān)系進(jìn)行了二階多項(xiàng)式擬合,分別得到了轉(zhuǎn)速1 600和2 600 r/min下各響應(yīng)基于因子實(shí)際值的回歸模型。
在轉(zhuǎn)速1 600 r/min時(shí),各響應(yīng)的二階回歸模型如式(2)~(6)所示:
式(2)~(6)中tq為轉(zhuǎn)矩,N×m;e為有效燃油消耗率,g/(kW?h);為空燃比;max為最高氣缸壓力,MPa;r為排氣歧管氣體溫度,℃;Q為主噴油量,mg;Q為預(yù)噴油量,mg;T為主噴正時(shí),℃A(曲軸轉(zhuǎn)角,上止點(diǎn)前);P為噴油壓力,MPa。
在轉(zhuǎn)速2 600 r/min時(shí),各響應(yīng)的二階回歸模型如式(7)~(11)所示:
式(7)中e為功率,kW。
2.2 模型評(píng)價(jià)
為了保證模型的適應(yīng)性和準(zhǔn)確性,還需對(duì)其進(jìn)行預(yù)測(cè)能力的評(píng)估,一般是對(duì)回歸模型進(jìn)行顯著性檢驗(yàn)[32],常采用決定系數(shù)2與調(diào)整決定系數(shù)2 adj來評(píng)估回歸模型的逼近程度,以及采用預(yù)測(cè)決定系數(shù)2 pred來評(píng)估回歸模型的預(yù)測(cè)能力。
式中ST為總平方和;SR為回歸平方和;SE為殘差平方和;為響應(yīng)面的預(yù)測(cè)值;i為第次觀測(cè)時(shí)的響應(yīng)真實(shí)值;為響應(yīng)值的均值;為試驗(yàn)設(shè)計(jì)的排列運(yùn)行次數(shù)或者觀測(cè)數(shù)。2是完全擬合的度量值,反映了響應(yīng)面符合給定數(shù)據(jù)的程度,通常要求2值在0.9以上。
式中為模型中回歸系數(shù)的個(gè)數(shù)。2 adj表示全部自變量與因變量的相關(guān)程度,調(diào)整決定系數(shù)越接近1回歸效果越好。僅僅2有較大的值也不能說明模型擬合的很好,因?yàn)槿绻o原有模型增加其他的項(xiàng),無論該項(xiàng)是否具有統(tǒng)計(jì)意義,總能使2的值增加。
式中PRESS為預(yù)測(cè)誤差的平方和;?是在第次觀測(cè)時(shí)的響應(yīng)預(yù)測(cè)值,它是用在擬合中獨(dú)缺第次觀測(cè)值時(shí)構(gòu)造的擬合器回歸模型所進(jìn)行的預(yù)測(cè)。2 pred表示用個(gè)觀測(cè)值的所有排列運(yùn)行擬合成的原始回歸模型的預(yù)測(cè)能力。2 pred是一個(gè)比2 adj和2更為實(shí)際和更為有用的評(píng)判指標(biāo),可以用來判斷回歸模型的質(zhì)量。一般來講,對(duì)于一個(gè)精度可接受的模型,2 pred的值應(yīng)大于0.8~0.9,另外,2 pred與2的值之間不應(yīng)該相差大于0.2~0.3[33]。
對(duì)各響應(yīng)曲面模型的評(píng)估結(jié)果見表4所示??梢钥闯?,2、2 adj、2 pred的值均在0.92以上,并且各個(gè)響應(yīng)曲面模型的2 pred與2的差值均小于0.2,這說明所得到的各響應(yīng)曲面模型對(duì)試驗(yàn)結(jié)果具有很好的一致性和預(yù)測(cè)能力。
表4 轉(zhuǎn)速1 600與2 600 r/min時(shí)各響應(yīng)曲面模型評(píng)估
2.3 標(biāo)定變量對(duì)轉(zhuǎn)矩與功率的影響
由于篇幅的限制,只給出了在轉(zhuǎn)速1 600與2 600 r/min時(shí)4個(gè)標(biāo)定變量分別對(duì)轉(zhuǎn)矩與功率影響的曲面響應(yīng)圖,如圖1、圖2所示。從圖1a可見,在轉(zhuǎn)速1 600 r/min時(shí),預(yù)噴油量和主噴油量的變化對(duì)轉(zhuǎn)矩的影響均較大,轉(zhuǎn)矩隨著二者的增大而增大,這是由于在其他參數(shù)不變時(shí),預(yù)噴油量增大,預(yù)噴燃燒階段的放熱量增大,提高了缸內(nèi)燃?xì)鉁囟?,為主噴燃燒反?yīng)提供了較好的熱氛圍;隨著主噴油量的增大,柴油機(jī)做功能力增強(qiáng),轉(zhuǎn)矩增大。從圖1b可見,相對(duì)于主噴油量,主噴正時(shí)對(duì)轉(zhuǎn)矩的影響較小,并存在一個(gè)最佳的主噴正時(shí)使得轉(zhuǎn)矩最大,這是因?yàn)橹鲊娬龝r(shí)增大,使得整個(gè)燃燒過程前移,放熱率峰值更加靠近上止點(diǎn),最高氣缸壓力上升,循環(huán)熱效率提高,但是,過大的主噴正時(shí)使得活塞上行時(shí)產(chǎn)生更多的壓縮負(fù)功,所以轉(zhuǎn)矩降低。從圖1c可見,相對(duì)于主噴油量,噴油壓力對(duì)轉(zhuǎn)矩的影響較小,也存著一個(gè)最佳的噴油壓力使得轉(zhuǎn)矩最大,這是因?yàn)樵? 600 r/min時(shí),較高的噴油壓力改善了油束的空間霧化,增加了油束的動(dòng)能,強(qiáng)烈的卷吸效果提高了空氣利用率,高壓噴射縮短了燃油的噴射持續(xù)期,同時(shí)高質(zhì)量的可燃混合氣的形成過程和燃燒過程又縮短了擴(kuò)散燃燒期,噴油壓力升高使得燃燒更加充分;但是對(duì)于特定的燃燒室,噴油壓力并不是越高越好,需要噴油系統(tǒng)、進(jìn)氣系統(tǒng)和燃燒室的合理匹配才能獲得最佳的動(dòng)力性。從圖1d可見,相對(duì)于主噴正時(shí),預(yù)噴油量對(duì)轉(zhuǎn)矩的影響較大,也存在一個(gè)最佳的主噴正時(shí)使得轉(zhuǎn)矩最大。從圖1e可見,噴油壓力與預(yù)噴油量的變化對(duì)轉(zhuǎn)矩的影響均相對(duì)較小,也存在一個(gè)最佳的噴油壓力使得轉(zhuǎn)矩最大。從圖1f可見,在其他參數(shù)不變時(shí),噴油壓力與主噴正時(shí)的變化對(duì)轉(zhuǎn)矩的影響不明顯,但均存在一個(gè)最佳值使得轉(zhuǎn)矩最大。由以上分析可知,在最大轉(zhuǎn)矩工況,欲獲得良好的動(dòng)力性,需在增加預(yù)噴油量與主噴油量的同時(shí),配合合理的主噴正時(shí)與噴油壓力。
從圖2可見,在轉(zhuǎn)速2 600 r/min時(shí),除噴油壓力對(duì)功率的影響不同之外,其他3個(gè)因子對(duì)功率的影響與在轉(zhuǎn)速1 600 r/min時(shí)對(duì)轉(zhuǎn)矩的影響均相同。從圖2c、2e以及2f可見,噴油壓力升高,功率增大,這主要是因?yàn)樵诟咿D(zhuǎn)速時(shí),缸內(nèi)的氣體流動(dòng)更加劇烈,隨著噴油壓力的增大,燃油霧化質(zhì)量及噴射速率均得以提高,燃油與空氣混合更加充分,燃燒進(jìn)一步改善,因而功率增大。由圖2還可以看出,在額定工況,欲獲得較大的目標(biāo)功率,需在增加預(yù)噴油量與主噴油量的同時(shí),提高噴油壓力,并合理調(diào)節(jié)主噴正時(shí)。
注:在4個(gè)標(biāo)定變量中,以其中2個(gè)標(biāo)定參數(shù)為變量作響應(yīng)曲面圖時(shí),剩余2個(gè)標(biāo)定變量保持在中心點(diǎn)水平。下同。
圖2 轉(zhuǎn)速2 600 r/min時(shí)標(biāo)定變量對(duì)功率的曲面響應(yīng)圖
2.4 優(yōu)化與驗(yàn)證
在分析了4個(gè)標(biāo)定變量分別對(duì)轉(zhuǎn)矩與功率的影響規(guī)律之后,利用前面得到的各響應(yīng)二階回歸模型,基于Minitab軟件RSM的響應(yīng)優(yōu)化器,分別對(duì)這2個(gè)典型運(yùn)行工況的性能進(jìn)行了優(yōu)化標(biāo)定。
在響應(yīng)優(yōu)化器中,每個(gè)響應(yīng)轉(zhuǎn)換成無量綱的合意性參數(shù),的范圍在0~1之間。=0表示該響應(yīng)完全不可接受;=1表示該響應(yīng)非常理想。每個(gè)響應(yīng)根據(jù)問題的屬性可以選擇不優(yōu)化、最大化、目標(biāo)或者最小化。每個(gè)響應(yīng)值根據(jù)特性的合意性函數(shù)進(jìn)行變換得到,即:
對(duì)于最小化,當(dāng)Y≤Low,d=1;當(dāng)Y≥High,d=0;當(dāng)Low<Y<High時(shí),
對(duì)于最大化,當(dāng)Y≤Low,d=0;當(dāng)Y≥High,d=1;當(dāng)Low<Y<High時(shí),
;
對(duì)于目標(biāo),當(dāng)Y<Low,d=0;當(dāng)Y>Low,
1)當(dāng)Low<Y<T,
2)當(dāng)T<Y<High,
;
上述方程中表示響應(yīng);表示響應(yīng)值,表示示響應(yīng)的下限值;表示響應(yīng)的上限值;表示響應(yīng)的目標(biāo)值;表示響應(yīng)的權(quán)重。權(quán)重定義響應(yīng)合意性函數(shù)的 形狀,其取值范圍為0.1~10,小于1表示減小對(duì)目標(biāo)的強(qiáng)調(diào),等于1表示將目標(biāo)和上下限視為同等重要,大于1表示加大對(duì)目標(biāo)的強(qiáng)調(diào)。
對(duì)于多個(gè)響應(yīng)的優(yōu)化,在計(jì)算得到單個(gè)響應(yīng)的合意性d之后,將這些合意性組合在一起以度量多響應(yīng)系統(tǒng)的復(fù)合合意性,以(0≤≤1)表示,是單個(gè)響應(yīng)合意性的加權(quán)幾何均值,其計(jì)算公式為:
式中表示響應(yīng)的個(gè)數(shù),表示響應(yīng)的重要度。的取值介于0.1和10之間,較大的值對(duì)應(yīng)于較重要的響應(yīng);較小的值對(duì)應(yīng)較不重要的響應(yīng);如果所有響應(yīng)都同等重要,則取值為1。通過設(shè)置不同的重要性值來將響應(yīng)信息合并到最優(yōu)解中。通過使最大化來確定最優(yōu)解[34-35]。
在轉(zhuǎn)速1 600與2 600 r/min時(shí),分別設(shè)置相應(yīng)的優(yōu)化準(zhǔn)則、不同的權(quán)重與重要度,得到同時(shí)滿足設(shè)計(jì)指標(biāo)、最低冒煙限制以及耐久性約束條件的各因子值的組合,選取復(fù)合合意性最高的權(quán)重與重要度組合,如表5所示,得到各因子相應(yīng)的值,也即標(biāo)定變量的組合。在轉(zhuǎn)速1 600 r/min時(shí),復(fù)合合意性最高為0.9758,此時(shí)主噴油量為40.5 mg,預(yù)噴油量為1.20 mg,主噴正時(shí) 9.9 ℃A,噴油壓力為82.0 MPa;在轉(zhuǎn)速2 600 r/min時(shí),復(fù)合合意性最高為0.9777,此時(shí)主噴油量為32.0 mg,預(yù)噴油量為 4.20 mg,主噴正時(shí)11.6 ℃A,噴油壓力為146.4 MPa。
表5 轉(zhuǎn)速1 600與2 600 r/min時(shí)優(yōu)化準(zhǔn)則及期望響應(yīng)的設(shè)置
注:轉(zhuǎn)矩的目標(biāo)值設(shè)為200 N?m;功率的目標(biāo)值設(shè)為40 kW。
Note: The target value of torque was set to 200 N?m and the target value of power was set to 40 kW.
為了驗(yàn)證預(yù)測(cè)優(yōu)化的結(jié)果,在轉(zhuǎn)速1 600與2 600 r/min分別進(jìn)行了相應(yīng)的標(biāo)定試驗(yàn),標(biāo)定變量設(shè)為優(yōu)化之后得出的取值,每個(gè)工況重復(fù)3次,取其平均值。表6列出了轉(zhuǎn)速1 600與2 600 r/min的試驗(yàn)值、預(yù)測(cè)值以及偏差百分比。由表6可見:根據(jù)優(yōu)化得出的標(biāo)定變量組合在2個(gè)轉(zhuǎn)速下分別達(dá)到了相應(yīng)的設(shè)計(jì)指標(biāo),并且有效燃油消耗率也分別優(yōu)于相應(yīng)的設(shè)計(jì)值,空燃比均高于最低冒煙限制值17.5,表征耐久性約束條件的最高氣缸壓力與排氣歧管氣體溫度也均低于相應(yīng)的設(shè)計(jì)極限;試驗(yàn)值與預(yù)測(cè)值的偏差很小,最大偏差不超過3.07%,這表明利用響應(yīng)曲面法得出的各響應(yīng)二階回歸模型能夠反映因子與響應(yīng)值之間的相關(guān)性,模型具有很好的預(yù)測(cè)精度。
1)基于響應(yīng)曲面法建立的柴油機(jī)各二階響應(yīng)面回歸模型具有良好的準(zhǔn)確性和預(yù)測(cè)能力,2、2 adj、2 pred的值均在0.92以上,試驗(yàn)值與預(yù)測(cè)值的最大偏差不超過3.07 %。
2)在2個(gè)典型工況下,優(yōu)化之后得出的標(biāo)定變量組合分別使得該非道路用高壓共軌柴油機(jī)在最大轉(zhuǎn)矩工況的轉(zhuǎn)矩達(dá)到了200.7 N?m,此時(shí)的有效燃油消耗率為 224.3 g/(kW?h),空燃比為17.77,最高氣缸壓力為 12.93 MPa,排氣歧管氣體溫度為543.6 ℃;在額定功率工況功率達(dá)到了40.1 kW,此時(shí)的有效燃油效率為 241.7 g/(kW?h),空燃比為18.77,最高氣缸壓力為12.14 MPa,排氣歧管氣體溫度為625.3 ℃。結(jié)果表明:將響應(yīng)曲面法用于非道路用柴油機(jī)設(shè)計(jì)點(diǎn)的優(yōu)化標(biāo)定是可行的;非道路用高壓共軌柴油機(jī)達(dá)到了相應(yīng)的設(shè)計(jì)指標(biāo),同時(shí)保證了空燃比與耐久性約束條件在許可的范圍之內(nèi)。
[1] GB 20891-2014,非道路移動(dòng)機(jī)械用柴油機(jī)排氣污染物排放限值及測(cè)量方法(中國第三、四階段)[S]. 北京:中國環(huán)境科學(xué)出版社,2014.
[2] 張斌,李見波,吳淑梅. 基于Matlab的柴油機(jī)建模及歐-VI標(biāo)定方法研究[J]. 內(nèi)燃機(jī)工程,2016,37(2):101-104. Zhang bin, Li Jianbo, Wu Shumei. Investigation on diesel engine modeling based on Matlab and EU VI calibration method[J]. Chinese Internal Combustion Engine Engineering, 2016, 37(2): 101-104. (in Chinese with English abstract)
[3] Kakaee A H, Rahnama P, Paykani A, et al. Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption[J]. Journal of Central South University of Technology, 2015, 22(11): 4235-4245.
[4] Alonso J M, Alvarruiz F, Desantes J M, et al. Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 46–55.
[5] Kim M, Liechty M P, Reitz R D. Application of micro-genetic algorithms for the optimization of injection strategies in a heavy-duty diesel engine[R/OL]. SAE Technical Paper, 2005. http://dx.doi.rog/10.4271/2005-01- 0219.
[6] Hiroyasu T, Miki M, Kim M, et al. Reduction of heavy duty diesel engine emission and fuel economy with multi- objective genetic algorithm and phenomenological model [R/OL]. SAE Technical Paper, 2004. http://dx.doi.rog/ 10.4271/2004-01-0531.
[7] Yun H, Reitz R D. An experimental study on emissions optimization using micro-genetic algorithms in a HSDI diesel engine[R/OL]. SAE Technical Paper, 2003. http://dx.doi.rog/ 10.4271/2003-01-0347.
[8] Ge H W, Shi Y, Reitz R D, et al. Optimization of a HSDI diesel engine for passenger cars using a multi-objective genetic algorithm and multi-dimensional modeling[J/OL]. SAE International Journal of Engines, 2009, 2(2009-01- 0715): 691-713. http://dx.doi.rog/10.4271/2009-01-0715.
[9] Ge H W, Shi Y, Reitz R D, et al. Heavy-duty diesel combustion optimization using multi-objective genetic algorithm and multi-dimensional modeling[R/OL]. SAE Technical Paper, 2009. http://dx.doi.rog/10.4271/2009-01- 0716.
[10] Meyer S, Greff A. New calibration methods and control systems with artificial neural networks[R/OL]. SAE Technical Paper, 2002. http://dx.doi.rog/10.4271/2002-01- 1147.
[11] Xin Qianfan. Diesel Engine System Design[M]. Cambridge , Woodhead, 2011.
[12] 劉福水,仇滔,劉興華,等. 基于模型的電控柴油機(jī)標(biāo)定技術(shù)[J]. 車用發(fā)動(dòng)機(jī),2005(6):1-4. Liu Fushui, Qiu Tao, Liu Xinghua, et al. Model based calibration for electronic controlled diesel engine[J]. Vehicle Engine, 2005(6): 1-4. (in Chinese with English abstract)
[13] 韓強(qiáng),楊福源,張京永,等. 用于標(biāo)定和優(yōu)化的高壓共軌柴油機(jī)建模[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2004,44(11):1524-1527. Han Qiang, Yang Fuyuan, Zhang Jingyong, et al. High pressure common rail diesel engine modelling for calibration and optimization[J]. Journal of Tsinghua University: Science and Technology, 2004, 44(11): 1524-1527. (in Chinese with English abstract)
[14] 徐寧,李春光,張健,等. 幾種現(xiàn)代優(yōu)化算法的比較研究[J]. 系統(tǒng)工程與電子技術(shù),2002,24(12):100–103. Xu Ning, Li Chunguang, Zhang Jian, et al. Studies on some modern optimization algorithms[J]. Systems Engeering and Electronics, 2002, 24(12): 100-103. (in Chinese with English abstract)
[15] Mallamo F, Badami M, Millo F. Application of the design of experiments and objective functions for the optimization of multiple injection strategies for low emissions in CR diesel engines[R/OL]. SAE Technical Paper, 2004. http://dx.doi. rog/10.4271/2004-01-0123.
[16] Dvorak T M, Hoekstra R L. Optimizing internal combustion engine performance through response surface methodology [R/OL]. SAE Technical Paper, 1996. http://dx.doi.rog/ 10.4271/962525.
[17] Montgomery D T, Reitz R D. Optimization of heavy-duty diesel engine operating parameters using a response surface method[R/OL]. SAE Technical Paper, 2000. http://dx. doi.rog/10.4271/2000-01-1962.
[18] Lee T, Reitz R D. The effects of split injection and swirl on a HSDI diesel engine equipped with a common rail injection system[R/OL]. SAE Technical Paper, 2003. http://dx.doi. rog/10.4271/2003-01-0349.
[19] Lee T, Reitz R D. Response surface method optimization of a high-speed direct-injection diesel engine equipped with a common rail injection system[J]. Journal of engineering for gas turbines and power, 2003, 125(2): 541-546.
[20] Win Z, Gakkhar R P, Jain S C, et al. Parameter optimization of a diesel engine to reduce noise, fuel consumption, and exhaust emissions using response surface methodology[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219(10): 1181-1192.
[21] Qin J W, Chang H B, Shao L M. Optimization design injection system parameters of common rail diesel engine using response surface methodology[C]//System Science, Engineering Design and Manufacturing Informatization (ICSEM), 2011 International Conference on. IEEE, 2011, 1: 324–328.
[22] 劉振明,邵利民,歐陽光耀. 基于近似模型的共軌柴油機(jī)噴射系統(tǒng)參數(shù)優(yōu)化研究[J]. 內(nèi)燃機(jī)工程,2012,32(6): 63-67.
Liu Zhenming, Shao Limin, Ouyang Guangyao. Optimization study on injection system parameters of common rail diesel engine based on approximate model[J]. Chinese Internal Combustion Engine Engineering, 2012, 32(6): 63-67. (in Chinese with English abstract)
[23] Ghasemiazar R, Azadi S. Sensitivity analysis and optimization of an off road car vibration performance using DOE and RSM methods[R/OL]. SAE Technical Paper, 2012. http://dx.doi.rog/10.4271/2012-01-1186.
[24] 王俊,申立中,王貴勇,等. 基于參變量掃值的非道路用 柴油機(jī)增壓匹配[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(17):63-70. Wang Jun, Shen Lizhong, Wang Guiyong, et al. Turbocharger matching for non-road diesel engine based on parametric sweeping[J]. Transaction of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2014, 30(17): 63-70. (in Chinese with English abstract)
[25] 尹必峰,王佳,何建光,等. 輕型柴油機(jī)預(yù)混合低溫燃燒路徑優(yōu)化試驗(yàn)及分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(15):83-92.
Yin Bifeng, Wang Jia, He Jiangguang, et al. Experiment and analysis on path optimization of low-temperature premixed combustion for light-duty vehicle diesel engine[J]. Transaction of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2014, 30(15): 83-92. (in Chinese with English abstract)
[26] 譚靖宇,石秀勇,陳泓,等. 燃油噴射參數(shù)對(duì)高壓共軌柴油機(jī)性能的影響[J]. 上海汽車,2012 (3):20-25. Tan Jingyu, Shi Xiuyong, Chen Hong, et al. Effects of fuel injection parameters on the performance of high pressure common rail diesel engine[J]. Shanghai Auto, 2012 (3): 20-25. (in Chinese with English abstract)
[27] Zhang L. A study of pilot injection in a DI diesel engine[R/OL]. SAE Technical Paper, 1999. http://dx.doi.rog/ 10.4271/1999-01-3493.
[28] Yoon H, Yeom K, Bae C. The effects of pilot injection on combustion in dimethyl-ether (DME) direct injection compression ignition engine[R/OL]. SAE Technical Paper, 2007. http://dx.doi.rog/10.4271/2007-24-0118.
[29] Cheng X, Chen L, Yan F, et al. Investigations of split injection strategies for the improvement of combustion and soot emissions characteristics based on the two-color method in a heavy-duty diesel engine[R/OL]. SAE Technical Paper, 2013. http://dx.doi.rog/10.4271/2013-01-2523.
[30] Carlucci P, Ficarella A, Laforgia D. Effects of pilot injection parameters on combustion for common rail diesel engines[R/OL]. SAE Technical Paper, 2003. http://dx.doi. rog/10.4271/2003-01-0700.
[31] Carlucci P, Ficarella A, Chiara F, et al. Preliminary studies on the effects of injection rate modulation on the combustion noise of a common rail diesel engine[R/OL]. SAE Technical Paper, 2004. http://dx.doi.rog/10.4271/2004-01-1848.
[32] 代翠,孔繁余,董亮,等. 基于響應(yīng)面法的離心泵作透平水力和聲學(xué)性能優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(15):40-47. Dai Cui, Kong Fanyu, Dong Liang, et al. Hydraulic and acoustic property optimization for centrifugal pump as turbine based on response surface method[J]. Transaction of the Chinese Society of Agricultural Engineering (Transaction of the CSAE), 2015, 31(15): 40–47. (in Chinese with English abstract)
[33] 辛千凡. 柴油發(fā)動(dòng)機(jī)系統(tǒng)設(shè)計(jì)[M]. 上海:上海科學(xué)技術(shù)文獻(xiàn)出版社,2015.
[34]Pandian M, Sivapirakasam S P, Udayakumar M. Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology[J]. Applied Energy, 2011, 88(8): 2663-2676.
[35] Hirkude J B, Padalkar A S. Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology[J]. Fuel, 2014, 119: 266-273.
Optimizing calibration of design points for non-road high pressure common rail diesel engine base on response surface methodology
Wang Jun1, Shen Lizhong1※, Yang Yongzhong2, Bi Yuhua1, Wan Mingding1
(1.650500; 2.650500)
China Stage III emission standard for diesel engine of non-road mobile machinery has been executed since April 1, 2016. Some manufactures have begun to adopt a high pressure common rail system to cope with this emission regulation. Fuel injection parameters can be adjusted flexibly by using the high pressure common rail system. Therefore, combustion process can be improved. However, it brings the problem of increasing the workload of the calibration and optimization significantly. With the increasing of calibration variables, the calibration combinations will increase exponentially. The traditional calibration method, such as the single variable search method or the single variable sweep method, their calibration results may not be able to make the engine to achieve best performance, especially when the number of calibration parameters is more than two. Nowadays, a majority of optimization calibration methods are using a non-parametric modeling method to fit the calibration model and optimizing the calibration model by using an intelligent optimization algorithm. However, the non-parametric modeling method cannot give the descriptions of the model structure or the model coefficients. Meanwhile, it needs a large number of test data to fit an accurate calibration model. Moreover, the non-parametric modeling method and the intelligent optimization algorithm are both very complex. A polynomial modeling method has a good compromise between complexity and computational efficiency of the model. Therefore, in allusion to the calibration stage of a non-road high pressure common rail diesel engine, 4 calibration variables, i.e., main injection quantity, pilot injection quantity, main injection timing and injection pressure, were chosen as the factors. The non-road diesel engine design index and related constraint parameters were chosen as the responses at the peak torque speed of 1 600 r/min and the rated power speed of 2 600 r/min, respectively. The reasonable factor levels of the design of experiments (DoE) were selected. By using the response surface methodology (RSM) of Box-Behnken design, the DoE matrices were obtained at the engine speed of 1 600 r/min and 2 600 r/min, respectively. Meanwhile, the corresponding test was conducted according to the experiment design. The second order regression models of all the responses were got and evaluated. The interaction effects of the 4 calibration parameters on engine performance were investigated by using the RSM. The corresponding optimization was conducted respectively at the engine speed of 1 600 and 2 600 r/min taking the target torque and target power as the setting target under the principle of the minimum brake specific fuel consumption, the maximum air-to-fuel ratio, the minimum peak cylinder pressure and gas temperature of exhaust manifold. The combination of calibration variables was obtained at 2 engine speeds, and the proposed method was verified by experiments. The results showed that all the quadratic response surface regression models had a good accuracy and a good predictive ability. The determination coefficient2, the adjusted determination coefficient2, and the prediction determination coefficient2were all above 0.92. The maximum error between test value and predicted value was less than 3.07 %. With the optimized calibration parameters, the peak torque and the rated power of the non-road high pressure common rail diesel engine reached 200.7 N?m and 40.1 kW, respectively. The engine achieved the design index, and moreover, the brake specific fuel consumption, air-to-fuel ratio, peak cylinder pressure, and gas temperature of exhaust manifold were all under the range of acceptance. It is feasible to optimize the diesel engine design point by using the RSM.
diesel engines; calibration; optimization; non-road; high pressure common rail; response surface method
10.11975/j.issn.1002-6819.2017.03.005
TK422
A
1002-6819(2017)-03-0031-09
2016-06-02
2016-12-12
國家自然科學(xué)基金項(xiàng)目(51466003,51666005)
王 俊,男,四川綿陽人,博士生,主要從事內(nèi)燃機(jī)增壓技術(shù)研究。昆明昆明理工大學(xué)云南省內(nèi)燃機(jī)重點(diǎn)實(shí)驗(yàn)室,650500。 Email:zjwj1121@163.com
申立中,男,云南昆明人,教授,博士生導(dǎo)師,主要從事內(nèi)燃機(jī)工作過程及增壓技術(shù)研究。昆明昆明理工大學(xué)云南省內(nèi)燃機(jī)重點(diǎn)實(shí)驗(yàn)室,650500。Email:lzshen@foxmail.com
王 俊,申立中,楊永忠,畢玉華,萬明定.基于響應(yīng)曲面法的非道路用高壓共軌柴油機(jī)設(shè)計(jì)點(diǎn)優(yōu)化標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):31-39. doi:10.11975/j.issn.1002-6819.2017.03.005 http://www.tcsae.org
Wang Jun, Shen Lizhong, Yang Yongzhong, Bi Yuhua, Wan Mingding.Optimizing calibration of design points for non-road high pressure common rail diesel engine base on response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 31-39. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.03.005 http://www.tcsae.org