亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ACE抑制肽構(gòu)效關(guān)系及其酶法制備的研究進(jìn)展

        2017-03-03 03:29:58張?zhí)m威程大友
        食品科學(xué) 2017年3期

        林 凱,韓 雪,張?zhí)m威,2,*,譙 飛,程大友

        (1.哈爾濱工業(yè)大學(xué)化工與化學(xué)學(xué)院,黑龍江 哈爾濱 150090;2.中國海洋大學(xué)食品科學(xué)與工程學(xué)院,山東 青島 266003)

        ACE抑制肽構(gòu)效關(guān)系及其酶法制備的研究進(jìn)展

        林 凱1,韓 雪1,張?zhí)m威1,2,*,譙 飛1,程大友1

        (1.哈爾濱工業(yè)大學(xué)化工與化學(xué)學(xué)院,黑龍江 哈爾濱 150090;2.中國海洋大學(xué)食品科學(xué)與工程學(xué)院,山東 青島 266003)

        高血壓是一種全球性的公共健康問題。血管緊張素轉(zhuǎn)換酶(angiotensin converting enzyme,ACE)作為一種二肽縮肽酶,通過腎素-血管緊張素系統(tǒng)和激肽釋放酶-激肽系統(tǒng)(kallikrein-kinin system,KKS)對血壓進(jìn)行調(diào)節(jié)。近年來,已有許多從各種食源蛋白中獲得ACE抑制肽的研究報(bào)道。相比于化學(xué)合成藥物,食源性蛋白獲得的ACE抑制肽在治療高血壓方面更具安全性和溫和性。許多研究已經(jīng)探討了食源性降壓肽的構(gòu)效關(guān)系,尤其是多肽一級序列對活性的影響。目前,最常用于制備ACE抑制肽的方式是酶催化水解蛋白,包括使用單酶或復(fù)合酶對蛋白進(jìn)行水解。本文將主要對ACE抑制肽構(gòu)效關(guān)系和酶法制備ACE抑制肽的研究進(jìn)展進(jìn)行綜述,以期為獲得優(yōu)良的ACE抑制肽產(chǎn)品提供理論指導(dǎo)。

        血管緊張素轉(zhuǎn)換酶抑制肽;降壓機(jī)制;構(gòu)效關(guān)系;酶法制備

        高血壓作為一種慢性疾病是導(dǎo)致許多疾病的誘因,如中風(fēng)、心肌梗塞、心力衰竭、動脈瘤和晚期腎病等[1]。血管緊張素Ⅰ轉(zhuǎn)換酶(angiotensin Ⅰ-converting enzyme,ACE,EC 3.4.15.1)在血壓調(diào)節(jié)系統(tǒng)腎素-血管緊張素系統(tǒng)(renin-angiotensin system,RAS)和激肽釋放酶-激肽系統(tǒng)(kallikrein-kinin system,KKS)中起著重要作用[2]。ACE能夠催化血管緊張素-Ⅰ轉(zhuǎn)變成致使血管收縮的血管緊張素Ⅱ,同時(shí)將具有使血管舒張作用的緩激肽失活,從而導(dǎo)致血壓升高。因此,抑制ACE活性能夠提高緩激肽的濃度并降低血管緊張素Ⅱ的產(chǎn)生,從而能夠有效地降低血壓并且預(yù)防和治療高血壓及其相關(guān)疾病[3-4]。目前,化學(xué)合成的ACE抑制藥物在臨床方面具有顯著的降壓效果,如卡托普利(半抑制濃度(50% inhibitory concentration,IC50)=23 nmol/L)、依那普利(IC50=1.2 nmol/L)和賴諾普利(IC50=1.2 nmol/L)[5]。但該類藥物通常會導(dǎo)致味覺失調(diào)、咳嗽和皮疹等副作用[3]。因此尋找一種無毒性、天然的、經(jīng)濟(jì)可行的替代物成為了必然趨勢。最早報(bào)道天然的ACE抑制肽是從蛇毒液中分離得到的[6]。大量研究表明,天然蛋白中富含各種功能肽,通過酶解法將生物活性多肽從蛋白體中水解釋放已被廣泛研究,其中ACE抑制肽的制備獲得了廣泛的關(guān)注[7]。目前,ACE抑制肽已從豌豆[8]、羽扇豆[9]、裙帶菜[10]、大豆[11]、小球藻[12]和牦牛乳酪蛋白[13-14]等許多蛋白源中通過酶解作用分離純化得到。本文將從ACE抑制肽的降壓機(jī)制、構(gòu)效關(guān)系及酶法制備ACE抑制肽的方法方面進(jìn)行討論綜述。

        1 ACE概述

        人體中含有兩種ACE:體細(xì)胞ACE(somatic ACE,sACE)[15]和睪丸細(xì)胞ACE(testis ACE,tACE)[16-17],其均為同一基因編碼,長度為21 kb,含有26 個(gè)外顯子和25 個(gè)內(nèi)含子。較長的sACE由1~12號和14~26號外顯子翻譯表達(dá),較短的tACE由13~26號外顯子翻譯表達(dá)[18]。sACE是一種單分子結(jié)構(gòu)的膜結(jié)合糖蛋白,由1 306 個(gè)氨基酸殘基組成,其分為4 個(gè)特征區(qū)域,分別為信號肽(甲硫氨酸(methionine,Met)1~丙氨酸(alanine,Ala)29)、功能域(亮氨酸(leucine,Leu)30~精氨酸(arginine,Arg)1256)、跨膜結(jié)構(gòu)(纈氨酸(valine,Val)1257~絲氨酸(serine,Ser)1277)、胞內(nèi)區(qū)(谷氨酰胺(glutamine,Gln)1278~Ser1306)[19],功能域又分割成兩個(gè)同源結(jié)構(gòu)域,分別含有612個(gè)和600個(gè)氨基酸殘基,兩個(gè)同源結(jié)構(gòu)域通過15個(gè)氨基酸序列連接。每個(gè)同源結(jié)構(gòu)域均含有Zn2+結(jié)合模體HEXXH(H代表組氨酸(histidine,His);E代表谷氨酸(glutamate,G l u),X代表任意氨基酸殘基)催化活性位點(diǎn)(圖1),其中His、Gln和一分子H2O形成四面體配位結(jié)構(gòu)與Zn2+配位[20]。盡管兩個(gè)催化位點(diǎn)都具有催化水解血管緊張素-Ⅰ和緩激肽的功能,但是似乎只有C端結(jié)構(gòu)域在調(diào)節(jié)血壓方面起作用,研究也證明C端結(jié)構(gòu)域是主要的血管緊張素-Ⅰ的催化位點(diǎn)[21]。具有功能活性的sACE的天然構(gòu)象是以螺旋結(jié)構(gòu)為其優(yōu)勢構(gòu)象,立體結(jié)構(gòu)中含有61個(gè)α螺旋、17個(gè)β折疊和14個(gè)β轉(zhuǎn)角,在半胱氨酸(cysteine,Cys)157~Cys165、Cys757~Cys763、Cys957~Cys975、Cys1143~Cys1155處含有4個(gè)二硫鍵維持空間構(gòu)型穩(wěn)定,其3D結(jié)構(gòu)如圖2所示。同樣,tACE是一種低分子質(zhì)量膜結(jié)合糖蛋白,含有732個(gè)氨基酸殘基,除N端的36個(gè)氨基酸殘基是其特有之外,其余與sACE的C末端右半部分結(jié)構(gòu)相同[22]。

        圖1 sACE和tACE一級結(jié)構(gòu)示意圖[[2233]]Fig.1 Schematic representation for the primary structure of sACE and tACE[23]

        圖2 人ACE晶體結(jié)構(gòu)[[1199]]Fig.2 Crystal structure of human ACE[19]

        2 ACE抑制肽降壓機(jī)制

        ACE是一種二肽羧肽酶,屬于鋅金屬蛋白酶,需要鋅離子和氯離子維持其活性[24]。ACE在RAS和KKS中起著重要作用,其中RAS為升壓系統(tǒng),KKS為降壓系統(tǒng),二者在血壓調(diào)節(jié)方面互為拮抗體系。ACE能將RAS中由腎素分解釋放出的無活性十肽——血管緊張素-Ⅰ的C末端的二肽(His-Leu),切除生成具有使血管收縮功能的血管緊張素-Ⅱ,致使血管平滑肌收縮。同時(shí),促進(jìn)醛固酮的分泌并導(dǎo)致水鈉滯留,從而引起血壓迅速升高[25]。降壓系統(tǒng)KKS中舒緩肽能夠增加前列腺素和NO的生成,導(dǎo)致血管舒張并降低外周血管阻力從而降低血壓[26]。然而ACE能夠切除KKS中緩激肽C末端的二肽(苯丙氨酸(phenylalanine,Phe)-Arg)使其失活[27],導(dǎo)致該系統(tǒng)處于抑制狀態(tài)。綜合這兩者的作用致使血壓迅速升高[28]。ACE作用機(jī)制如圖3所示。

        圖3 ACE在RAS和KKS中的調(diào)節(jié)Fig.3 Regulatory function of ACE in the RAS and KKS

        因此如果能夠抑制ACE的活性,就能夠?qū)崿F(xiàn)降壓效果。不同抑制肽的結(jié)構(gòu)會導(dǎo)致不同的ACE抑制類型。研究表明大多數(shù)ACE抑制肽屬于競爭性抑制[29],其能夠與ACE活性位點(diǎn)結(jié)合以阻止底物與其結(jié)合。但也有研究發(fā)現(xiàn)ACE抑制肽為非競爭性抑制[30-31],其與底物結(jié)合位點(diǎn)之外的結(jié)合位點(diǎn)相結(jié)合,形成酶-抑制劑復(fù)合物,從而導(dǎo)致ACE構(gòu)象改變,阻止其催化生成血管緊張素-Ⅱ[32]。通過以上兩種抑制形式抑制ACE活性,從而降低血壓。

        3 ACE抑制肽構(gòu)效關(guān)系

        圖4 ACE-賴諾普利、依那普利拉、卡托普利-酶復(fù)合物活性位點(diǎn)結(jié)合示意圖[44][44]Fig.4 Schematic of ACE active sites in the form of enzyme-lisinopril, enalaprilat and captopril complexes[44]

        sACE多肽鏈由接頭片段鏈接兩個(gè)金屬肽酶結(jié)構(gòu)域,分別是C端結(jié)構(gòu)域和N端結(jié)構(gòu)域,這兩個(gè)結(jié)構(gòu)域除了在多糖含量[33]和所需氯離子的最大激活濃度[34]不同外,展現(xiàn)了高度的序列相似性及相同的空間構(gòu)象。ACE的C端活性位點(diǎn)呈現(xiàn)凹槽結(jié)構(gòu)并在末端具有“帽子”結(jié)構(gòu),用于蓋住活性位點(diǎn)通道[35]。其結(jié)構(gòu)域催化部位含有3 個(gè)催化活性位點(diǎn),分別為S1、S1’和S2’,這些催化位點(diǎn)均具有明顯的疏水性,圖4為ACE與3 種典型ACE抑制藥物賴諾普利、依那普利拉和卡托普利活性位點(diǎn)結(jié)合示意圖。由于ACE的C端結(jié)構(gòu)域是疏水性環(huán)境,所以抑制肽中疏水性氨基酸的含量,決定了其是否具有較高的ACE抑制活性[36],并且S1、S1’和S2’具有其各自的親和殘基,所以抑制肽的活性很大程度上依賴于其C末端的倒數(shù)3 個(gè)氨基酸殘基的種類。研究表明,當(dāng)ACE抑制肽C末端倒數(shù)3 個(gè)氨基酸殘基中含有色氨酸(tryptophan,Trp)、Tyr、Phe和Pro時(shí),該抑制肽具有較高的ACE抑制活性[37]。除此之外,在具有ACE抑制活性的肽的N末端也經(jīng)常發(fā)現(xiàn)含有Ile和Val[38]。更精確的構(gòu)效關(guān)系研究發(fā)現(xiàn),當(dāng)C末端倒數(shù)第二個(gè)氨基酸為脂肪族氨基酸(如Val、Ile、Ala)、堿性和芳香族氨基酸(如Tyr、Phe)時(shí)[39],或C末端氨基酸為芳香族氨基酸(Trp、Tyr、Phe)、脂肪族氨基酸(Ile、Ala、Leu、Met)時(shí)[40]多肽更具ACE抑制活性。然而研究也發(fā)現(xiàn)當(dāng)C末端倒數(shù)第二個(gè)氨基酸為Pro或C末端氨基酸為Glu時(shí)卻很大程度上降低了肽的ACE抑制活性[41]。Wu Jianping等[42]通過對制備的二肽和三肽考察了其ACE抑制活性,驗(yàn)證了對于二肽結(jié)構(gòu)中當(dāng)氨基酸殘基帶有芳香環(huán)并且側(cè)鏈具有疏水性時(shí),如含有Phe、Tyr和Trp時(shí)具有較高的抑制活性。對于三肽,最有效的抑制結(jié)構(gòu)是C末端為芳香族氨基酸殘基,中間為帶正電荷氨基酸殘基,N末端為疏水性氨基酸殘基。同時(shí),對于3 個(gè)結(jié)構(gòu)域均有各自專一親和的氨基酸殘基,如S1親和芳香族氨基酸和Pro,S1’親和Ala、Val和Leu,S2’親和Ile[43]。

        4 酶法制備ACE抑制肽

        由于多肽序列整合在蛋白質(zhì)分子中不具有生物活性,然而經(jīng)酶催化水解作用使其釋放出來后,這些多肽即能展現(xiàn)其特異的生物活性[45]。目前,制備生物活性肽最常用的方法是蛋白酶催化水解原料蛋白質(zhì),其優(yōu)點(diǎn)在于反應(yīng)條件溫和、綠色安全、水解程度可控和能夠制備特定生物活性肽等優(yōu)點(diǎn)[7]。在水解過程中,蛋白酶按其特異的酶切位點(diǎn)將蛋白質(zhì)分子酶切形成不同長短和序列的多肽,并且形成各異的功能特性。酶法水解蛋白制備ACE抑制肽可以使用單一酶或復(fù)合酶作用蛋白,其中利用復(fù)合酶水解蛋白可采用順序加入或同時(shí)加入的方式進(jìn)行水解[46]。

        4.1 單酶水解制備ACE抑制肽

        目前,常用于水解蛋白制備ACE抑制肽的酶有胰蛋白酶(EC 3.4.21.4)、胰凝乳蛋白酶(EC 3.4.21.1)、蛋白酶K(EC 3.4.21.64)、木瓜蛋白酶(EC 3.4.22.2)、堿性蛋白酶(3.4.21.62)、胃蛋白酶(3.4.23.1)和嗜熱菌蛋白酶(EC 3.4.24.27)等[47]。由于每種蛋白酶具有其特異的酶切位點(diǎn),因此根據(jù)ACE抑制肽分子結(jié)構(gòu)特點(diǎn)選擇合適的酶進(jìn)行蛋白水解,能夠更有效地獲得ACE抑制肽。

        Mao Xueying等[13]利用堿性蛋白酶水解牦牛奶酪蛋白制備了ACE抑制肽,研究發(fā)現(xiàn)在水解4 h時(shí),水解物具有最高的ACE抑制活性。對該組分進(jìn)行10 kD和6 kD超濾處理后發(fā)現(xiàn),具有高ACE抑制活性物質(zhì)集中在低于6 kD水解物中,對其進(jìn)行分離純化測序后發(fā)現(xiàn)兩條新的ACE抑制肽,分別為PPEIN和PLPLL,IC50值分別為(0.29±0.01)mg/mL和(0.25±0.01)mg/mL。構(gòu)效關(guān)系研究認(rèn)為,當(dāng)多肽C末端為疏水性氨基酸時(shí)能夠有效提高其與ACE的結(jié)合和抑制活性,PLPLL多肽符合這一結(jié)構(gòu)特征。但對于仍具有較高ACE抑制活性的PPEIN并不具有該結(jié)構(gòu)特征。但Gobbetti等[48]的研究可以解釋這一結(jié)果,研究發(fā)現(xiàn)酪蛋白源的多肽中疏水性氨基酸占比大于60%時(shí),該多肽即具有較高的抑制活性。目前已有許多利用堿性蛋白酶水解食源性蛋白獲得生物活性肽的報(bào)道[49-51]。堿性蛋白酶屬于絲氨酸S8胞內(nèi)蛋白酶族,其有廣泛的特異性酶切位點(diǎn),能夠?qū)he、Leu、Trp和Tyr鏈接肽鍵的C末端進(jìn)行酶切[52]。由于堿性蛋白酶特有的酶切特性,其酶解產(chǎn)生的肽C末端常帶有疏水性氨基酸,這種結(jié)構(gòu)符合具有高ACE抑制活性肽的特點(diǎn)。同時(shí)蛋白的水解程度也是影響多肽是否具有高ACE抑制活性的重要因素[53],研究發(fā)現(xiàn)堿性蛋白酶能夠獲得較短的肽段,而相較與長肽,短肽更具有潛在的ACE抑制活性[54]。同時(shí)研究發(fā)現(xiàn),經(jīng)堿性蛋白酶水解獲得的ACE抑制肽具有抗腸胃酶消化的特性,能夠被小腸直接吸收,在體內(nèi)展現(xiàn)ACE抑制活性從而有效治療高血壓[55]。di Bernardini等[56]利用木瓜蛋白酶水解牛胸肉肌質(zhì)蛋白,37 ℃條件下水解24 h后,發(fā)現(xiàn)經(jīng)3 kD超濾滲透液的ACE抑制率達(dá)40.64%(蛋白質(zhì)量濃度為1.48 mg/mL),遠(yuǎn)高于未經(jīng)超濾處理的水解液的ACE抑制率49.82%(蛋白質(zhì)量濃度為12.68 mg/mL)。通過質(zhì)譜分析在小于3 kD的水解液中鑒定出6種多肽。根據(jù)構(gòu)效關(guān)系分析這6種多肽可知,INDPFIDLHYM和RGDLGIEIPAEKVF的C末端具有堿性氨基酸Met和Phe;INPNSLFDIQVK和RGDLGIEIPAEKVF在C末端倒數(shù)第二個(gè)氨基酸均具有Val;GGWQMEEADDWLR和GWQMEEADDWLR在末端位置含有Leu,這些結(jié)構(gòu)特點(diǎn)均使得3 kD的透過液具有較高的ACE抑制活性。Li Huan等[57]也利用木瓜蛋白酶對豌豆蛋白進(jìn)行水解,同樣獲得了較高ACE抑制活性的多肽。木瓜蛋白酶也是被經(jīng)常用作水解蛋白生產(chǎn)ACE抑制肽的一種蛋白酶,其具有廣泛的特異性酶切位點(diǎn),例如Leu和Gly等堿性氨基酸,這些堿性氨基酸具有疏水性側(cè)鏈,能夠有效促進(jìn)具有ACE抑制肽的產(chǎn)生[55]。WuShangguang等[58]使用中性蛋白酶水解蜥魚肌肉蛋白,通過一系列純化方式得到了RVCLP多肽,其IC50值為175 μmol/L。該多肽C末端的疏水性氨基酸Pro是使其具有較高ACE抑制活性的重要原因。目前,已有利用胰蛋白酶水解酪蛋白生產(chǎn)出具有ACE抑制活性的十二肽,并已將其作為降壓功能食品添加劑[59]。胰蛋白酶的特異性酶切位點(diǎn)主要傾向于堿性氨基酸,同時(shí)在C末端也會產(chǎn)生帶正點(diǎn)氨基酸肽段,這兩者均增加了其ACE抑制活性[60]。因此利用蛋白酶水解蛋白制備ACE抑制肽時(shí),需要考慮酶的特異性酶切位點(diǎn)和其酶切活性。He Rong等[61]利用蛋白酶水解油菜籽蛋白制備ACE抑制肽時(shí)發(fā)現(xiàn),使用堿性蛋白酶、嗜熱菌蛋白酶和蛋白酶K相較于風(fēng)味蛋白酶能有產(chǎn)生更多低分子質(zhì)量肽段,主要是由于這3 種酶具有更高的內(nèi)切酶活性,同時(shí)獲得的小分子肽也使得其具有更高的ACE抑制活性。近年來,也有使用嗜熱菌蛋白酶[62]、胰凝乳蛋白酶[55]和胃蛋白酶[63]水解蛋白制備ACE抑制肽的報(bào)道。這些蛋白酶均能水解產(chǎn)生較高ACE抑制活性的多肽,主要的共同點(diǎn)也是能夠在多肽C末端特異性酶切產(chǎn)生疏水性氨基酸或者芳香族氨基酸,而根據(jù)具有ACE抑制活性的肽結(jié)構(gòu)分析,這些C末端氨基酸能夠有效提高ACE抑制肽抑制活性。因此在利用蛋白酶進(jìn)行水解蛋白制備ACE抑制肽時(shí),根據(jù)具有高活性ACE抑制肽的結(jié)構(gòu)特點(diǎn)考查蛋白酶的特異性酶切位點(diǎn)和酶切活性,能夠有效提高ACE抑制肽的制備。表1列舉近年來了利用單酶水解不同蛋白源制備ACE抑制肽的研究,從已得到的ACE抑制肽序列可以發(fā)現(xiàn),在C端序列中均含有疏水性氨基酸,其可以與疏水性的ACE催化活性位點(diǎn)更具親和性,從而具有ACE抑制活性。

        表1 單酶水解不同蛋白源制備的ACE抑制肽Table1 Preparation of ACE peptides derived from different proteins using a single enzyme

        4.2 復(fù)合酶水解制備ACE抑制肽

        單酶水解蛋白制備ACE抑制肽時(shí),由于酶所固有的酶切位點(diǎn)而使其獲得的ACE抑制肽具有一定的局限性。目前,已有采用兩種或兩種以上的蛋白酶順次或同時(shí)水解蛋白制備ACE抑制肽的研究。由于各種蛋白酶具有不同的酶切位點(diǎn),多種酶對蛋白進(jìn)行復(fù)合水解可以進(jìn)行互補(bǔ)切割,從而得到單一酶無法獲得的新型ACE抑制肽。

        Yamada等[71]使用了堿性蛋白酶+中性蛋白酶+胰蛋白酶同時(shí)加入的方式水解牛乳酪蛋白制備ACE抑制肽。體外實(shí)驗(yàn)發(fā)現(xiàn)該復(fù)合酶水解物ACE抑制活性IC50值為74 μg/mL,同時(shí)該水解物利用灌胃原發(fā)性高血壓鼠(spontaneously hypertensive rats,SHRs)進(jìn)行體內(nèi)實(shí)驗(yàn),發(fā)現(xiàn)連續(xù)28 d灌胃使得SHRs收縮壓(systolic bloodpressure,SBP)增長速率降低。對該水解物進(jìn)行了純化分離,獲得了αs2-酪蛋白源的新型三肽MKP,其IC50值為0.12 μg/mL。體內(nèi)實(shí)驗(yàn)發(fā)現(xiàn),MKP可以瞬時(shí)明顯降低SHRs的SBP,具有良好的降壓活性。對于該三肽MKP結(jié)構(gòu)分析可知,其N端和C端為疏水性氨基酸Met和Pro,中間為帶正電荷氨基酸Lys,因此該三肽能夠易于與ACE結(jié)合,從而具備良好的ACE抑制活性。Li Peng等[72]使用胃蛋白酶和胰蛋白酶順序水解的方式對開心果提取蛋白進(jìn)行了水解,并分離純化得到具有較高ACE抑制活性的五肽ACKEP(IC50=126 μmol/L)。同時(shí)計(jì)算模擬了該五肽與ACE結(jié)合的機(jī)制,研究發(fā)現(xiàn)ACKEP的C末端的脯氨酸殘基與賴諾普利和依那普利C末端結(jié)構(gòu)相同,并且脯氨酸殘基中咪唑環(huán)與ACE活性中心氨基酸殘基更具親和特性[73],從而導(dǎo)致該活性肽與ACE結(jié)合及抑制其活性方面具有顯著效果。Rui等[74]使用堿性蛋白酶+風(fēng)味蛋白酶和堿性蛋白酶+木瓜蛋白酶組合順次加入的方式對菜豆蛋白進(jìn)行水解制備ACE抑制肽進(jìn)行了研究。結(jié)果發(fā)現(xiàn),使用堿性蛋白酶+木瓜蛋白酶水解得到的水解產(chǎn)物相比于堿性蛋白酶+風(fēng)味蛋白酶水解得到的水解產(chǎn)物具有更高的ACE抑制活性。這主要是由于堿性蛋白酶與木瓜蛋白酶酶切位點(diǎn)互補(bǔ),獲得更多ACE抑制肽。而當(dāng)加入風(fēng)味蛋白酶后,雖然增加了蛋白水解度,但同時(shí)卻降低了水解物的ACE抑制活性,其原因可能是由于風(fēng)味蛋白酶繼續(xù)降解了具有活性的肽段使其失活。首先,在使用復(fù)合酶水解蛋白制備ACE抑制肽時(shí),單一考察蛋白水解度不能全面反映ACE抑制肽活性的增強(qiáng)或減弱。其次使用復(fù)合酶水解時(shí),選擇恰當(dāng)?shù)牡鞍酌笇Ξa(chǎn)生高ACE抑制活性多肽也是至關(guān)重要。風(fēng)味蛋白酶作為一種外肽酶,容易切斷多肽末端疏水氨基酸殘基,而根據(jù)構(gòu)效關(guān)系分析,末端疏水性氨基酸殘基是決定該多肽是否具有ACE抑制活性的關(guān)鍵因素[14]。因此,風(fēng)味蛋白的后續(xù)加入致使具有ACE抑制活性的多肽結(jié)構(gòu)受到破壞,從而降低整體抑制活性。Ambigaipalan等[75]采用復(fù)合酶順次加入的方法對椰棗子蛋白提取物進(jìn)行水解制備ACE抑制肽,獲得的水解物的ACE抑制活性大小依次為堿性蛋白酶+嗜熱菌蛋白酶<堿性蛋白酶+風(fēng)味蛋白酶<風(fēng)味蛋白酶+嗜熱菌蛋白酶<堿性蛋白酶+風(fēng)味蛋白酶+嗜熱菌蛋白酶。由此可知,雖然復(fù)合酶水解可以獲得單酶水解所無法獲得的新型ACE抑制肽,但是由于多種酶具有各自的酶切位點(diǎn),所以在酶切過程中存在將已產(chǎn)生具有ACE抑制活性的肽繼續(xù)水解而使其失活的現(xiàn)象。Pedroche等[76]在使用堿性蛋白酶+風(fēng)味蛋白酶順次水解鷹嘴豆蛋白制備ACE抑制肽時(shí),同樣發(fā)現(xiàn)使用風(fēng)味蛋白酶使得水解物的ACE抑制活性下降的現(xiàn)象。因此,在使用復(fù)合酶進(jìn)行水解時(shí),應(yīng)考慮各種蛋白酶酶切位點(diǎn)的交叉性,確保已產(chǎn)生具有ACE抑制活性結(jié)構(gòu)的多肽不被進(jìn)一步破壞從而降低其生物活性。隨著對ACE抑制肽廣泛的研究以及各種蛋白一級序列數(shù)據(jù)庫的完善,利用計(jì)算機(jī)模擬復(fù)合酶水解蛋白產(chǎn)生ACE抑制肽對實(shí)際實(shí)驗(yàn)具有較好的指導(dǎo)作用。目前,模擬酶切蛋白分析活性肽的數(shù)據(jù)庫主要有ProtParam、Blast、ExPASyPeptideCutter和BIOPEP。已有報(bào)道利用模擬酶切分析各種食源性蛋白獲得各類活性肽如ACE抑制肽、抗凝血肽、抗氧化肽和二肽基肽酶抑制肽的研究[77-81]。Lafarga等[82]利用BIOPEP數(shù)據(jù)庫選定了5種酶即菠蘿蛋白酶、嗜熱菌蛋白酶、胃蛋白酶、無花果蛋白酶和木瓜蛋白酶,對豬肉蛋白包括血紅蛋白、膠原蛋白和血清白蛋白進(jìn)行模擬酶切預(yù)測分析。分析結(jié)果表明豬肉蛋白是生產(chǎn)生物活性肽良好的來源,能夠產(chǎn)生較多在治療高血壓方面起到重要作用的ACE、腎素和二肽基肽酶抑制肽。因此,在使用復(fù)合酶水解蛋白制備ACE抑制肽方面,如果進(jìn)行先期計(jì)算模擬水解,能在提高抑制肽抑制活性和抑制肽產(chǎn)量方面均有良好的先期指導(dǎo)作用,避免了在ACE抑制肽篩選純化工作量大的缺點(diǎn),將酶解位點(diǎn)、蛋白一級序列和最終獲得具有高ACE抑制活性肽結(jié)構(gòu)之間建立直接聯(lián)系,消除酶解過程中的盲目性和不確定性。表2列舉近年利用復(fù)合酶水解不同蛋白源制備ACE抑制肽的信息。

        表2 復(fù)合酶水解不同蛋白源制備的ACE抑制肽Table2 Preparation of ACE peptides derived from different proteins using a combination of different enzymes

        目前,使用復(fù)合酶水解蛋白制備ACE抑制肽還處于簡單的酶組合階段,并沒有考慮對復(fù)合酶的酶切位點(diǎn)進(jìn)行先期理論設(shè)計(jì),以避免對活性肽段的重復(fù)切割問題。因此,在使用復(fù)合酶水解制備ACE抑制肽時(shí),在確保分離純化得到較高ACE抑制肽的同時(shí),應(yīng)充分利用已建立起來的模擬酶切數(shù)據(jù)庫,保證獲得更多有活性的ACE抑制活性肽段。利用計(jì)算機(jī)計(jì)算模擬酶切過程將成為未來復(fù)合酶酶解蛋白制備生物活性肽的關(guān)注熱點(diǎn)。

        5 ACE抑制肽體內(nèi)活性的評價(jià)

        目前測定蛋白水解物或肽的降壓活性通常采用體外ACE抑制活性進(jìn)行評價(jià),但體外ACE抑制活性的評價(jià)結(jié)果還需通過體內(nèi)抑制活性進(jìn)行進(jìn)一步驗(yàn)證[92]。ACE抑制肽體內(nèi)活性主要使用SHRs進(jìn)行評價(jià),主要考察其SBP和舒張壓的變化情況。Kontani等[93]從大米蛋白水解物中分離純化得到的ACE抑制肽IHRF有效地降低了SHRs的SBP。當(dāng)以5 mg/kg(以體質(zhì)量計(jì),下同)劑量灌胃7 h后SBP下降了18 mmHg,以15 mg/kg劑量灌胃后SBP下降了39 mmHg。研究表明該抑制肽在體內(nèi)也展現(xiàn)了抑制活性。García-Tejedor等[94]驗(yàn)證了不同給藥量(3、7、10 mg/kg)的乳鐵蛋白源的兩種多肽(DPYKLRP和LRP)在體內(nèi)抑制活性,研究發(fā)現(xiàn)這兩種抑制肽在體內(nèi)展現(xiàn)的抑制活性與給藥量呈正相關(guān)性。此外,通過構(gòu)建小腸上皮細(xì)胞模型,考察ACE抑制肽穿過小腸黏膜的吸收、轉(zhuǎn)運(yùn)和代謝的情況,可以間接對ACE抑制肽能否在體內(nèi)發(fā)揮活性進(jìn)行評價(jià)[95]。Caco-2源于人結(jié)腸癌細(xì)胞,能夠形成與人小腸上皮細(xì)胞相類似的微絨毛結(jié)構(gòu),同時(shí)表達(dá)出與小腸上皮細(xì)胞相同的特征酶類[96]。VPP和IPP是由瑞士乳桿菌發(fā)酵乳中分離出具有ACE抑制活性的肽,祝倩等[97]通過Caco-2細(xì)胞模擬小腸吸收細(xì)胞分析了其對VPP和IPP的吸收轉(zhuǎn)運(yùn)機(jī)制,研究發(fā)現(xiàn)VPP和IPP屬于旁路運(yùn)輸?shù)男∧c轉(zhuǎn)運(yùn)途徑,具有較高的生物利用度,能夠在體能發(fā)揮降壓活性。Ding Long等[98]也建立了Caco-2細(xì)胞模型,評價(jià)了蛋清中獲得的ACE抑制肽TNGIIR的轉(zhuǎn)運(yùn)機(jī)制,研究發(fā)現(xiàn)該抑制肽能夠以完整的狀態(tài)穿過Caco-2細(xì)胞單分子層,其運(yùn)輸方式也屬于旁路運(yùn)輸,表明該抑制肽具有抗消化作用的能力并且能夠直接在體內(nèi)發(fā)揮降壓作用。因此,除了體外測定多肽的ACE抑制活性外,體內(nèi)生物活性的評價(jià)及其抗消化特性和轉(zhuǎn)運(yùn)機(jī)制也是鑒定多肽是否具有ACE抑制活性的重要指標(biāo)。

        6 結(jié) 語

        盡管利用可食用蛋白源制備具有降壓功能的ACE抑制肽已經(jīng)引起關(guān)注,但其結(jié)構(gòu)特性及其抑制肽構(gòu)效關(guān)系還需進(jìn)一步深入研究,為發(fā)現(xiàn)新型ACE抑制肽提供基礎(chǔ)。在選擇復(fù)合酶進(jìn)行水解時(shí),利用計(jì)算機(jī)進(jìn)行模擬水解,考察酶切位點(diǎn)的互補(bǔ)性與交叉性,最大限度獲得高活性、大量的ACE抑制肽是該研究領(lǐng)域的新熱點(diǎn)。同時(shí),為保障最終實(shí)現(xiàn)高效產(chǎn)業(yè)化生產(chǎn),在利用蛋白酶催化水解蛋白制備ACE抑制肽過程中的可控定點(diǎn)水解,特異性高效制備ACE抑制活性肽等方面也將成為該研究領(lǐng)域的新方向。

        [1] LIN L, LV S, LI B. Angiotensin-Ⅰ-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates[J]. Food Chemistry, 2012, 131(1): 225-230. DOI:10.1016/ j.foodchem.2011.08.064.

        [2] ONDETTI M, RUBIN B, CUSHMAN D. Design of specif i c inhibitors of angiotensin converting enzyme: new class of orally active antihypertensive agents[J]. Science, 1977, 196: 441-444. DOI:10.1126/ science.191908.

        [3] BOUGATEF A, NEDJAR-ARROUME N, RAVALLEC-PL R, et al. Angiotensin Ⅰ-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinellaaurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases[J]. Food Chemistry, 2008, 111(2): 350-356. DOI:10.1016/ j.foodchem.2008.03.074.

        [4] ERDMANN K, CHEUNG B W, SCHR?DER H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease[J]. The Journal of Nutritional Biochemistry, 2008, 19(10): 643-654. DOI:10.1016/j.jnutbio.2007.11.010.

        [5] YU Y, HU J, MIYAGUCHI Y, et al. Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin[J]. Peptides, 2006, 27(11): 2950-2956. DOI:10.1016/j.peptides.2006.05.025.

        [6] FERREIRA S H, BARTELT D C, GREENE L J. Isolation of bradykinin-potentiating peptides from Bothrops jararac avenom[J]. Biochemistry, 1970, 9(13): 2583-2593. DOI:10.1021/bi00815a005.

        [7] PHELAN M, AHERNE A, FITZGERALD R J, et al. Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status[J]. International Dairy Journal, 2009, 19(11):643-654. DOI:10.1016/j.idairyj.2009.06.001.

        [8] TERASHIMA M, BABA T, IKEMOTO N, et al. Novel angiotensinconverting enzyme (ACE) inhibitory peptides derived from boneless chicken leg meat[J]. Journal of Agricultural and Food Chemistry, 2010, 58(12): 7432-7436. DOI:10.1021/jf100977z.

        [9] BOSCHIN G, SCIGLIUOLO G M, RESTA D, et al. ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes[J]. Food Chemistry, 2014, 145(7): 34-40. DOI:10.1016/ j.foodchem.2013.07.076.

        [10] SUETSUNA K, MAEKAWA K, CHEN J R. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats[J]. The Journal of Nutritional Biochemistry, 2004, 15(5): 267-272. DOI:10.1016/ j.jnutbio.2003.11.004.

        [11] KUBA M, TANA C, TAWATA S, et al. Production of angiotensin I-converting enzyme inhibitory peptides from soybean protein with Monascus purpureus acid proteinase[J]. Process Biochemistry, 2005, 40(6): 2191-2196. DOI:10.1016/j.procbio.2004.08.010.

        [12] KO S C, KANG N, KIM E A, et al. A novel angiotensin I-converting enzyme (ACE) inhibitory peptide from a marine Chlorella ellipsoidea and its antihypertensive effect in spontaneously hypertensive rats[J]. Process Biochemistry, 2012, 47(12): 2005-2011. DOI:10.1016/ j.procbio.2012.07.015.

        [13] MAO X Y, NI J R, SUN W L, et al. Value-added utilization of yak milk casein for the production of angiotensin-Ⅰ-converting enzyme inhibitory peptides[J]. Food Chemistry, 2007, 103(4): 1282-1287. DOI:10.1016/j.foodchem.2006.10.041.

        [14] JIANG J, CHEN S, REN F, et al. Yak milk casein as a functional ingredient: preparation and identif i cation of angiotensin-Ⅰ-converting enzyme inhibitory peptides[J]. Journal of Dairy Research, 2007, 74(1):18-25. DOI:10.1017/S0022029906002056.

        [15] FABRIS B, CHEN B, PUPIC V, et al. Inhibition of angiotensinconverting enzyme (ACE) in plasma and tissue[J]. Journal of Cardiovascular Pharmacology, 1990, 15(Suppl 2): 6-13. DOI:10.1097/00005344-199000152-00003.

        [16] MENARD J, PATCHETT A A. Angiotensin-converting enzyme inhibitors[J]. Advnces in Protein Chemistry, 2001, 56(17): 13-75. DOI:10.1016/S0065-3233(01)56002-7.

        [17] SPYROULIAS G A, GALANIS A S, PAIRAS G, et al. Structural features of angiotensin-Ⅰ converting enzyme catalytic sites:conformational studies in solution, homology models and comparison with other zinc metallopeptidases[J]. Current Topics in Medicinal Chemistry, 2004, 4(4): 403-429. DOI:10.2174/1568026043451294.

        [18] HUBERT C, HOUOT A M, CORVOL P, et al. Structure of the angiotensin Ⅰ-converting enzyme gene. Two alternate promoters correspond to evolutionary steps of a duplicated gene[J]. Journal of Biological Chemistry, 1991, 266(23): 15377-15383.

        [19] CONSORTIUM U. Activities at the universal protein resource (UniProt)[J]. Nucleic Acids Research, 2014, 42(11): 7486. DOI:10.1093/nar/gku469.

        [20] SOUBRIER F, ALHENC-GELAS F, HUBERT C, et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning[J]. Proceedings of the National Academy of Sciences, 1988, 85(24): 9386-9390. DOI:10.1073/pnas.85.24.9386.

        [21] JUNOT C, GONZALES M F, EZAN E, et al. RXP 407, a selective inhibitor of the N-domain of angiotensin I-converting enzyme, blocks in vivo the degradation of hemoregulatory peptide acetyl-Ser-Asp-Lys-Pro with no effect on angiotensin I hydrolysis[J]. Journal of Pharmacology and Experimental Therapeutics, 2001, 297(2): 606-611.

        [22] RIORDAN J F. Angiotensin-I-converting enzyme and its relatives[J]. Genome Biology, 2003, 4(8): 225. DOI:10.1186/gb-2003-4-8-225.

        [23] TURNER A J, HOOPER N M. The angiotensin-converting enzyme gene family: genomics and pharmacology[J]. Trends in Pharmacological Sciences, 2002, 23(4): 177-183. DOI:10.1016/S0165-6147(00)01994-5.

        [24] LEE S H, QIAN Z J, KIM S K. A novel angiotensin Ⅰ converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats[J]. Food Chemistry, 2010, 118(1): 96-102. DOI:10.1016/ j.foodchem.2009.04.086.

        [25] QUIST E E, PHILLIPS R D, SAALIA F K. Angiotensin converting enzyme inhibitory activity of proteolytic digests of peanut (Arachis hypogaea L.) flour[J]. LWT-Food Science and Technology, 2009, 42(3): 694-699. DOI:10.1016/j.lwt.2008.10.008.

        [26] JOHNSTON C I. Renin-angiotensin system: a dual tissue and hormonal system for cardiovascular control[J]. Journal of Hypertension, 1992, 10(7): 13-26. DOI:10.1097/00004872-199212007-00002.

        [27] ASOODEH A, YAZDI M M, CHAMANI J. Purification and characterisation of angiotensin Ⅰ converting enzyme inhibitory peptides from lysozyme hydrolysates[J]. Food Chemistry, 2012, 131(1): 291-295. DOI:10.1016/j.foodchem.2011.08.039.

        [28] PIHLANTO-LEPPALA A. Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides[J]. Trends in Food Science andTechnology, 2000, 11(9): 347-356. DOI:10.1016/S0924-2244(01)00003-6.

        [29] POKORA M, ZAMBROWICZ A, D?BROWSKA A, et al. An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides[J]. Food Chemistry, 2014, 151(4):500-505. DOI:10.1016/j.foodchem.2013.11.111.

        [30] BALTI R, NEDJAR-ARROUME N, BOUGATEF A, et al. Three novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) using digestive proteases[J]. Food Research International, 2010, 43(4): 1136-1143. DOI:10.1016/ j.foodres.2010.02.013.

        [31] SAIGA A, OKUMURA T, MAKIHARA T, et al. Action mechanism of an angiotensin Ⅰ-converting enzyme inhibitory peptide derived from chicken breast muscle[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 942-945. DOI:10.1021/jf0508201

        [32] SHEIH I C, FANG T J, WU T K. Isolation and characterisation of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the algae protein waste[J]. Food Chemistry, 2009, 115(1): 279-284. DOI:10.1016/j.foodchem.2008.12.019.

        [33] ANTHONY C S, CORRADI H R, SCHWAGER S L, et al. The Ndomain of human angiotensin-I-converting enzyme the role of N-glycosylation and the crystal structure in complex with an N domain-specific phosphinic inhibitor, RXP407[J]. Journal of Biological Chemistry, 2010, 285(46): 35685-35693. DOI:10.1074/jbc. M110.167866.

        [34] CORRADI H R, SCHWAGER S L, NCHINDA A T, et al. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design[J]. Journal of Molecular Biology, 2006, 357(3): 964-974. DOI:10.1016/j.jmb.2006.01.048.

        [35] GEORGIADIS D, BEAU F, CZARNY B, et al. Roles of the two active sites of somatic angiotensin-converting enzyme in the cleavage of angiotensin I and bradykinin insights from selective inhibitors[J]. Circulation Research, 2003, 93(2): 148-154. DOI:10.1161/01. RES.0000081593.33848.FC.

        [36] WU J, ALUKO R E, NAKAI S. Structural requirements of sngiotensinⅠ-converting enzyme inhibitory peptides: quantitative structureactivity relationship modeling of peptides containing 4-10 amino acid residues[J]. QSAR & Combinatorial Science, 2006, 25(10): 873-880. DOI:10.1002/qsar.200630005.

        [37] HOROVITZ Z P. Angiotensin converting enzyme inhibitors:mechanisms of action and clinical implications[M]. German: Baltimore and Munich, 1981: 156.

        [38] CHEUNG H S, WANG F L, ONDETTI M A, et al. Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence[J]. Journal of Biological Chemistry, 1980, 255(2): 401-407.

        [39] KOHMURA M, NIO N, KUBO K, et al. Inhibition of angiotensinconverting enzyme by synthetic peptides of human β-casein[J]. Agricultural and Biological Chemistry, 1989, 53(8): 2107-2114. DOI:10.1080/00021369.1989.10869621.

        [40] JANG A, JO C, KANG K S, et al. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides[J]. Food Chemistry, 2008, 107(1): 327-336. DOI:10.1016/j.foodchem.2007.08.036.

        [41] CUSHMAN D, PLU??EC J, WILLIAMS N, et al. Inhibition of angiotensin-converting enzyme by analogs of peptides from Bothrops jararaca venom[J]. Experientia, 1973, 29(8): 1032-1035. DOI:10.1007/BF01930447.

        [42] WU J P, ALUKO R E, NAKAI S. Structural requirements of angiotensinⅠ-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di-and tripeptides[J]. Journal of Agricultural and Food Chemistry, 2006, 54(3): 732-738. DOI:10.1021/jf051263l.

        [43] JUNG W K, MENDIS E, JE J Y, et al. Angiotensin Ⅰ-converting enzyme inhibitory peptide from yellowf i n sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats[J]. Food Chemistry, 2006, 94(1): 26-32. DOI:10.1016/ j.foodchem.2004.09.048.

        [44] GUERRERO L, CASTILLO J, QUI?ONES M, et al. Inhibition of angiotensin-converting enzyme activity by flavonoids: structureactivity relationship studies[J]. PLoS ONE, 2012, 7(11): e49493. DOI:10.1371/journal.pone.0049493.

        [45] ZHANG Y, SUN W, ZHAO M, et al. Improvement of the ACE-inhibitory and DPPH radical scavenging activities of soya protein hydrolysates through pepsin pretreatment[J]. International Journal of Food Science & Technology, 2015, 50(10): 2175-2182. DOI:10.1111/ ijfs.12856.

        [46] ALUKO R E. Antihypertensive peptides from food proteins[J]. Annual Review of Food Science and Technology, 2015, 6(1): 235-262. DOI:10.1146/annurev-food-022814-015520.

        [47] KETNAWA S, RAWDKUEN S. Enzymatic method for ACE inhibitory peptide derived from aquatic resources: areview[J]. International Journal of Biology, Pharmacy and Allied Sciences, 2013, 2: 469-494.

        [48] GOBBETTI M, FERRANTI P, SMACCHI E, et al. Production of angiotensin-Ⅰ-converting-enzyme-inhibitory peptides in fermented milks started by lactobacillus delbrueckiisubsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4[J]. Applied and Environmental Microbiology, 2000, 66(9): 3898-3904. DOI:10.1128/AEM.66.9.3898-3904.2000.

        [49] LEE J K, HONG S, JEON J K, et al. Purif i cation and characterization of angiotensin I converting enzyme inhibitory peptides from the rotifer, Brachionus rotundiformis[J]. Bioresource Technology, 2009, 100(21):5255-5259. DOI:10.1016/j.biortech.2009.05.057.

        [50] LI G H, WAN J Z, LE G W, et al. Novel angiotensin Ⅰ-converting enzyme inhibitory peptides isolated from alcalasehydrolysate of mung bean protein[J]. Journal of Peptide Science, 2006, 12(8): 509-514. DOI:10.1002/psc.758.

        [51] WIJESEKARA I, QIAN Z J, RYU B, et al. Purif i cation and identif i cation of antihypertensive peptides from seaweed pipef i sh (Syngnathus schlegeli) muscle protein hydrolysate[J]. Food Research International, 2011, 44(3):703-707. DOI:10.1016/j.foodres.2010.12.022.

        [52] GOMEZ-GUILLEN M C, GIMENZ B, LOPEZ-CABALLERO M E, et al. Functional and bioactive properties of collagen and gelatin from alternative sources: a review[J]. Food Hydrocolloids, 2011, 25(8):1813-1827. DOI:10.1016/j.foodhyd.2011.02.007.

        [53] BYUN H G, KIM S K. Purif i cation and characterization of angiotensinⅠ converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin[J]. Process Biochemistry, 2001, 36(12): 1155-1162. DOI:10.1016/S0032-9592(00)00297-1.

        [54] SAITO Y, WANEZAKI K, KAWATO A, et al. Structure and activity of angiotensin Ⅰ converting enzyme inhibitory peptides from sake and sake lees[J]. Bioscience, Biotechnology, and Biochemistry, 1994, 58(10): 1767-1771. DOI:10.1271/bbb.58.1767.

        [55] MARRUFO-ESTRADA D M, SEGURA-CAMPOS M R, CHELGUERRERO L A, et al. Defatted Jatrophacurcas flour and protein isolate as materials for protein hydrolysates with biological activity[J]. Food Chemistry, 2013, 138(1): 77-83. DOI:10.1016/ j.foodchem.2012.09.033.

        [56] di BERNARDINI R, MULLEN A M, BOLTON D, et al. Assessment of the angiotensin-Ⅰ-converting enzyme (ACE-Ⅰ) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions[J]. Meat Science, 2012, 90(1): 226-235. DOI:10.1016/j.meatsci.2011.07.008.

        [57] LI H, ALUKO R E. Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate[J]. Journal of Agricultural and Food Chemistry, 2010, 58(21): 11471-11476. DOI:10.1021/jf102538g.

        [58] WU S G, FENG X Z, LAN X D, et al. Purif i cation and identif i cation of angiotensin-I converting enzyme (ACE) inhibitory peptide from lizard fish (Saurida elongata) hydrolysate[J]. Journal of Functional Foods, 2015, 13: 295-299. DOI:10.1016/j.jff.2014.12.051.

        [59] NIHON K S. Nikkei biotechnology annual report[R]. Japan: Nihon Keizai Shinbunsha, 1997.

        [60] OTTE J, SHALABY S M, ZAKORA M, et al. Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: effect of substrate, enzyme and time of hydrolysis[J]. International Dairy Journal, 2007, 17(5): 488-503. DOI:10.1016/j.idairyj.2006.05.011.

        [61] HE R, ALASHI A, MALOMO S A, et al. Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates[J]. Food Chemistry, 2013, 141(1): 153-159. DOI:10.1016/ j.foodchem.2013.02.087.

        [62] IKEDA A, ICHINO H, KIGUCHIYA S, et al. Evaluation and identification of potent angiotensin-Ⅰ converting enzyme inhibitory peptide derived from dwarf gulper shark (Centrophorus atromarginatus)[J]. Journal of Food Processing and Preservation, 2015, 39(2): 107-115. DOI:10.1111/jfpp.12210.

        [63] ZHANG Y, OLSEN K, GROSSI A, et al. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides[J]. Food Chemistry, 2013, 141(3): 2343-2354. DOI:10.1016/j.foodchem.2013.05.058.

        [64] HE R, MALOMO S A, ALASHI A, et al. Purif i cation and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides[J]. Journal of Functional Foods, 2013, 5(2): 781-789. DOI:10.1016/j.jff.2013.01.024.

        [65] MUGURUMA M, AHHMED A M, KATAYAMA K, et al. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: evaluation of its antihypertensive effects in vivo[J]. Food Chemistry, 2009, 114(2): 516-522. DOI:10.1016/ j.foodchem.2008.09.081.

        [66] SAMARAKOON K W, KWON O N, KO J Y, et al. Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate[J]. Journal of Applied Phycology, 2013, 25(5): 1595-1606. DOI:10.1007/s10811-013-9994-6.

        [67] LIM C W, KIM Y K, YEUN S M, et al. Purification and characterization of angiotensin-1 converting enzyme (ACE)-inhibitory peptide from the jellyf i sh, Nemopilema nomurai[J]. African Journal of Biotechnology, 2016, 12(15): 1888-1893. DOI:10.5897/AJB11.2677.

        [68] ZAREI M, FORGHANI B, EBRAHIMPOUR A, et al. In vitro and in vivo antihypertensive activity of palm kernel cake protein hydrolysates:sequencing and characterization of potent bioactive[J]. Industrial Crops and Products, 2015, 76: 112-120. DOI:10.1016/j.indcrop.2015.06.040.

        [69] WU H, XU N, SUN X, et al. Hydrolysis and purification of ACE inhibitory peptides from the marine microalga Isochrysis galbana[J]. Journal of Applied Phycology, 2015, 27(1): 351-361. DOI:10.1007/ s10811-014-0347-x.

        [70] MIRZAEI M, MIRDAMADI S, EHSANI M R, et al. Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate[J]. Journal of Functional Foods, 2015, 19: 259-268. DOI:10.1016/j.jff.2015.09.031.

        [71] YAMADA A, SAKURAI T, OCHI D, et al. Novel angiotensin I-converting enzyme inhibitory peptide derived from bovine casein[J]. Food Chemistry, 2013, 141(4): 3781-3789. DOI:10.1016/ j.foodchem.2013.06.089.

        [72] LI P, JIA J, FANG M, et al. In vitro and in vivo ACE inhibitory of pistachio hydrolysates and in silico mechanism of identif i ed peptide binding with ACE[J]. Process Biochemistry, 2014, 49(5): 898-904. DOI:10.1016/j.procbio.2014.02.007.

        [73] TERASHIMA M, OE M, OGURA K, et al. Inhibition strength of short peptides derived from an ACE inhibitory peptide[J]. Journal of Agricultural and Food Chemistry, 2011, 59(20): 11234-11237. DOI:10.1021/jf202902r.

        [74] RUI X, BOYE J I, SIMPSON B K, et al. Angiotensin Ⅰ-converting enzyme inhibitory properties of Phaseolus vulgaris bean hydrolysates:effects of different thermal and enzymatic digestion treatments[J]. Food Research International, 2012, 49(2): 739-746. DOI:10.1016/ j.foodres.2012.09.025.

        [75] AMBIGAIPALAN P, Al-KHALIFA A S, SHAHIDI F. Antioxidant and angiotensin Ⅰ converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin[J]. Journal of Functional Foods, 2015, 18: 1125-1137. DOI:10.1016/j.jff.2015.01.021.

        [76] PEDROCHE J, YUST M M, GIRóN-CALLE J, et al. Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity[J]. Journal of the Science of Food and Agriculture, 2002, 82(9): 960-965. DOI:10.1002/ jsfa.1126.

        [77] CHANG Y W, ALLI I. In silico assessment: Suggested homology of chickpea (Cicer arietinum L.) legumin and prediction of ACE-inhibitory peptides from chickpea proteins using BLAST and BIOPEP analyses[J]. Food Research International, 2012, 49(1): 477-486. DOI:10.1016/j.foodres.2012.07.006

        [78] GU Y, MAJUMDER K, WU J. QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides[J]. Food Research International, 2011, 44(8): 2465-2474.

        [79] IWANIAK A, DZIUBA J. Analysis of domains in selected plant and animal food proteins-precursors of biologically active peptides-in silicoapproach[J]. Food Science and Technology International, 2009, 15(2): 179-191. DOI:10.1177/1082013208106320.

        [80] IWANIAK A, DZIUBA J. Animal and plant proteins as precursors of peptides with ACE inhibitory activity: an in silico strategy of protein evaluation[J]. Food Technology and Biotechnology, 2009, 47(4): 441-449.

        [81] LACROIX I M, LI-CHAN E C. Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-Ⅳ inhibitors by an in silico approach[J]. Journal of Functional Foods, 2012, 4(2): 403-422. DOI:10.1016/j.jff.2012.01.008.

        [82] LAFARGA T, O’CONNOR P, HAYES M. Identification of novel dipeptidyl peptidase-Ⅳ and angiotensin-Ⅰ-converting enzyme inhibitory peptides from meat proteins using in silico analysis[J]. Peptides, 2014, 59(9): 53-62. DOI:10.1016/j.peptides.2014.07.005.

        [83] WANG C, TIAN J, WANG Q. ACE inhibitory and antihypertensive properties of apricot almond meal hydrolysate[J]. European Food Research and Technology, 2011, 232(3): 549-556. DOI:10.1007/ s00217-010-1411-7.

        [84] MEMARPOOR-YAZDI M, ASOODEH A, CHAMANI J. Structure and ACE-inhibitory activity of peptides derived from hen egg white lysozyme[J]. International Journal of Peptide Research and Therapeutics, 2012, 18(4): 353-360. DOI:10.1007/s10989-012-9311-2.

        [85] RAO S, SUN J, LIU Y, et al. ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme[J]. Food Chemistry, 2012, 135(3): 1245-1252. DOI:10.1016/ j.foodchem.2012.05.059.

        [86] GU Y, WU J. LC-MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins[J]. Food Chemistry, 2013, 141(3): 2682-2690. DOI:10.1016/j.foodchem.2013.04.064.

        [87] BOSCHIN G, SCIGLIUOLO G M, RESTA D, et al. Optimization of the enzymatic hydrolysis of lupin (Lupinus) proteins for producing ACE-inhibitory peptides[J]. Journal of Agricultural and Food Chemistry, 2014, 62(8): 1846-1851. DOI:10.1021/jf4039056.

        [88] YANG Y, MARCZAK E D, YOKOO M, et al. Isolation and antihypertensive effect of angiotensin Ⅰ-converting enzyme (ACE) inhibitory peptides from spinach Rubisco[J]. Journal of Agricultural and Food Chemistry, 2003, 51(17): 4897-4902. DOI:10.1021/ jf4039056.

        [89] WU Q, CAI Q F, TAO Z P, et al. Purif i cation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from abalone (Haliotis discus hannai Ino) gonads[J]. European Food Research and Technology, 2015, 240(1): 137-145. DOI:10.1007/ s00217-014-2315-8.

        [90] GARCIA-MORENO P J, ESPEJO-CARPIO F J, GUADIX A, et al. Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean fi sh discards[J]. Journal of Functional Foods, 2015, 18: 95-105. DOI:10.1016/j.jff.2015.06.062.

        [91] AISSAOUI N, ABIDI F, MARZOUKI M N. ACE inhibitory and antioxidant activities of red scorpionf i sh (Scorpaena notata) protein hydrolysates[J]. Journal of Food Science and Technology, 2015, 52(11): 7092-7102. DOI:10.1007/s13197-015-1862-8.

        [92] VERMEIRSSEN V, van CAMP J, VERSTRAETE W. Bioavailability of angiotensin Ⅰ converting enzyme inhibitory peptides[J]. British Journal of Nutrition, 2004, 92(3): 357-366. DOI:10.1079/ BJN20041189.

        [93] KONTANI N, OMAE R, KAGEBAYASHI T, et al. Characterization of Ile-His-Arg-Phe, a novel rice-derived vasorelaxing peptide with hypotensive and anorexigenic activities[J]. Molecular Nutrition & Food Research, 2014, 58(2): 359-364. DOI:10.1002/mnfr.201300334.

        [94] GARCIA-TEJEDOR A, SANCHEZ-RIVERA L, CASTELLO-RUIZ M, et al. Novel antihypertensive lactoferrin-derived peptides produced by Kluyveromyces marxianus: gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition[J]. Journal of Agricultural and Food Chemistry, 2014, 62(7): 1609-1616. DOI:10.1021/jf4053868.

        [95] 祝倩, 郭宇星, 潘道東. 利用Caco-2細(xì)胞模型評價(jià)乳源ACE抑制肽小腸吸收機(jī)制的研究進(jìn)展[J]. 食品科學(xué), 2013, 34(9): 330-335. DOI:10.7506/spkx1002-6630-201309066.

        [96] FOGH J, FOGH J M, ORFEO T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice[J]. Journal of the National Cancer Institute, 1977, 59(1): 221-226. DOI:10.1093/jnci/59.1.221.

        [97] 祝倩, 郭宇星, 潘道東, 等. Caco-2細(xì)胞模型構(gòu)建及抗高血壓肽VPP和IPP小腸吸收機(jī)制研究[J]. 食品科學(xué), 2014, 35(15): 226-231. DOI:10.7506/spkx1002-6630-201415046.

        [98] DING L, WANG L, YU Z, et al. Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers[J]. International Journal of Food Sciences and Nutrition, 2016, 67(2): 111-116. DOI:10.3109/09637486.2016.1144722.

        Progress in Structure-Activity Relationship and Enzymatic Preparation of ACE Inhibitory Peptides

        LIN Kai1, HAN Xue1, ZHANG Lanwei1,2,*, QIAO Fei1, CHENG Dayou1
        (1. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China; 2. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China)

        Hypertension is a considerable public health problem worldwide. Angiotensin-Ⅰ converting enzyme (dipeptidylcarboxypeptidase, EC 3.4.15.1, ACE) plays a critical role in regulating blood pressure through the renninangiotensin system (RAS) and kallikrein-kinnin system (KKS). Recently, numerous studies aimed at alleviating hypertension have focused on the generation and isolation of ACE-inhibitory peptides from various food sources. A number of studies have reported the structure-activity relationship of food protein-derived antihypertensive peptides, especially the effect of the primary structure on the potency. Compared with synthetic chemical drugs, ACE inhibitory peptides derived from food proteins are considered to be safer and milder. Nowadays, one of the most widely used techniques to liberate ACE inhibitory peptides is enzymatic hydrolysis. This technique involves one or more proteases at the optimum temperature and pH conditions. In this review, in order to provide a theoretical guidance for the preparation of high-quality ACE inhibitory peptides, we review recent reports on the structure-activity relationship and enzymatic preparation of ACE inhibitory peptides.

        angiotensin-Ⅰ converting enzyme inhibitors; antihypertensive mechanism; structure-activity relationship; enzymatic preparation

        10.7506/spkx1002-6630-201703042

        TS201.2

        A

        1002-6630(2017)03-0261-10

        林凱, 韓雪, 張?zhí)m威, 等. ACE抑制肽構(gòu)效關(guān)系及其酶法制備的研究進(jìn)展[J]. 食品科學(xué), 2017, 38(3): 261-270. DOI:10.7506/spkx1002-6630-201703042. http://www.spkx.net.cn

        LIN Kai, HAN Xue, ZHANG Lanwei, et al. Progress in structure-activity relationship and enzymatic preparation of ACE inhibitory peptides[J]. Food Science, 2017, 38(3): 261-270. (in Chinese with English abstract)

        10.7506/spkx1002-6630-201703042. http://www.spkx.net.cn

        2016-03-31

        “十二五”農(nóng)村領(lǐng)域國家科技計(jì)劃項(xiàng)目(2013BAD18B05-05);國家乳品加工技術(shù)研發(fā)分中心開放課題(HL2015-1)作者簡介:林凱(1989—),男,博士研究生,研究方向?yàn)槿槠房茖W(xué)與發(fā)酵工程。E-mail:linkai@hit.edu.cn

        *通信作者:張?zhí)m威(1961—),男,教授,博士,研究方向?yàn)槿槠房茖W(xué)。E-mail:zhanglw@hit.edu.cn

        三年片大全在线观看免费观看大全| av一区二区三区有码| 国产国语按摩对白av在线观看| 久久精品中文闷骚内射| 亚洲av日韩av永久无码色欲| 日本不卡在线一区二区三区视频| 美腿丝袜视频在线观看| 国产无遮挡aaa片爽爽| 青青草原综合久久大伊人| 91爱爱视频| 成年男女免费视频网站点播| 国产女人18毛片水真多18精品| 亚洲av永久无码精品一区二区| 久久精品国产一区二区蜜芽| 国产午夜激情视频在线看| 日韩精品无码一区二区三区四区| 国产乱子乱人伦电影在线观看| 亚洲av高清在线观看三区| 国产夫妻自偷自拍第一页| 国产人成无码视频在线观看| 欧美性猛交xxxx乱大交蜜桃| 一区二区三区中文字幕有码| 日本人妻伦理在线播放| 欧美在线 | 亚洲| 人妻无码AⅤ不卡中文字幕| 久久熟女少妇一区二区三区| 精品人妻av区乱码| 欧洲美熟女乱又伦av影片| 久久久久久好爽爽久久| 人妻中出精品久久久一区二| 久久老熟女一区二区三区| 久久无码人妻一区二区三区午夜| 久久精品国产亚洲av高清色欲| av日本一区不卡亚洲午夜| 痴汉电车中文字幕在线| 日本50岁丰满熟妇xxxx | 久久精品免费视频亚洲| 无码人妻精品一区二区蜜桃网站| 99久久久久国产| 日韩av一区二区无卡| 亚洲日韩在线中文字幕综合|