亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        灌水施氮方式對(duì)玉米生育期土壤NO3N時(shí)空分布的影響

        2017-03-02 10:56:34漆棟良胡田田

        漆棟良 胡田田,2

        (1.西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院, 陜西楊凌 712100;2.西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室, 陜西楊凌 712100)

        灌水施氮方式對(duì)玉米生育期土壤NO3N時(shí)空分布的影響

        漆棟良1胡田田1,2

        (1.西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院, 陜西楊凌 712100;2.西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室, 陜西楊凌 712100)

        引言

        關(guān)于氮肥損失的途徑,除了氨揮發(fā)和反硝化作用外,硝態(tài)氮的淋溶是一條重要途徑。調(diào)控土壤中的硝態(tài)氮含量被認(rèn)為是降低氮素?fù)p失和提高氮肥利用率的關(guān)鍵[1]。前人研究了不同水、氮供應(yīng)水平下土壤硝態(tài)氮的空間分布[2-3]和動(dòng)態(tài)變化[4],發(fā)現(xiàn)施氮量是造成土壤中硝態(tài)氮?dú)埩舻闹饕蛩豙3],灌水量則直接影響到硝態(tài)氮的下移[5]。合理的灌水施氮措施可使土壤中的硝態(tài)氮更多地、較長(zhǎng)時(shí)間地維持在作物根區(qū),易于被根系吸收,收獲后其殘留量減小。

        1 材料與方法

        1.1 試驗(yàn)概況

        試驗(yàn)于2012年4—9月份在農(nóng)業(yè)部作物高效用水武威科學(xué)觀測(cè)實(shí)驗(yàn)站(37°57′20″N、102°50′50″E)進(jìn)行。實(shí)驗(yàn)站位于甘肅省武威市涼州區(qū), 地處騰格里沙漠邊緣。海拔高度1 581 m,為大陸性溫帶干旱氣候,該地區(qū)多年平均氣溫為8℃,多年平均降水量約為164.4 mm,年均蒸發(fā)量為2 000 mm。玉米生育期內(nèi)降水量為129.0 mm(最大單次降水量為20.4 mm)。試驗(yàn)地土壤類型為灰鈣質(zhì)輕砂壤土,田間持水量為21.7% (質(zhì)量含水率)。土壤堿解氮質(zhì)量比為50.3 mg/kg,有效磷質(zhì)量比為3.82 mg/kg,有機(jī)質(zhì)質(zhì)量比為8.9 g/kg,土壤pH值約為8.2。灌溉水源為礦化度0.71 g/L的地下水,地下水埋深40 m以上。

        供試作物為制種玉米,品種是金西北22號(hào)。采用壟植溝灌技術(shù),溝和壟的斷面為梯形。溝深30 cm,溝底寬20 cm,壟頂寬20 cm,壟底寬35 cm,溝間距55 cm,溝長(zhǎng)5 m。小區(qū)為東西走向,四周開闊,面積24 m2(4 m×6 m)。

        1.2 試驗(yàn)設(shè)計(jì)

        試驗(yàn)采用二因素三水平隨機(jī)區(qū)組設(shè)計(jì)。設(shè)施氮方式和灌水方式2個(gè)因素,各分3種不同方式:灌水方式包括交替灌水、均勻灌水和固定灌水;施氮方式包括交替施氮、均勻施氮和固定施氮。其中,固定灌水固定施氮處理又分為水氮同區(qū)(灌水溝和施氮溝相同,F(xiàn)FT)和水氮異區(qū)(灌水溝和施氮溝相反,F(xiàn)FY)2種情況,共有10 個(gè)處理,見表1。隨機(jī)區(qū)組排列,共3個(gè)區(qū)組,區(qū)組之間設(shè)1.5 m寬隔離帶,試驗(yàn)布置見圖1(與區(qū)組1相似,各處理在區(qū)組2、3內(nèi)隨機(jī)排列)。

        表1 試驗(yàn)設(shè)計(jì)Tab.1 Experimental design

        圖1 試驗(yàn)布置圖Fig.1 Arrangement diagram of experiment

        1.3 試驗(yàn)實(shí)施

        起壟前,在壟的位置以過磷酸鈣(45 kg/hm2,以P2O5計(jì))作為底肥均勻撒施。之后,開溝起壟。4月19日播種,9月20日收獲。各處理灌水量和施氮量相同,灌溉定額3 750 m3/hm2,施氮量采用當(dāng)?shù)剡m宜的施氮水平200 kg/hm2(純氮)[14]。灌水量在低壓管出水口處用精確水表測(cè)量。灌水量和灌水時(shí)間與當(dāng)?shù)剞r(nóng)民對(duì)制種玉米的灌水管理保持一致,共灌水5次,分別在播后3 d、拔節(jié)期(播后45 d)、大喇叭口期(播后84 d)、抽雄期(播后98 d)、灌漿期(播后119 d),各灌水750 m3/hm2。氮肥選用尿素,分3次施入,基施50%,大喇叭口期和抽雄期各25%。肥料施在溝中(壟上不施),開溝施肥,施后覆土。氮肥基施時(shí),固定施氮在南側(cè)(FFT)或北側(cè)溝(FFY),交替施氮在南側(cè)溝;其后固定施氮位置不變,交替施氮在南、北側(cè)溝交替進(jìn)行;均勻施氮在南、北兩側(cè)溝同時(shí)施氮,且兩側(cè)施氮量相等。追施氮肥時(shí),施肥、灌水在同一天內(nèi)完成。具體實(shí)施見表2。

        表2 灌水與施氮的時(shí)期與位置Tab.2 Time and location of irrigation and nitrogen supply

        注:固定施氮條件下,對(duì)FFY施氮位置為北側(cè)溝,對(duì)FFT施氮位置為南側(cè)溝。DAT表示播種后的天數(shù),設(shè)定播種當(dāng)天的天數(shù)為0 d。

        1.4 測(cè)定項(xiàng)目與方法

        圖2 土壤取樣示意圖Fig.2 Schematic of soil sampling

        1.5 數(shù)據(jù)處理

        用SigmaPlot軟件繪圖,SPSS 12.0進(jìn)行方差分析與多重比較,方差分析用One-way ANOVA,多重比較用Duncan法。

        2 結(jié)果與分析

        取樣位置影響因子土層深度/cm0~2020~4040~6060~8080~100灌水方式***NSNS植株北側(cè)施氮方式******NS灌水方式×施氮方式***NSNSNS灌水方式**NS*NS植株南側(cè)施氮方式******NS灌水方式×施氮方式***NSNSNS灌水方式**NSNSNS植株下施氮方式**NSNSNS灌水方式×施氮方式*NSNSNSNS

        注: *、**分別表示在P<0.05和P<0.01水平差異顯著,NS表示差異不顯著。

        圖3 灌漿期不同處理下土壤含量的空間分布(單位:mg/kg)Fig.3 Spatial distributions of soil nitrate nitrogen in different treatments at filling stage

        圖4 灌漿期AC、CC和FC處理下土壤質(zhì)量含水率的空間分布(單位:%)Fig.4 Spatial distributions of soil moisture content at filling stage for AC, CC and FC treatments

        圖5 AC、CC、FFT和FFY不同位置在0~100 cm土壤含量隨播后天數(shù)的變化Fig.5 Dynamics of soil nitrate nitrogen content following days after planting at different positions in 0~100 cm soil depth of AC, CC, FFT and FFY treatments

        3 討論

        處理土層深度/cm0~2020~4040~6060~8080~1000~100AA29.2±2.1c28.4±1.8c15.6±0.7b12.1±0.6b10.1±0.3b95.3±2.9fAC28.6±2.2c27.2±2.1c14.8±1.3b11.3±0.8b9.7±0.5b91.5±3.4fAF31.3±3.4b30.6±2.7b17.6±1.1b13.5±1.0b11.7±0.8b104.8±4.8dCA31.3±2.8b30.9±2.8b15.5±1.0b12.8±1.3b11.7±0.8b103.1±4.2eCC30.7±2.7b30.5±3.0b16.6±0.9b12.9±0.7b11.5±0.4b102.2±2.4eCF34.6±3.6ab33.1±3.5b18.5±1.4a14.9±1.2a11.3±0.9b112.4±3.5cFA32.7±3.8b31.5±2.8b16.2±1.1b15.5±1.8a11.3±0.8b107.2±3.4cdFC32.6±3.5b31.6±1.8b14.6±0.8b14.5±0.5a12.0±1.1b105.3±4.5cdFFT34.8±4.1ab32.5±3.2b18.9±1.3a16.6±1.3a13.7±1.3a116.5±4.8bFFY44.5±4.8a42.8±4.4a14.6±0.7b10.6±0.9c9.8±0.4b123.3±6.1a

        注:同列數(shù)值后不同字母表示各土層的土壤NO3-N殘留量差異達(dá)P<0.05顯著水平。

        圖6 AC、CC和FC處理下0~100 cm土層植株南、北兩側(cè)土壤含水率隨生育期的變化Fig.6 Changes of soil moisture content in south and north of plant in 0~100 cm soil depth during growth period for AC, CC and FC treatments

        4 結(jié)論

        1 LEHRSCH G A, SOJKA R E, WESTERMANN D T. Furrow irrigation and N management strategies to protect water quality[J]. Communications in Soil Science and Plant Analysis, 2001, 32(7-8):1029-1050.

        2 岳文俊, 張富倉(cāng),李志軍,等.水氮耦合對(duì)甜瓜氮素吸收與土壤硝態(tài)氮累積的影響[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):88-96.http:∥www.j-csam.org/jcsam/ch/reader/view-abstract.aspx?file_no=20150214&flag=1. DOI:10.6041/j.issn.1000-1298.2015.02.014. YUE Wenjun, ZHANG Fucang, LI Zhijun, et al. Effects of water and nitrogen coupling on nitrogen uptake of muskmelon and nitrate accumulation in soil[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):88-96. (in Chinese)

        3 王振華, 權(quán)麗雙, 鄭旭榮, 等. 水氮耦合對(duì)滴灌復(fù)播油葵氮素吸收與土壤硝態(tài)氮的影響[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2016, 47(10): 91-100. http:∥www.j-csam.org/jcsam/ch/reader/view-abstract.aspx?file_no=20161013&flag=1. DOI:10.6041/j.issn.1000-1298.2016.10.013. WANG Zhenhua, QUAN Lishuang, ZHENG Xurong, et al. Effects of water-nitrogen coupling on nitrogen uptake and nitrate accumulation in soil of oil sunflower in drip-irrigated multiple cropping system[J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 91-100. (in Chinese)

        4 栗麗, 洪堅(jiān)平, 王宏庭, 等.施氮與灌水對(duì)夏玉米土壤硝態(tài)氮積累、氮素平衡及其利用率的影響 [J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(6): 1358-1365. LI Li, HONG Jianping, WANG Hongting, et al. Effects of nitrogen application and irrigation on soil nitrate accumulation, nitrogen balance and use efficiency in summer maize[J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1358-1365. (in Chinese)

        5 高亞軍, 李生秀, 李世清, 等.施肥與灌水對(duì)硝態(tài)氮在土壤中殘留的影響[J].水土保持學(xué)報(bào),2005, 19(6):61-64. GAO Yajun, LI Shengxiu, LI Shiqing, et al. Effect of fertilization and irrigation on residual nitrate N in soil [J]. Journal of Soil and Water Conservation,2005, 19(6):61-64. (in Chinese)

        6 邢維芹, 王林權(quán), 李立平, 等.半干旱地區(qū)玉米的水肥空間耦合效應(yīng)Ⅱ土壤水分和速效氮的動(dòng)態(tài)分布 [J].土壤, 2003, 35(3): 242-247. XING Weiqin, WANG Linquan, LI Liping, et al.Effect of water-fertilized spatial coupling on corn in semiarid area Ⅱ dynamics distribution of water and available nitrogen in soil[J]. Soil, 2003, 35(3): 242-247. (in Chinese)

        7 HAN K, YANG Y, ZHOUC J, et al. Management of furrow irrigation and nitrogen application on summer maize[J].Agronomy Journal, 2014, 106(4):1402-1410.

        8 劉小剛, 張富倉(cāng), 楊啟良, 等. 不同溝灌方式下玉米根區(qū)礦物質(zhì)氮遷移動(dòng)態(tài)研究 [J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2011, 19(3):540-547. LIU Xiaogang, ZHANG Fucang, YANG Qiliang, et al. Transfer of mineral nitrogen in maize root zone soil under different furrow irrigation modes[J]. Chinese Journal of Eco-Agriculture, 2011, 19(3):540-547. (in Chinese)

        9 李平, 齊學(xué)斌, 樊向陽.分根區(qū)交替灌溉對(duì)馬鈴薯水氮利用效率的影響 [J]. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 16(1): 145-152. LI Ping, QI Xuebin, FAN Xiangyang, et al.Effect of alternate partial root-zone irrigation on nitrogen and water use efficiency of potato[J]. Transactions of the CSAE, 2010, 16(1): 145-152. (in Chinese)

        10 ZHANG L D, GA L H, ZHANG L X, et al. Alternate furrow irrigation and nitrogen level effects of water and nitrate-nitrogen in soil and root growth of cucumber in solar-greenhouse [J]. Scientia Horticulturae, 2012, 138:43-49.

        11 王春暉, 祝鵬飛, 束良佐, 等. 分根區(qū)交替灌溉和氨形態(tài)影響土壤硝態(tài)氮的遷移利用 [J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(11):92-101. WANG Chunhui, ZHU Pengfei, SHU Liangzuo, et al. Effects of alternate partial root irrigation and nitrogen forms on utilization and movement of nitrate in soil[J]. Transitions of the CASE, 2014,30(11): 92-101. (in Chinese)

        12 WANG Y S, LIU F L, ANDERSEN M N, et al. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation[J]. Functional Plant Biology, 2010, 37(2):175-182.

        13 WANG Y S, LIU F L, NEERGAARD A D, et al.Alternate partial root-zone irrigation induced dry/wet cycles of soils stimulate N mineralization and improve N nutrition in tomatoes[J]. Plant and Soil, 2010, 337(1-2): 167-177.

        14 楊榮, 蘇永中. 水氮配合對(duì)綠洲沙地農(nóng)田玉米產(chǎn)量、土壤硝態(tài)氮和氮平衡的影響[J].生態(tài)學(xué)報(bào), 2009, 28(3):1460-1469. YANG Rong, SU Yongzhong.Effects of nitrogen fertilization and irrigation rate on grain yield, nitrate accumulation and nitrogen balance on sandy farmland in the marginal oasis in the middle of Heihe River basin[J]. Acta Ecologica Sinica, 2009, 28(3):1460-1469. (in Chinese)

        15 劉玉潔, 李援農(nóng), 潘韜, 等. 不同灌溉制度對(duì)覆膜春玉米的耗水規(guī)律及產(chǎn)量的影響 [J].干旱地區(qū)農(nóng)業(yè)研究, 2009,27(6): 67-71. LIU Yujie, LI Yuannong, PAN Tao, et al.Study on effects of different irrigation treatments on evapotranspiration and yield in spring maize[J].Agricultural Research in the Arid Area, 2009, 27(6): 67-71. (in Chinese)

        16 TSAI C Y, HUBER D M, GLOVER D V, et al. Relationship of N deposition to grain yield and N responses of three maize hybrids[J]. Crop Science, 1984, 24(2): 277-281.

        17 潘英華, 康紹忠. 交替隔溝灌溉土壤水分入滲規(guī)律及其對(duì)作物水分利用的影響 [J].農(nóng)業(yè)工程學(xué)報(bào), 2000, 21(7):1-5. PAN Yinghua, KANG Shaozhong.Irrigation water infiltration in furrows and crop water use of alternate furrow irrigation[J]. Transactions of the CSAE, 2000, 21(7):1-5. (in Chinese)

        18 CHIKOWO R, MAPFUMO P, NYAMUGAFATA P, et al. Nitrate-N dynamics following improved fallows and maize root development in a Zimbawean sandy clay loam[J]. Agroforestry Systems, 2003, 59(3): 187-195.

        19 HIREL B, GOUIS J L, NEY B, et al. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches[J]. Journal of Experimental Botany,2007,58(9):2369-2387.

        20 漆棟良, 胡田田, 吳雪, 等.適宜灌水施氮方式利于玉米根系生長(zhǎng)提高產(chǎn)量 [J].農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(11): 144-149. QI Dongliang, HU Tiantian, WU Xue, et al.Rational irrigation and nitrogen supply methods improving root growth and yield of maize[J]. Transactions of the CSAE, 2015, 31(11): 144-149. (in Chinese)

        21 WANG H Q, LIU F L, ANDERSEN M N, et al.Comparative effects of partial root-zone drying and deficit irrigation on nitrogen uptake in potatoes (SolanumtuberosumL.)[J]. Irrigation Science, 2009, 27(6): 443-447.

        23 LIS X, WANG Z H., MALHI S S, et al. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dry land area in China[J]. Advances in Agronomy, 2009, 102: 223-265.

        24 TIAN Q Y, CHEN F J, LIU J L, et al. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots [J]. Journal of Plant Physiology, 2008, 165(9):942-951.

        25 WANG L, DE KROON H, SMITS A J M. Combined effects of partial root zone drying and patchy fertilizer placement on nutrient acquisition and growth of oilseed[J]. Plant and Soil, 2007,295(1-2): 207-216.

        26 SKINNER R H, HAN J D, BENJAMIN J G. Nitrogen uptake and portioning under alternate and every-furrow irrigation [J]. Plant and Soil, 1999, 210(1): 11-20.

        Effects of Different Nitrogen Supply and Irrigation Methods on Spatial-temporal Distribution of Soil Nitrate Nitrogen during Maize Growth

        QI Dongliang1HU Tiantian1,2

        (1.CollegeofWaterResourcesandArchitecturalEngineering,NorthwestA&FUniversity,Yangling,Shaanxi712100,China2.KeyLaboratoryofAgriculturalSoilandWaterEngineeringinAridandSemiaridAreas,MinistryofEducation,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)

        A field experiment was conducted to investigate the effect of varying supply methods of nitrogen and irrigation on dynamics and distribution of soil nitrate nitrogen during maize (ZaymaysL., cv. Gold northwestern 22) growth in Northwest China. Irrigation methods included alternate furrow irrigation (AI), fixed furrow irrigation (FI) and conventional furrow irrigation (CI). Nitrogen supply methods included alternate nitrogen supply (AN), fixed nitrogen supply (FN) and conventional nitrogen supply (CN), which were applied at each irrigation. Maize rows were established in west-east direction. Soil nitrate nitrogen content in south and north of the plant was measured in 0~100 cm soil depth (20 cm as an interval) before planting and at 6 collars, 12 collars, tasseling, filling and maturity stages. The results showed that spatial-temporal distribution of soil nitrate nitrogen in south and north of the plant was influenced more by varying methods of nitrogen supply and irrigation compared with that under the plant, so did that in 0~40 cm soil depth compared with that in 40~100 cm. At filling stage, soil nitrate nitrogen of irrigated side was moved down to 60~100 cm soil depth for FI coupled with FN when nitrogen and water were applied within the same furrow, and that of non-water supply side was gathered in 0~40 cm soil depth for FI coupled with FN when nitrogen and water were applied to different furrows. Compared with CI, AI reduced soil nitrate nitrogen under the plant in 40~80 cm soil depth by 9.9%~14.4% for different nitrogen supply methods. Compared with the other treatments, AI coupled with CN or AN maintained soil nitrate nitrogen in 0~40 cm soil depth for a longer time during maize growth. Soil residual nitrate nitrogen in 0~100 cm soil depth at harvest was comparable between AI coupled with CN and AI coupled with AN, and the residual of them was reduced by 11.7%~27.3% compared with those of the other treatments. Therefore, alternate furrow irrigation coupled with conventional or alternate nitrogen supply brought a relatively reasonable spatial-temporal distribution of soil nitrate nitrogen during maize growth, and lowered soil residual nitrate nitrogen at harvest.

        maize; irrigation method; nitrogen supply method; soil nitrate nitrogen; spatial-temporal distribution

        10.6041/j.issn.1000-1298.2017.02.037

        2016-06-25

        2016-09-19

        國(guó)家自然科學(xué)基金項(xiàng)目(51079124)、國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863 計(jì)劃)項(xiàng)目(2011AA100504)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(QN2011067)

        漆棟良(1987—),男,博士生,主要從事節(jié)水灌溉理論與作物高效利用水氮研究,E-mail: qdl198799@126.com

        胡田田(1966—),女,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)水土資源高效利用研究,E-mail: hutiant@nwsuaf.edu.cn

        S158.5

        A

        1000-1298(2017)02-0279-09

        欧美拍拍视频免费大全| 国产一区二区三区视频大全| 国产成人亚洲精品一区二区三区| 少妇激情一区二区三区99| 亚洲精品久久久久中文字幕| 99这里只有精品| 无码流畅无码福利午夜| 国产精品国产三级国产剧情| 人妻少妇乱子伦无码视频专区| 日韩精品一区二区亚洲av| 国产思思久99久精品| 精品亚洲一区二区三区在线播放| 免费国产在线精品一区| 中文字幕乱码人妻一区二区三区| 91青草久久久久久清纯| 亚洲中文字幕一区av| 18国产精品白浆在线观看免费| 国外亚洲成av人片在线观看| 国产精品99精品一区二区三区∴| 91久久国产露脸国语对白| 日本一本免费一二区| 性久久久久久久| 国产思思久99久精品| 国产在线av一区二区| 国产成人a在线观看视频免费| 国产曰批免费视频播放免费s| 永久免费在线观看蜜桃视频| 国产青青草在线观看视频| 国产亚洲午夜高清国产拍精品| 欧洲亚洲第一区久久久| 亚洲国产日韩综合天堂| 国产激情无码一区二区| 韩国19禁主播深夜福利视频| 国产人妖赵恩静在线视频| 国产自拍精品视频免费| 无码ol丝袜高跟秘书在线观看 | 久久国产精品亚洲我射av大全| 日本动漫瀑乳h动漫啪啪免费 | 亚洲精品久久区二区三区蜜桃臀 | 久久精品亚洲精品国产区| 大胸少妇午夜三级|