葉長亮 王福軍,2 李懷成 李震曇 宋青松
(1.中國農(nóng)業(yè)大學(xué)大學(xué)水利與土木工程學(xué)院, 北京 100083;2.北京市供水管網(wǎng)系統(tǒng)安全與節(jié)能工程技術(shù)研究中心, 北京 100083;3.上海連成集團(tuán)有限公司, 上海 201812)
雙進(jìn)口兩級(jí)雙吸離心泵過渡流道壓力脈動(dòng)特性研究
葉長亮1王福軍1,2李懷成3李震曇3宋青松3
(1.中國農(nóng)業(yè)大學(xué)大學(xué)水利與土木工程學(xué)院, 北京 100083;2.北京市供水管網(wǎng)系統(tǒng)安全與節(jié)能工程技術(shù)研究中心, 北京 100083;3.上海連成集團(tuán)有限公司, 上海 201812)
雙進(jìn)口兩級(jí)雙吸離心泵的過渡流道由正流道、過橋段、反流道3部分組成,其中正流道為雙蝸殼型式,反流道為帶有導(dǎo)葉的雙螺旋型式,過橋段連接正反流道呈現(xiàn)空間扭曲狀。過渡流道與首級(jí)葉輪和次級(jí)葉輪均存在動(dòng)靜耦合關(guān)系,由此導(dǎo)致的動(dòng)靜干涉效應(yīng)是引起壓力脈動(dòng)的主要根源之一。采用CFD方法對(duì)雙進(jìn)口兩級(jí)雙吸離心泵典型工況下的三維非定常流場(chǎng)進(jìn)行了研究,對(duì)過渡流道壓力脈動(dòng)機(jī)理進(jìn)行了分析。研究發(fā)現(xiàn),正流道內(nèi)的靜壓分布與其雙蝸殼型式密切相關(guān),在所有工況下均呈180°對(duì)稱分布,壓力脈動(dòng)主頻均為葉片通過頻率,最大脈動(dòng)幅值均出現(xiàn)在隔舌附近;小流量工況下,隔舌處壓力脈動(dòng)主頻幅值明顯高于設(shè)計(jì)工況,約為設(shè)計(jì)工況的180%。在過橋段中,所有工況下壓力脈動(dòng)主頻均為葉片通過頻率,設(shè)計(jì)工況下,沿著流動(dòng)方向,內(nèi)壁面進(jìn)口處的壓力脈動(dòng)主頻幅值達(dá)到最大,外壁面主頻脈動(dòng)幅值變化沿流動(dòng)方向有增加的趨勢(shì);在反流道中,設(shè)計(jì)工況下壓力脈動(dòng)主頻為葉片通過頻率,幅值沿著流動(dòng)方向逐漸增加,出口處主頻的脈動(dòng)幅值約為進(jìn)口處的110%;小流量工況下,反流道導(dǎo)葉附近存在低頻成分,且在導(dǎo)葉周圍發(fā)現(xiàn)具有周期性的漩渦。
兩級(jí)雙吸離心泵; 雙進(jìn)口; 過渡流道; 壓力脈動(dòng)
雙進(jìn)口兩級(jí)雙吸離心泵以其流量大、揚(yáng)程高的特點(diǎn)正逐漸被一些大型高揚(yáng)程供水場(chǎng)合采用。該泵為兩側(cè)吸入、中間壓出;首級(jí)葉輪為單吸型式,共有2個(gè),在左、右兩側(cè)對(duì)稱分布;次級(jí)葉輪為雙吸一字型式;兩級(jí)葉輪之間采用過渡流道連接。過渡流道由正流道、過橋段及反流道等3部分組成。正流道相當(dāng)于首級(jí)葉輪后的壓水室,采用雙蝸殼結(jié)構(gòu)型式;反流道相當(dāng)于次級(jí)葉輪前的吸水室,采用雙螺旋形結(jié)構(gòu)型式;過橋段用于連接正流道和反流道,其通道呈空間扭曲狀。這種特殊的過渡流道結(jié)構(gòu)型式,使得雙進(jìn)口兩級(jí)雙吸離心泵具有復(fù)雜的流動(dòng)現(xiàn)象,特別是較為突出的壓力脈動(dòng)特性。
針對(duì)普通離心泵壓力脈動(dòng)產(chǎn)生原因,目前已有較廣泛的研究[1-3]。通常認(rèn)為,葉輪與蝸殼隔舌間的動(dòng)靜干涉效應(yīng)是導(dǎo)致較大幅值壓力脈動(dòng)的主要原因,脈動(dòng)主頻為葉片通過頻率,葉輪與隔舌之間的間隙對(duì)于脈動(dòng)幅值有重要影響[4-6]。離心泵在偏離額定工況時(shí),特別是小流量工況時(shí),隔舌區(qū)壓力脈動(dòng)幅值顯著增大[7-8]。離心泵中的動(dòng)靜干涉作用是壓力脈動(dòng)產(chǎn)生的主要來源,對(duì)機(jī)組安全穩(wěn)定運(yùn)行有重要影響。而對(duì)雙進(jìn)口兩級(jí)雙吸離心泵而言,過渡流道與兩級(jí)葉輪之間均存在動(dòng)靜耦合關(guān)系,由此導(dǎo)致的動(dòng)靜干涉效應(yīng)更為復(fù)雜,有必要對(duì)過渡流道內(nèi)壓力脈動(dòng)的分布規(guī)律進(jìn)行重點(diǎn)分析。
隨著計(jì)算機(jī)技術(shù)的發(fā)展,CFD方法已經(jīng)能夠較為準(zhǔn)確地對(duì)離心泵內(nèi)壓力脈動(dòng)的特性進(jìn)行計(jì)算[9]。在進(jìn)行離心泵壓力脈動(dòng)計(jì)算的過程中,非結(jié)構(gòu)網(wǎng)格[10-11]RNGk-ε湍流模型與增強(qiáng)型壁面函數(shù)[12-14]相結(jié)合的模式,具有計(jì)算簡單、適用性強(qiáng)的特點(diǎn)。此外,二階中心差分空間離散格式[15]以及PISO算法[16]等常規(guī)計(jì)算方案已經(jīng)被多位學(xué)者證明可以取得工程上令人滿意的計(jì)算精度。對(duì)計(jì)算所得的結(jié)果進(jìn)行時(shí)域分析與頻域分析也是多數(shù)學(xué)者[17-19]用作離心泵壓力脈動(dòng)后處理的主要方式。
本文以雙進(jìn)口兩級(jí)雙吸離心泵為研究對(duì)象,通過非定常流動(dòng)的數(shù)值模擬,研究過渡流道內(nèi)壓力脈動(dòng)特性,以期為研究雙進(jìn)口兩級(jí)雙吸離心泵運(yùn)行過程中的振動(dòng)噪聲、穩(wěn)定性提供理論依據(jù)。
1.1 水泵參數(shù)
本文研究對(duì)象是山西省某引黃泵站所采用的雙進(jìn)口兩級(jí)雙吸離心泵,具體結(jié)構(gòu)如圖1所示,該泵從兩側(cè)進(jìn)口吸入液體,經(jīng)首級(jí)葉輪加壓后進(jìn)入過渡流道,并導(dǎo)入次級(jí)葉輪繼續(xù)加壓后從壓水室流出,最終從泵的出口法蘭流出。該泵設(shè)計(jì)流量8 640 m3/h,設(shè)計(jì)揚(yáng)程158 m,轉(zhuǎn)速750 r/min,首級(jí)單吸葉輪外徑1 050 mm,次級(jí)雙吸葉輪外徑為1 000 mm,兩級(jí)葉輪的葉片數(shù)均為6片。過渡流道中的正流道采用雙蝸殼型式,基圓直徑1 080 mm。過橋段連接正流道與反流道部分,進(jìn)口外徑為1 300 mm。反流道段為雙螺旋形狀,出口外徑為400 mm。
圖1 雙進(jìn)口兩級(jí)雙吸離心泵整體結(jié)構(gòu)示意圖Fig.1 Structure diagram of double-inlet two-stage double-suction centrifugal pump
1.2 計(jì)算區(qū)域與網(wǎng)格劃分
計(jì)算域包括兩側(cè)對(duì)稱布置的2個(gè)吸水室、2個(gè)首級(jí)葉輪、2組過渡流道、次級(jí)葉輪和壓水室。為了施加均勻進(jìn)口條件和出口條件,對(duì)吸水室進(jìn)口和壓水室出口分別按2倍直徑的長度進(jìn)行了延長,計(jì)算模型如圖2所示。計(jì)算所采用的非結(jié)構(gòu)網(wǎng)格對(duì)計(jì)算域結(jié)構(gòu)復(fù)雜的雙進(jìn)口兩級(jí)雙吸離心泵具有較好的適用性[20]。對(duì)泵而言,當(dāng)水流流經(jīng)過流部件表面時(shí),由于黏性的作用,近壁區(qū)的流動(dòng)具有很大的速度梯度,為保證計(jì)算的可靠性需要考慮近壁區(qū)的網(wǎng)格[21-22]。為此,對(duì)第1層網(wǎng)格進(jìn)行驗(yàn)證。經(jīng)檢測(cè),30 圖2 雙進(jìn)口兩級(jí)雙吸離心泵計(jì)算域Fig.2 Computational domain of double-inlet two-stage double-suction centrifugal pump1.進(jìn)水管 2.吸水室 3.首級(jí)單吸葉輪 4.過渡流道 5.次級(jí)雙吸葉輪 6.壓水室 1.3 計(jì)算方法與邊界條件 圖3 過渡流道壓力脈動(dòng)監(jiān)測(cè)點(diǎn)布置Fig.3 Monitoring points layouts of pressure fluctuation in inter-stage flow channel 本次計(jì)算選取的RNGk-ε模型可以較好地處理高應(yīng)變率及流線彎曲程度較大的流動(dòng)[23]。采用非耦合隱式方案進(jìn)行求解,時(shí)間項(xiàng)離散采用二階全隱格式,壓力項(xiàng)采用二階中心差分格式,其他項(xiàng)采用二階迎風(fēng)差分格式,壓力和速度的耦合求解采用適于非定常計(jì)算的PISO算法[24]。進(jìn)口邊界指定為速度進(jìn)口條件,其值通過流量和進(jìn)口過流面積確定,并給定湍動(dòng)能和湍流耗散率。出口邊界指定為自由出流條件,認(rèn)為泵內(nèi)流動(dòng)在出口部分已達(dá)到充分發(fā)展?fàn)顟B(tài)。旋轉(zhuǎn)葉輪與靜止過渡流道以及蝸殼間動(dòng)靜交界面的信息傳遞,引入滑移網(wǎng)格技術(shù)進(jìn)行處理。固壁采用無滑移壁面條件,近壁區(qū)域采用增強(qiáng)型壁面函數(shù)來求解近壁面區(qū)域內(nèi)的低雷諾數(shù)流動(dòng)。以穩(wěn)態(tài)計(jì)算結(jié)果作為非定常計(jì)算的初始條件。為足夠分辨內(nèi)部流場(chǎng)的非定常信息,選取非穩(wěn)態(tài)計(jì)算的時(shí)間步長為2.22×10-4s,即葉輪每旋轉(zhuǎn)1°為1個(gè)時(shí)間步長,總時(shí)間設(shè)為0.95 s,即額定工況下葉輪旋轉(zhuǎn)12周,設(shè)定收斂精度為10-5。 1.4 壓力脈動(dòng)監(jiān)測(cè)點(diǎn)位置 正流道與首級(jí)葉輪進(jìn)行匹配,采用雙蝸殼的型式將水流分成2路,分別從蝸殼的2個(gè)出口流到下一區(qū)域部分。圖3為過渡流道壓力脈動(dòng)監(jiān)測(cè)點(diǎn)布置圖,所選取的監(jiān)測(cè)點(diǎn)均位于中截面上,其中,監(jiān)測(cè)點(diǎn)1~3位于正流道隔舌附近,監(jiān)測(cè)點(diǎn)7位于正流道出口。過橋段是過渡流道中連接正流道與反流道的部分,呈現(xiàn)三維扭曲形態(tài),監(jiān)測(cè)點(diǎn)8~10位于過橋段外壁,監(jiān)測(cè)點(diǎn)16~19位于過橋段內(nèi)壁。反流道為螺旋形狀,為第二級(jí)葉輪提供所需要的流態(tài)。監(jiān)測(cè)點(diǎn)11~15是反流道中沿著流動(dòng)方向上的監(jiān)測(cè)點(diǎn),監(jiān)測(cè)點(diǎn)20~23為反流道導(dǎo)葉上的監(jiān)測(cè)點(diǎn)。為了直觀反映壓力脈動(dòng)幅度,以便進(jìn)行不同對(duì)象或不同位置壓力脈動(dòng)的比較,本文引入壓力系數(shù)這一參數(shù),對(duì)于過渡流道的計(jì)算選用第一級(jí)葉輪的出口直徑進(jìn)行計(jì)算,常用的壓力系數(shù)計(jì)算公式[25]為 Cp=Δp/(0.5ρu2) (1) 其中 (2) 式中 Δp——壓力與其平均值之差u——葉輪出口圓周速度ρ——流體密度D——葉輪出口直徑n——離心泵額定轉(zhuǎn)速 圖4 現(xiàn)場(chǎng)測(cè)試圖Fig.4 Picture of field test 圖5 外特性曲線Fig.5 Performance curves of double-inlet two-stage double-suction centrifugal pump 在開式試驗(yàn)臺(tái)上對(duì)該雙進(jìn)口兩級(jí)雙吸離心泵進(jìn)行了外特性試驗(yàn),圖4為現(xiàn)場(chǎng)測(cè)試圖。圖5為性能曲線計(jì)算值與試驗(yàn)值比較:泵額定流量點(diǎn)試驗(yàn)結(jié)果為揚(yáng)程158 m、機(jī)組效率84.5%;泵額定流量點(diǎn)數(shù)值模擬結(jié)果為揚(yáng)程155.3 m、機(jī)組效率82%。揚(yáng)程的數(shù)值計(jì)算與試驗(yàn)相對(duì)誤差為1.7%,效率的數(shù)值計(jì)算與試驗(yàn)相對(duì)誤差為3%,效率相對(duì)誤差稍大可能是由于數(shù)值計(jì)算過程上的水泵密封摩擦損失、軸承摩擦損失無法準(zhǔn)確估算所引起。總體上,模擬值與試驗(yàn)值基本一致,效率和揚(yáng)程與試驗(yàn)值的誤差在可接受的范圍內(nèi),數(shù)值計(jì)算結(jié)果有較高的可信度。 3.1 正流道壓力脈動(dòng)分析 圖6為正流道在小流量(0.6Q)、設(shè)計(jì)流量(Q)和大流量(1.1Q)3種典型工況下的靜壓分布圖,與普通離心泵蝸殼作用相似,正流道負(fù)責(zé)收集葉輪流出液體,將部分動(dòng)能轉(zhuǎn)化成壓能。正流道中心截面靜壓基本呈180°對(duì)稱分布,基本可以抵消徑向力,起到較好的平衡作用。從隔舌到擴(kuò)散段靜壓逐漸增加且變化比較均勻,隔舌處由于受流動(dòng)沖擊壓力較高。 由于2個(gè)隔舌位置對(duì)稱,靜壓分布相似,重點(diǎn)研究其中一處隔舌區(qū)域的壓力脈動(dòng)分布規(guī)律。圖7為設(shè)計(jì)工況下正流道隔舌附近監(jiān)測(cè)點(diǎn)的壓力脈動(dòng)時(shí)域圖,可以看出隔舌附近監(jiān)測(cè)點(diǎn)的壓力脈動(dòng)時(shí)域變化具有明顯的周期性,相鄰兩峰值時(shí)間間隔為0.075 s,約為1個(gè)葉片通過周期。距離隔舌較遠(yuǎn)處的壓力系數(shù)峰-峰值較小,約為0.10。 通過快速傅里葉變換(FFT)后得到監(jiān)測(cè)點(diǎn)l~3的壓力脈動(dòng)頻域圖,如圖8所示。由圖中可以看出,隔舌附近壓力脈動(dòng)主頻為1倍葉片通過頻率。離隔舌最遠(yuǎn)的監(jiān)測(cè)點(diǎn)3壓力脈動(dòng)幅值最小,而壓力脈動(dòng)幅值最大的則是與隔舌有一定距離的監(jiān)測(cè)點(diǎn)2,離隔舌最近的監(jiān)測(cè)點(diǎn)l壓力脈動(dòng)幅值要比監(jiān)測(cè)點(diǎn)2 圖6 3種典型工況下正流道靜壓分布Fig.6 Static pressure distributions in forward channel under three typical working conditions 圖7 正流道隔舌附近監(jiān)測(cè)點(diǎn)壓力脈動(dòng)時(shí)域圖Fig.7 Time domain diagrams of pressure fluctuation near tongue in forward channel 小,其中,監(jiān)測(cè)點(diǎn)2的壓力脈動(dòng)最大幅值比監(jiān)測(cè)點(diǎn)3大62%。 圖8 正流道隔舌附近監(jiān)測(cè)點(diǎn)壓力脈動(dòng)頻域圖Fig.8 Frequency domain diagram of pressure fluctuation near tongue in forward channel 圖9表示3種典型流量工況下,正流道隔舌處監(jiān)測(cè)點(diǎn)1和出口處監(jiān)測(cè)點(diǎn)7的壓力脈動(dòng)頻域特性圖??梢钥闯觯瑢?duì)于監(jiān)測(cè)點(diǎn)1,在設(shè)計(jì)工況下,壓力脈動(dòng)的頻率以泵的葉片通過頻率為主,且脈動(dòng)幅值相對(duì)較??;而泵一旦在偏離設(shè)計(jì)流量時(shí)運(yùn)行,脈動(dòng)幅值將會(huì)增大,且偏離越遠(yuǎn),幅值越大。在大流量工況下,壓力脈動(dòng)的頻率仍以葉片通過頻率為主,監(jiān)測(cè)點(diǎn)1壓力脈動(dòng)最大幅值比設(shè)計(jì)工況下增加38.8%;在小流量工況下,由于泵內(nèi)湍流強(qiáng)烈的不規(guī)則運(yùn)動(dòng),低于1倍葉片通過頻率的低頻脈動(dòng)會(huì)隨著流量的減小幅值越來越大,但是主頻依然為1倍葉片通過頻率。在小流量工況下,監(jiān)測(cè)點(diǎn)1的壓力脈動(dòng)最大幅值比設(shè)計(jì)工況大83%。對(duì)于監(jiān)測(cè)點(diǎn)7,蝸殼出口處壓力脈動(dòng)在設(shè)計(jì)工況與大流量工況下,壓力脈動(dòng)的頻率以泵的葉片通過頻率為主。不同于隔舌處壓力脈動(dòng)變化規(guī)律,在小流量工況下,低于1倍葉片通過頻率的低頻脈動(dòng)占據(jù)主導(dǎo)地位,且隨著流量的增加,壓力脈動(dòng)最大幅值也隨之增加。在大流量工況下,監(jiān)測(cè)點(diǎn)7壓力脈動(dòng)最大幅值分別比設(shè)計(jì)工況和小流量工況大46.7%和29.3%。 圖9 3種典型工況下正流道監(jiān)測(cè)點(diǎn)壓力脈動(dòng)頻域圖Fig.9 Frequency domain diagrams of pressure fluctuation in forward channel under three typical working conditions 圖10 過橋段內(nèi)壁監(jiān)測(cè)點(diǎn)壓力脈動(dòng)時(shí)域圖Fig.10 Time domain diagrams of pressure fluctuation in inner wall of bridge 3.2 過橋段壓力脈動(dòng)分析 圖10為過橋段內(nèi)壁監(jiān)測(cè)點(diǎn)16~19的設(shè)計(jì)工況下壓力脈動(dòng)時(shí)域圖??梢钥闯觯@4個(gè)監(jiān)測(cè)點(diǎn)的壓力脈動(dòng)周期性明顯,相鄰兩峰值時(shí)間間隔0.075 s,約為1個(gè)葉片通過周期。監(jiān)測(cè)點(diǎn)16的壓力系數(shù)峰-峰值最高,約為0.15。 圖11是過橋段內(nèi)、外壁監(jiān)測(cè)點(diǎn)設(shè)計(jì)工況下壓力脈動(dòng)頻域圖,可以看出,內(nèi)、外壁的主頻均為1倍葉片通過頻率,沿著流動(dòng)方向,內(nèi)壁面進(jìn)口處的壓力脈動(dòng)主頻幅值達(dá)到最大,比出口處主頻壓力脈動(dòng)幅值高47%,外壁面主頻脈動(dòng)幅值變化沿流動(dòng)方向有增加的趨勢(shì),其中,外壁面出口處壓力幅值比進(jìn)口處壓力幅值高16%。在進(jìn)口處位置,內(nèi)壁面比外壁面幅值高23%。 圖11 過橋段內(nèi)、外壁監(jiān)測(cè)點(diǎn)壓力脈動(dòng)頻域圖Fig.11 Frequency domain diagrams of pressure fluctuation in inner and outer walls of bridge 過橋段用于連接正流道和反流道,其通道呈空間扭曲狀。因此,分析其內(nèi)部流動(dòng)狀態(tài)對(duì)壓力脈動(dòng)分析有一定的意義。圖12是設(shè)計(jì)工況下某一時(shí)刻過橋段的內(nèi)部流態(tài)。可以看出,水流進(jìn)入過橋段后速度減小,過橋段進(jìn)一步將動(dòng)能轉(zhuǎn)換為壓力能。沿流向過橋段靜壓逐漸增大,且內(nèi)壁面的靜壓小于外壁面。由于過橋段進(jìn)口的軸向和徑向尺寸都開始發(fā)生變化,空間扭曲比較明顯,導(dǎo)致水流方向變化不規(guī)律。 圖13是設(shè)計(jì)工況下某一時(shí)刻過橋段內(nèi)外壁流線絕對(duì)速度分布??梢钥闯鲞^橋段進(jìn)口內(nèi)外壁速度大小相差不大,沿著流動(dòng)方向外壁面上的速度出現(xiàn)一定的波動(dòng),但整體變化不大,而內(nèi)壁面上的速度隨著流動(dòng)方向逐漸下降。出現(xiàn)這樣的速度分布規(guī)律可能是由于內(nèi)側(cè)流道較短,扭曲變化明顯,液體急劇轉(zhuǎn)彎導(dǎo)致對(duì)壁面的沖擊損失增大,外側(cè)流道較長,過渡較好,沖擊損失較小,導(dǎo)致水流主要從外側(cè)流動(dòng)。過橋段的內(nèi)壁面中間區(qū)域速度梯度為負(fù),在上述的速度矢量圖中過橋段靠近內(nèi)壁面中間區(qū)域有渦出現(xiàn),對(duì)比所分析過橋段的壓力脈動(dòng)可知,在過橋段中間區(qū)域的監(jiān)測(cè)點(diǎn)出現(xiàn)了低頻成分。 圖12 設(shè)計(jì)工況下過渡流道過橋段內(nèi)部流態(tài)Fig.12 Flow pattern diagrams of bridge under design condition 圖13 設(shè)計(jì)工況下過橋段內(nèi)外壁流線絕對(duì)速度分布Fig.13 Absolute velocity distribution of inner and outer walls of bridge under design condition 圖14是3種典型工況下的過橋段外壁出口處監(jiān)測(cè)點(diǎn)10的壓力脈動(dòng)時(shí)域變化圖??梢钥闯觯谠O(shè)計(jì)工況下,監(jiān)測(cè)點(diǎn)10處的壓力脈動(dòng)隨著葉輪的旋轉(zhuǎn)呈周期性變化,最大脈動(dòng)幅值為靜壓均值的7%左右;在大流量工況下,壓力脈動(dòng)的周期性依舊明顯;而在小流量工況下,壓力脈動(dòng)呈現(xiàn)出不規(guī)則變化,沒有明顯的周期性。 圖15為監(jiān)測(cè)點(diǎn)10處壓力脈動(dòng)頻域圖,可以看出,隨著流量的增加,監(jiān)測(cè)點(diǎn)的最大壓力脈動(dòng)幅值呈增加趨勢(shì),其中在小流量工況下,監(jiān)測(cè)點(diǎn)10的主頻壓力脈動(dòng)幅值分別為設(shè)計(jì)工況和大流量工況下的23%和89%。 圖14 3種典型工況下監(jiān)測(cè)點(diǎn)10壓力脈動(dòng)時(shí)域圖Fig.14 Time domain diagrams of pressure fluctuation of monitoring point 10 under three typical conditions 圖15 3種典型工況下監(jiān)測(cè)點(diǎn)10壓力脈動(dòng)頻域圖Fig.15 Frequency domain diagram of pressure fluctuation of monitoring point 10 under three typical conditions 3.3 反流道壓力脈動(dòng)分析 圖16為反流道監(jiān)測(cè)點(diǎn)壓力脈動(dòng)頻域圖,反流道壓力脈動(dòng)主頻為1倍葉片通過頻率。可以看出,沿著流動(dòng)方向,壓力脈動(dòng)主頻幅值逐漸增加??拷戳鞯栏羯嗵帀毫γ}動(dòng)最大幅值比反流道進(jìn)口處最大幅值高10%。 圖16 設(shè)計(jì)工況下反流道監(jiān)測(cè)點(diǎn)壓力脈動(dòng)頻域圖Fig.16 Frequency domain diagram of pressure fluctuation of reverse channel under design condition 圖17 3種典型工況下監(jiān)測(cè)點(diǎn)20壓力脈動(dòng)頻域圖Fig.17 Frequency domain diagram of pressure fluctuation of monitoring point 20 under three typical conditions 圖17為3種典型工況下反流道導(dǎo)葉附近監(jiān)測(cè)點(diǎn)20處的壓力脈動(dòng)頻域圖??梢钥闯?,監(jiān)測(cè)點(diǎn)附近的主頻為1倍葉片通過頻率,且隨著流量增加,監(jiān)測(cè)點(diǎn)20處主頻的幅值逐漸增加。在3種工況下都出現(xiàn)了低頻脈動(dòng)。偏工況條件下,低頻脈動(dòng)的幅值也隨之增加。 圖18為3種典型工況下反流道出口附近監(jiān)測(cè)點(diǎn)15處的壓力脈動(dòng)頻域圖??梢钥闯?,監(jiān)測(cè)點(diǎn)附近的主頻為1倍葉片通過頻率,且隨著流量增加,監(jiān)測(cè)點(diǎn)15處主頻的幅值逐漸增加,大流量工況下主頻脈動(dòng)幅值約為小流量工況下的3倍,在小流量工況下,監(jiān)測(cè)點(diǎn)15出現(xiàn)較為明顯的低頻脈動(dòng)。 圖18 3種典型工況下監(jiān)測(cè)點(diǎn)15壓力脈動(dòng)頻域圖Fig.18 Frequency domain diagram of pressure fluctuation of monitoring point 15 under three typical conditions 圖19 設(shè)計(jì)工況下過渡流道反流道導(dǎo)葉區(qū)域內(nèi)部流線圖Fig.19 Streamlines of guide vane area of reverse channel under design condition 圖19為過渡流道反流道內(nèi)部流態(tài)圖。可以看出,液體通過過橋段經(jīng)過90°變化進(jìn)入反流道段,靠近外壁面流速較大,導(dǎo)葉附近出現(xiàn)低速區(qū)。t=0.234 21 s時(shí),導(dǎo)葉正面附近流動(dòng)比較紊亂并出現(xiàn)了漩渦,隨著時(shí)間的推移,導(dǎo)葉正面的漩渦逐漸減小,在t=0.287 49 s時(shí),在導(dǎo)葉背面處發(fā)現(xiàn)了漩渦。對(duì)應(yīng)不同時(shí)刻,導(dǎo)葉附近相對(duì)速度都較小。這與導(dǎo)葉對(duì)應(yīng)區(qū)域狹小的空間有關(guān),流體進(jìn)入該區(qū)域后,速度減小而壓力增大。兩級(jí)雙吸離心泵的過渡流道中反流道導(dǎo)葉的作用類似于徑向?qū)~的反導(dǎo)葉的作用,除了起壓水室作用外,還起著把液體引入下一級(jí)葉輪的作用。在離心泵徑向?qū)~流場(chǎng)模擬結(jié)果中,導(dǎo)葉內(nèi)損失的3種機(jī)理為:漩渦、環(huán)流和碰撞[26]。在兩級(jí)雙吸離心泵的反流道中流體液流角非常小,使液體在反流道導(dǎo)葉的外緣區(qū)域形成環(huán)流。液流方向與反流道導(dǎo)葉葉片夾角隨著半徑減小而逐漸增大,所以容易引起液體流動(dòng)分離而引發(fā)漩渦,反流道內(nèi)速度云圖也顯示了非常明顯的速度梯度。反流道出口處流線平順,提高第二級(jí)葉輪進(jìn)口流場(chǎng),改善了第二級(jí)葉輪的壓力脈動(dòng)。 (1)正流道呈180°對(duì)稱分布,兩處隔舌區(qū)域靜壓分布相似。設(shè)計(jì)工況下,正流道壓力脈動(dòng)主頻以1倍葉片通過頻率為主,最大脈動(dòng)幅值出現(xiàn)在隔舌附近。小流量工況下,隔舌處主頻脈動(dòng)幅值最大,為設(shè)計(jì)工況下的183%;正流道出口處在小流量工況下出現(xiàn)低頻成分,且幅值超過了葉頻幅值。大流量工況下,正流道出口處主頻脈動(dòng)幅值比設(shè)計(jì)流量出口處主頻脈動(dòng)幅值大16%。 (2)過橋段中,設(shè)計(jì)工況下,過橋段內(nèi)外壁壓力脈動(dòng)主頻以1倍葉片通過頻率為主,在進(jìn)口處位置,內(nèi)壁面主頻脈動(dòng)幅值比外壁面幅值高23%;速度分布上,過橋段進(jìn)口內(nèi)外壁速度大小相差不大,沿著流動(dòng)方向外壁面上的速度出現(xiàn)一定的波動(dòng),但整體變化不大,而內(nèi)壁面上的速度沿著流動(dòng)方向逐漸下降。小流量工況下,過橋段出口處主頻脈動(dòng)幅值最小,分別為設(shè)計(jì)工況和大流量工況下的23%和89%。 (3)反流道中,設(shè)計(jì)工況下,各監(jiān)測(cè)點(diǎn)壓力脈動(dòng)主頻均為1倍葉片通過頻率。沿著流動(dòng)方向,壓力脈動(dòng)主頻幅值逐漸增加,靠近反流道出口處壓力主頻脈動(dòng)幅值比反流道進(jìn)口處脈動(dòng)主頻幅值高10%。小流量工況下,導(dǎo)葉附近出現(xiàn)了低頻脈動(dòng)并發(fā)現(xiàn)具有周期性的漩渦。 1 SPENCE R, AMARAL-TEIXEIRA J. A CFD parametric study of geometrical variations on the pressure pulsations and performance characteristics of a centrifugal pump[J]. Computers & Fluids, 2009, 38(6): 1243-1257. 2 徐朝暉, 吳玉林, 陳乃祥,等. 基于滑移網(wǎng)格與RNG湍流模型計(jì)算泵內(nèi)的動(dòng)靜干擾[J]. 工程熱物理學(xué)報(bào), 2005, 26(1):66-68. XU Zhaohui, WU Yulin, CHEN Naixiang, et al. Simulation of turbulent flow in pump based on sliding mesh and RNG model[J]. Journal of Engineering Thermophysics, 2005, 26(1): 66-68. (in Chinese) 3 BARZDAITIS V, MAZEIKA P, VASYLIUS M, et al. Investigation of pressure pulsations in centrifugal pump system[J]. Journal of Vibroengineering, 2016, 18(3):1849-1860. 4 GAO B, ZHANG N, LI Z, et al. Influence of the blade trailing edge profile on the performance and unsteady pressure pulsations in a low specific speed centrifugal pump[J]. ASME Journal of Fluids Engineering, 2015, 138(5): 051106. 5 LONGATTE F, KUEBY J L. Analysis of rotor-stator circuit interactions in a centrifugal pump[C]∥Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, 2009: 1039-1045. 6 田輝, 郭濤, 孫秀玲,等. 離心泵內(nèi)部動(dòng)靜干涉作用的數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2009, 40(8): 92-95. TIAN Hui, GUO Tao, SUN Xiuling, et al. Numerical simulation of unsteady flow in a centrifugal pump [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 92-95. (in Chinese) 7 BERTEN S, FARHAT M, AVELLAN F, et al. Experimental investigation of pressure fluctuations in a high-energy centrifugal pump stage at off-design conditions[M]∥IMech E. Fluid Machinery Congress , 2014:57-66. 8 付燕霞, 袁壽其, 袁建平,等. 離心泵小流量工況下的內(nèi)部流動(dòng)特性[J]. 排灌機(jī)械工程學(xué)報(bào), 2014,32(3):185-190. FU Yanxia, YUAN Shouqi, YUAN Jianping, et al. Internal flow characteristics of centrifugal pump at low flow rate[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(3):185-190. (in Chinese) 9 DJERROUD M, NGOMA G D, GHIE W. Numerical identification of key design parameters enhancing the centrifugal pump performance: impeller, impeller-volute, and impeller-diffuser[J]. International Scholarly Research Notices, 2011:365-367. 10 RHEE, HYUNG S. Unstructured grid based Reynolds-averaged Navier-Stokes method for liquid tank sloshing[J]. ASME Journal of Fluids Engineering, 2005, 127(3):572-582. 11 ITO K, KUNUGI T, OHNO S, et al. A high-precision calculation method for interface normal and curvature on an unstructured grid[J]. Journal of Computational Physics, 2014, 273:38-53. 12 鄭亞軍,王凱,雷興春,等.基于RNG湍流模型的泵站進(jìn)水流道三維數(shù)值模擬[J].水電能源科學(xué),2008,26(6):123-125. ZHENG Yajun,WANG Kai, LEI Xingchun, et al. 3D numerical simulation in inlet passages of pumping station by RNGk-εturbulent model with wall-function law[J]. Water Resources & Power, 2008,26(6): 123-125.(in Chinese) 13 王福軍, 流體機(jī)械旋轉(zhuǎn)湍流計(jì)算模型研究進(jìn)展[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2016, 47(2):1-14.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20160201&flag=1.DOI:10.6041/j.issn.1000-1298.2016.02.001. WANG Fujun. Research progress of computational model for rotating turbulent flow in fluid machinery[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(2): 1-14. (in Chinese) 14 MERLIER L, KUZNIK F, RUSAOEN G, et al. An adapted steady RANS RSM wall-function for building external convection[J]. Building & Environment, 2015, 94(Part 2):654-664. 15 SIRISHA L, REDDY Y N. Fitted second order scheme for singularly perturbed differential-difference equations[J]. American Journal of Numerical Analysis, 2014, 2(5): 136-143. 16 JANG D S, ACHARYA R J S. Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems[J]. Numerical Heat Transfer Applications, 1986, 10(3):209-228. 17 姚志峰, 王福軍, 肖若富, 等. 雙吸離心泵吸水室和壓水室壓力脈動(dòng)特性試驗(yàn)研究[J]. 水利學(xué)報(bào), 2012, 43(4): 473-479. YAO Zhifeng, WANG Fujun, XIAO Ruofu, et al. Experimental investigation on pressure fluctuations in suction chamber and volute of a double-suction centrifugal pump[J]. Journal of Hydraulic Engineering, 2012, 43(4): 473-479. (in Chinese) 18 譚磊, 曹樹良,王玉明, 等. 離心泵葉輪內(nèi)部流場(chǎng)的數(shù)值計(jì)算[J].農(nóng)業(yè)工程學(xué)報(bào),2012,28(14): 47-51. TAN Lei, CAO Shuliang, WANG Yuming, et al. Numerical calculations for internal flow field in centrifugal pump impeller[J]. Transactions of the CSAE, 2012, 28(14): 47-51. (in Chinese) 19 張帆, 袁壽其, 付強(qiáng),等. 雙蝸殼式離心泵內(nèi)部非定常流動(dòng)壓力特性分析[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015, 46(2): 52-58.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20150209&flag=1.DOI:10.6041/j.issn.1000-1298.2015.02.009. ZHANG Fan, YUAN Shouqi, FU Qiang, et al. Analysis on pressure characteristics during internal unsteady flow in double volute centrifugal pump[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 52-58. (in Chinese) 20 王福軍. 計(jì)算流體動(dòng)力學(xué)分析[M]. 北京:清華大學(xué)出版社, 2004. 21 ZHOU Ling, SHI Weidong, LU Weigang, et al. Numerical investigations and performance experiments of a deep-well centrifugal pump with different diffusers[J]. ASME Journal of Fluids Engineering, 2012, 134(7): 071102.1-071102.8. 22 李曉俊, 袁壽其, 潘中永,等. 離心泵邊界層網(wǎng)格的實(shí)現(xiàn)及應(yīng)用評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2012, 28(20):67-72. LI Xiaojun, YUAN Shouqi, PAN Zhongyong, et al. Realization and application evaluation of near-wall mesh in centrifugal pumps[J]. Transactions of the CSAE, 2012, 28(20): 67-72. (in Chinese) 23 DARYUS A, SISWANTARA A I, DARMAWAN S, et al. CFD simulation of turbulent flows in proto X-3 bioenergy micro gas turbine combustor using STDk-εand RNGk-εmodel for green building application[J]. International Journal of Technology, 2016, 7(2): 204-211. 24 FARRANT T, TAN M, PRICE W G. Cell boundary element method applied to laminar vortex shedding from circular cylinders[J]. Computers and Fluids, 2001, 30(2): 211-236. 25 李辰光, 王福軍, 許建中, 等. 兩級(jí)雙吸離心泵壓力脈動(dòng)特性[J].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2011, 42(7):41-49. LI Chenguang, WANG Fujun, XU Jianzhong, et al. Pressure fluctuation of a two-stage double-suction centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(7): 41-49 .(in Chinese) 26 周邵萍, 胡良波, 張浩. 多級(jí)離心泵級(jí)間導(dǎo)葉性能優(yōu)化[J/OL]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015, 46(4):33-39.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20150406&flag=1.DOI:10.6041/j.issn.1000-1298.2015.04.006. ZHOU Shaoping, HU Liangbo, ZHANG Hao. Performance optimization for intermedia stage guide vanes of multistage centrifugal pump [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 33-39. (in Chinese) Pressure Fluctuation Characteristics in Inter-stage Flow Channel of Double-inlet Two-stage Double-suction Centrifugal Pump YE Changliang1WANG Fujun1,2LI Huaicheng3LI Zhentan3SONG Qingsong3 (1.CollegeofWaterResourcesandCivilEngineering,ChinaAgriculturalUniversity,Beijing100083,China2.BeijingEngineeringResearchCenterofSafetyandEnergySavingTechnologyforWaterSupplyNetworkSystem,ChinaAgriculturalUniversity,Beijing100083,China3.ShanghaiLianchengGroupCompany,Shanghai201812,China) Double-inlet two-stage double-suction centrifugal pump is a new type of pump, which has large flow rate and high head. The inter-stage flow channel of a double-inlet two-stage double-suction centrifugal pump is located between the first-stage single-suction impeller and the second-stage double-suction impeller. It is divided into forward channel, bridge and reverse channel. The rotor-stator interaction between the inter-stage flow channel and the impellers may be one of the main causes of pressure fluctuation. The forward channel is twin-volute type, and the reverse channel is double spiral type with a guide vane. The bridge is three dimensional distortion connecting the forward channel and reverse channel. The three-dimensional unsteady flow field of double-inlet two-stage double-suction centrifugal pump is studied by using CFD method, and the pressure fluctuation mechanism is analyzed. In the forward channel, the static pressure distribution is closely related to twin-volute type with 180°symmetric distribution under all flow conditions. The blade passing frequency is the main frequency of pressure fluctuation, and the maximum amplitude appears near the tongue. Under low flow rate conditions, the main frequency amplitude of pressure fluctuation is significantly higher than that under design conditions, which is about 1.8 times as that under design conditions. In the bridge area, the main frequency of pressure fluctuation is blade passing frequency under all the conditions. Under design condition, the main frequency of pressure fluctuation of inlet of the inner surface reaches the maximum along the flow direction, while that of outer surface has the reverse rule. In the reverse channel, the main frequency of pressure fluctuation is the blade passing frequency under design conditions, whose amplitude along the flow direction is gradually increased. The fluctuation amplitude in the outlet is about 1.1 times as that in the inlet. Under low flow rate conditions, the low-frequency component and the periodic vortex nearby the guide vane are found. The research result provides a basis for improving the hydraulic design and the operation stability of double-inlet two-stage double-suction centrifugal pump. two-stage double-suction centrifugal pump; double-inlet; inter-stage flow channel; pressure fluctuation 10.6041/j.issn.1000-1298.2017.02.017 2016-07-04 2016-09-16 “十二五”國家科技支撐計(jì)劃項(xiàng)目(2015BAD20B01)和國家自然科學(xué)基金項(xiàng)目(51139007、51321001) 葉長亮(1994—),男,博士生,主要從事水動(dòng)力學(xué)與水力機(jī)械研究,E-mail: ychl1994@cau.edu.cn 王福軍(1964—),男,教授,博士生導(dǎo)師,主要從事水動(dòng)力學(xué)與水力機(jī)械研究,E-mail: wangfj@cau.edu.cn TH311; TV131.3+3 A 1000-1298(2017)02-0126-092 模擬與試驗(yàn)結(jié)果對(duì)比
3 過渡流道壓力脈動(dòng)分析
4 結(jié)論