亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        阿拉伯木聚糖和阿拉伯低聚木糖的益生功能研究進(jìn)展

        2017-02-28 05:03:48尹達(dá)菲袁建敏
        關(guān)鍵詞:木糖支鏈聚糖

        雷 釗 尹達(dá)菲 袁建敏

        (中國(guó)農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,北京 100193)

        阿拉伯木聚糖和阿拉伯低聚木糖的益生功能研究進(jìn)展

        雷 釗 尹達(dá)菲 袁建敏?

        (中國(guó)農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,北京 100193)

        畜禽腸道健康的調(diào)控已成為當(dāng)今畜牧業(yè)中的重點(diǎn)關(guān)注問(wèn)題。阿拉伯木聚糖(AX)和阿拉伯低聚木糖(AXOS)作為新型的益生元,其對(duì)雙歧桿菌等益生菌的增殖效果優(yōu)于低聚果糖等益生元。此外,與低聚果糖等益生元相比,AX和AXOS能夠進(jìn)入腸道后段進(jìn)行發(fā)酵,生成非支鏈的短鏈脂肪酸,并抑制蛋白質(zhì)的發(fā)酵,減少有毒物質(zhì)(苯酚、氨等)的生成,從而有效地調(diào)節(jié)后腸段(結(jié)腸和盲腸)的健康。不同結(jié)構(gòu)的AX和AXOS具有不同的益生功能,且AX和AXOS間存在協(xié)同增效的益生作用。本文綜述了近年來(lái)關(guān)于AX和AXOS的益生功能的研究進(jìn)展,為其在畜牧業(yè)中的應(yīng)用提供一定的理論依據(jù)和指導(dǎo)。

        阿拉伯木聚糖;阿拉伯低聚木糖;益生功能;腸道健康

        隨著畜禽產(chǎn)品安全問(wèn)題越來(lái)越受到關(guān)注,抗生素等藥物的使用越來(lái)越受到限制,因而研發(fā)新的調(diào)節(jié)畜禽腸道健康的抗生素替代品顯得越來(lái)越重要。阿拉伯木聚糖(arabinoxylan,AX)和阿拉伯低聚木糖(arabinoxylan oligosaccharides,AXOS)作為一種新型的益生元,可以特異性地促進(jìn)益生菌的增殖,尤其是對(duì)雙歧桿菌的增殖作用,其效果顯著優(yōu)于果寡糖[1]。近年來(lái)的研究表明,AXOS和AX對(duì)乳酸菌[2]和芽孢桿菌[3]的促生長(zhǎng)作用同樣優(yōu)于果寡糖和葡萄糖。此外,AX、AXOS較果寡糖等低聚糖而言,更易進(jìn)入腸道后段進(jìn)行發(fā)酵,從而能更有效地調(diào)節(jié)后腸段的健康[4]。同低聚果糖相比,低聚木糖(xylo oligosaccharides,XOS)還具有降低蛋白質(zhì)發(fā)酵產(chǎn)生的有毒物質(zhì)引起的結(jié)腸DNA損傷的作用[5]。因而,AX、AXOS的益生功能的研究成為了近幾年的研究熱點(diǎn)。

        AXOS為AX的酶解產(chǎn)物,因木聚糖來(lái)源和木聚糖酶的酶學(xué)特性的不同而有所差異,其產(chǎn)物可以為AXOS、XOS和阿魏酸低聚木糖(feruloylated arabinoxylan oligosaccharides,F(xiàn)XOS)等低聚糖以及木糖、阿魏酸等支鏈水解產(chǎn)物,這些低聚糖和支鏈水解產(chǎn)物進(jìn)一步發(fā)揮不同的益生和生理作用。

        目前,關(guān)于AX、AXOS的研究主要還集中在應(yīng)用層面,其結(jié)構(gòu)和功能的關(guān)系還不清楚,且對(duì)其在細(xì)菌體內(nèi)的代謝機(jī)理還缺乏相關(guān)報(bào)道。本文從木聚糖酶的酶學(xué)特性、AX及其酶解產(chǎn)物結(jié)構(gòu)和功能的關(guān)系以及微生物對(duì)AX、AXOS的代謝3個(gè)方面來(lái)介紹AX、AXOS的益生功能的研究進(jìn)展,為其在生產(chǎn)中的研發(fā)和應(yīng)用提供一定的理論依據(jù)和指導(dǎo)。

        1 AX的結(jié)構(gòu)與功能

        1.1 AX的結(jié)構(gòu)

        木聚糖是植物細(xì)胞壁的重要組成成分,連接細(xì)胞壁中的木質(zhì)素和纖維素,是最主要的半纖維素,也是自然界中第2豐富的可再生物質(zhì)[6],并廣泛存在于硬木(15%~30%)、軟木(7%~10%)和草本類(lèi)植物中(低于30%)。木聚糖的主鏈由木糖經(jīng)β-1,4-糖苷鍵連接而成,而其支鏈結(jié)構(gòu)由于來(lái)源的不同而有所差異。如谷物類(lèi)飼料中(小麥、玉米和燕麥)木聚糖的存在形式主要為AX,即主要的支鏈結(jié)構(gòu)為阿拉伯糖取代基;而來(lái)源于硬木(樺木、櫸木等)的木聚糖的支鏈結(jié)構(gòu)則主要為乙?;?、葡萄糖醛酸等。阿拉伯糖主要在主鏈的C2或C3位置進(jìn)行雙取代或單取代,而乙?;饕贑3位置進(jìn)行單取代[7]。除這 2種側(cè)鏈取代基外,木聚糖的支鏈結(jié)構(gòu)都還含包括多種支鏈,如阿魏酸、葡萄糖醛酸及p-香豆素等[8]。

        不同來(lái)源的AX[9]和來(lái)源于同一種類(lèi)、但不同組織的AX[10]的結(jié)構(gòu)都不一樣,表現(xiàn)在聚合度(average degree of polymerization,avDP)的不同和側(cè)鏈取代程度(average degree of arabinose substitution,avDAS)的不同以及支鏈取代基的不同。avDP和avDAS這2個(gè)指標(biāo)常常用于描述AX及其酶解產(chǎn)物AXOS的結(jié)構(gòu)特征。因而不同酶學(xué)性質(zhì)的木聚糖酶分解AX后的產(chǎn)物也不同。這些結(jié)構(gòu)不同的產(chǎn)物都可以不同程度地影響腸道微生物發(fā)酵[11-13]。根據(jù)溶解性,AX可分為可溶型(water extractable,WE-AX)和不可溶型(water-unextractable,WU-AX)。二者的支鏈結(jié)構(gòu)組成相似,但WU-AX的聚合度和阿拉伯側(cè)鏈取代程度高于WE-AX[14]。此外,阿魏酸在WU-AX結(jié)構(gòu)的形成中發(fā)揮了重要作用[15]。在大多數(shù)植物中,AX的主要存在形式為WU-AX[15]。

        1.2 AX的益生功能

        在人的研究營(yíng)養(yǎng)研究中,AX被認(rèn)為是一種益生元[16],表現(xiàn)在可以促進(jìn)人腸道中益生菌的增殖[11],并具有降低血液中甘油三酯含量的作用[17]。然而在畜禽營(yíng)養(yǎng)研究中,AX卻被認(rèn)為是一種抗?fàn)I養(yǎng)因子,尤其是對(duì)于單胃動(dòng)物而言。AX在弱堿性的條件下黏度會(huì)增大,因而在畜禽腸道中會(huì)形成黏性食靡,從而降低飼料養(yǎng)分的消化率[18]。未消化的養(yǎng)分為致病菌的增殖提供了充足的營(yíng)養(yǎng),并可能引起如產(chǎn)氣夾膜梭菌等病原菌的大量增殖,進(jìn)而引發(fā)畜禽患?jí)乃佬阅c炎等腸道疾?。?9-20]。因而,當(dāng)前在小麥型飼糧中添加木聚糖酶已成為一種較為普遍的做法。木聚糖酶能提高飼料的養(yǎng)分利用率從而影響畜禽的生長(zhǎng)性能,并影響腸道微生物區(qū)系,表現(xiàn)在提高腸道益生菌的數(shù)量[21-22],并減少病原菌的數(shù)量[23-24]。然而對(duì)于不同單胃動(dòng)物而言,AX的抗?fàn)I養(yǎng)作用也具有不確定性,如Damen等[11]的研究表明,AX可以促進(jìn)大鼠結(jié)腸羅氏菌屬的數(shù)量,這可能與AX的添加量以及其結(jié)構(gòu)有關(guān)。

        谷物飼料中的大部分WU-AX在通過(guò)整個(gè)腸道時(shí)不被降解,因而WU-AX同其他不可溶性纖維一樣,可以增加大鼠[25]、人[26]腸道內(nèi)的食糜流通速度。雖然WU-AX很難被降解,但體外試驗(yàn)證明,其仍可以被發(fā)酵產(chǎn)生揮發(fā)性脂肪酸并促進(jìn)益生菌的增殖[27]。 不過(guò),Hopkins等[28]進(jìn)行體內(nèi)試驗(yàn)發(fā)現(xiàn),AX不能促進(jìn)雙歧桿菌的增長(zhǎng),卻可以促進(jìn)擬桿菌的增長(zhǎng)。而Hughes等[29]進(jìn)行體外發(fā)酵時(shí)發(fā)現(xiàn),高分子量的AX可以顯著促進(jìn)雙歧桿菌的生長(zhǎng),但這種促進(jìn)作用隨著AX分子量的增大而降低。Damen等[11]發(fā)現(xiàn),WE-AX、WU-AX和AXOS都可以顯著降低大鼠盲腸的pH,并且促進(jìn)結(jié)腸和盲腸的發(fā)酵。不同的研究結(jié)果之間存在差異可能是由于研究方法的不同,如體外試驗(yàn)和體內(nèi)試驗(yàn)、單次發(fā)酵和單次發(fā)酵、單一菌種發(fā)酵和多種細(xì)菌發(fā)酵等。此外,AX來(lái)源的不同、添加量和結(jié)構(gòu)的差異都同樣可能導(dǎo)致研究結(jié)果的差異(表1)。因此,關(guān)于AX益生功能的研究,在研究方法確定的情況下,需要著重集中在AX的結(jié)構(gòu)上。

        AX之所以能被腸道微生物利用而增殖,主要原因是這些細(xì)菌含有與多糖利用相關(guān)的基因座(polysaccharide utilization loci,PULs),因而能夠表達(dá)分解AX等多糖相關(guān)的酶。細(xì)菌分解AX的能力與AX的結(jié)構(gòu)密切相關(guān),AX的avDP值和av-DAS值都會(huì)影響細(xì)菌對(duì)AX的利用[12]。目前只有卵形擬桿菌(Bacteroides ovatus)分解木聚糖的PULs得到了描述,它含有2個(gè)基因座,能夠表達(dá)21種酶(圖1)[30]。

        2 AX降解系統(tǒng)

        AX的完全降解需要多種酶的協(xié)同作用才能完成[31],主要包括內(nèi)切型木聚糖酶(endo-1,4-β-D-xylanase,EC 3.3.1.8)、木糖苷酶(β-D-xylosidases,EC 3.2.1.37)以及木聚糖支鏈分解酶,包括α-L-阿拉伯呋喃糖苷酶(α-L-arabinofuranosidase,EC 3.2.1.55)、乙酰木聚糖酯酶(acetyl xylan esterase,EC 3.1.1.72)和阿魏酸酯酶(feruloyl esterase,EC 3.1.1.73)等(圖2)。其中內(nèi)切型木聚糖酶主要隨機(jī)作用于木聚糖的主鏈,將長(zhǎng)鏈的木聚糖水解為短鏈的低聚木糖;木糖苷酶則屬于外切酶,其作用是進(jìn)一步將低聚木糖分解為木糖,也具有較弱的直接從木聚糖的非還原端分解木聚糖的能力;而支鏈酶則分解木聚糖側(cè)鏈上的各種支鏈。氨基酸序列和空間結(jié)構(gòu)的不同,決定了它們?cè)谒饽揪厶菚r(shí)的酶切位點(diǎn)存在差異性,因而根據(jù)水解糖苷鍵的不同,木聚糖酶可分為不同的糖苷水解酶(glycoside hydrolase,GH),如 GH5、GH7和GH8等[32],木聚糖的完全降解需要這些酶的協(xié)同作用[33]。不同菌源表達(dá)的木聚糖酶和支鏈酶有不同的酶學(xué)特性,表現(xiàn)為最適pH、等電點(diǎn)、米氏常數(shù)的不同[34]以及主鏈酶切位點(diǎn)的不同和支鏈酶切位點(diǎn)的不同[35]。木聚糖酶的添加可以使WU-AX的分子質(zhì)量減小,從而向WE-AX轉(zhuǎn)變,并可以進(jìn)一步降解為AXOS[36]。

        圖1 卵形擬桿菌的多糖水解酶家族Fig.1 Glycoside hydrolase family in Bacteroides ovatus[30]

        3 AXOS

        3.1 AXOS的結(jié)構(gòu)與功能

        在缺乏外源木聚糖降解酶時(shí),AX進(jìn)入腸道后,可以在腸道內(nèi)細(xì)菌分泌(主要為擬桿菌屬)的木聚糖酶等降解酶的作用下,降解為低聚糖,并經(jīng)相應(yīng)的轉(zhuǎn)運(yùn)載體轉(zhuǎn)移進(jìn)入細(xì)菌后,被細(xì)菌內(nèi)的酶進(jìn)一步分解為單糖(如木糖和阿拉伯糖)后再進(jìn)行利用(圖3)[13]。AX、AXOS的avDP和avDAS值的不同可以顯著影響其發(fā)酵形式,從而影響其益生功能[12]。但是關(guān)于AX、AXOS的結(jié)構(gòu)和功能的研究,還存在一定的不一致性。一般認(rèn)為,avDP值越大,AXOS和XOS的益生作用越?。?7]。但是最近的研究表明,高avDP值的AX可以被類(lèi)芽孢桿菌JDR-2(Paenibacillus JDR-2)很好地利用,其利用效果優(yōu)于葡萄糖[3]。對(duì)于avDAS值對(duì) AX、AXOS的功能的影響,同樣存在一定的爭(zhēng)議。如Damen等[11]認(rèn)為avDAS值不影響AX的益生功能;而 Sharma等[38]和 Rumpagaporn等[39]的研究分別表明,avDAS值可以影響AX在體外和體內(nèi)的發(fā)酵,且avDAS值越大,AX越難被降解。通過(guò)添加支鏈分解酶后,這一阻礙作用降低,也證明了這一觀點(diǎn)[6]。Rumpagaporn等[39]的研究同樣表明,來(lái)源于水稻和高粱的AX較玉米和小麥源的AX具有更簡(jiǎn)單的支鏈結(jié)構(gòu),因而具有更快的發(fā)酵速度。除了AX的阿拉伯側(cè)鏈取代程度可以影響AX和AXOS的發(fā)酵外,阿魏酸側(cè)鏈基團(tuán)同樣可以影響AX和AXOS的發(fā)酵。阿魏酸基團(tuán)越多,AX和AXOS相對(duì)更難發(fā)酵[40]。因而對(duì)于AX、AXOS的益生功能的研究,除了avDP和avDAS這2個(gè)指標(biāo)外,需要更注重研究其細(xì)微結(jié)構(gòu)。

        圖2 木聚糖酶降解系統(tǒng)及其酶切位點(diǎn)Fig.2 The cutting site of the xylanase degradation system[31]

        圖3 AX、AXOS和XOS在腸道內(nèi)的代謝過(guò)程Fig.3 The metabolic progress of AX,AXOS and XOS in the gut[13]

        3.2 AXOS的代謝與利用

        AXOS和XOS被微生物發(fā)酵后,其發(fā)酵產(chǎn)物是非支鏈的短鏈脂肪酸(unbranched short chain fatty acid,USCFA)。USCFA可以降低腸道的pH、抑制病原菌的生長(zhǎng),其中的丁酸可以作為結(jié)腸細(xì)胞的能量來(lái)源,刺激結(jié)腸上皮細(xì)胞的生長(zhǎng)[41],并具有抑制結(jié)腸腫瘤細(xì)胞生長(zhǎng)的作用[42];同時(shí),發(fā)酵產(chǎn)生的乙酸和丙酸被吸收后分別參與機(jī)體的脂代謝和糖代謝[43]。 Duncan等[44]和 G eboes等[45]的研究表明,結(jié)腸中的乙酸還可以提高羅氏菌屬(Roseburia spp.) 和 柔 嫩 梭 菌 (Faecalibacterium prausnitzii)發(fā)酵產(chǎn)物中丁酸的含量。此外,低聚糖在后腸的發(fā)酵,還可以抑制蛋白質(zhì)在后腸的分解[46],減少有毒物質(zhì)的生成,從而降低后腸發(fā)病的風(fēng)險(xiǎn)[47]。異丁酸和異戊酸常用來(lái)衡量蛋白質(zhì)在腸道的發(fā)酵程度[48-49]。而AX和AXOS由于其結(jié)構(gòu)特殊性,與低聚果糖等益生元相比,其在前腸降解不完全,從而更易進(jìn)而后腸發(fā)酵。因而高avDP值和avDAS值的AX及AXOS能更有效地調(diào)控后腸健康[4]。

        表1 AX、AXOS和XOS的益生功能Table 1 The prebiotic effects of AX,AXOS and XOS

        許多慢性的結(jié)腸疾?。ㄈ缃Y(jié)腸癌)往往始于結(jié)腸后段病變[36]。低聚果糖等益生元,往往在腸道前段就被降解了,很少能進(jìn)入結(jié)腸后段發(fā)酵,因而不能夠有效調(diào)節(jié)后結(jié)腸的健康[4]。低 avDP值的AXOS和XOS同樣在結(jié)腸前段就被分解掉了,其很少進(jìn)入后段發(fā)酵[5];而高 avDP值的 AXOS、XOS以及AX則可以進(jìn)入后腸被微生物利用,從而抑制結(jié)腸后段微生物對(duì)蛋白質(zhì)的分解作用,減少相關(guān)有毒物質(zhì)的產(chǎn)生,有利于后腸段的健康[51]。

        AX、AXOS間還表現(xiàn)出一定的協(xié)同作用。與單獨(dú)添加WU-AX相比,用AXOS替代部分WUAX可以通過(guò)提高老鼠體內(nèi)羅氏菌屬的活性[43],從而提高老鼠結(jié)腸丁酸的含量[11]。用AXOS替代部分WE-AX后,可以延長(zhǎng)WE-AX的益生功能,使其在結(jié)腸后段也能發(fā)揮作用[12],從而顯著減少結(jié)腸后段支鏈短鏈脂肪酸的生成,并提高雙歧桿菌的數(shù)量[11]。此外,WU-AX、WE-AX、AXOS的同時(shí)添加能在不提高盲腸細(xì)菌總數(shù)的情況下,提高盲腸中雙歧桿菌和羅氏菌屬的數(shù)量;同時(shí)提高結(jié)-盲腸中丁酸和總短鏈脂肪酸的含量,并降低支鏈脂肪酸的含量[11]。因此,通過(guò)組合不同結(jié)構(gòu)的AX、AXOS,可以進(jìn)一步提高其益生功能。而這種組合效應(yīng)同樣也可以指導(dǎo)其余低聚糖與AX、AXOS(XOS)的配伍使用,如通過(guò)組合菊粉和XOS同樣能起到協(xié)同益生的效果[54]。

        4 小 結(jié)

        隨著抗生素的使用越來(lái)越嚴(yán)格,畜禽的腸道健康調(diào)控將會(huì)是未來(lái)養(yǎng)殖業(yè)的關(guān)注重點(diǎn)。而腸道微生物對(duì)于腸道健康的維持起著重要作用。AX和AXOS作為一種新型的益生元,相較于在飼糧中直接添加各種益生菌,其對(duì)畜禽腸道微生物的調(diào)節(jié)屬于非侵虐性的調(diào)節(jié),具有很好的安全性,可以提高畜禽腸道益生菌的數(shù)量并降低有害菌的數(shù)量。但由于AX、AXOS結(jié)構(gòu)的復(fù)雜性,其結(jié)構(gòu)和功能的關(guān)系還不確定。因此,未來(lái)的研究需重點(diǎn)關(guān)注其結(jié)構(gòu),尤其是細(xì)微結(jié)構(gòu)的分析上。當(dāng)前關(guān)于AX以及AXOS的研究主要集中在人和鼠上,而在畜禽上的研究報(bào)道還相對(duì)較少。與人、鼠以及魚(yú)等模式動(dòng)物相比,家禽缺乏發(fā)達(dá)的結(jié)腸結(jié)構(gòu)。而不同物種間生理結(jié)構(gòu)的差異,可能會(huì)導(dǎo)致AX以及AXOS的應(yīng)用效果產(chǎn)生差異。因此,關(guān)于AX、AXOS在畜禽上的應(yīng)用,需要做更多的研究。此外,關(guān)于腸道微生物對(duì)AX、AXOS的利用機(jī)理還缺乏相關(guān)報(bào)道。因此,采用新的信息分析手段(如微生物的轉(zhuǎn)錄組學(xué)、代謝組學(xué)等)來(lái)研究微生物對(duì)AX和AXOS的代謝通路和機(jī)理,可以為其功能的研究和實(shí)際應(yīng)用提供更多的理論依據(jù)和指導(dǎo)。

        [1]HSU C K,LIAO J W,CHUNG Y C,et al.Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats[J].The Journal of Nutrition,2004,134(6):1523-1528.

        [2]LEI Z,SHAO Y X,YIN X N,et al.Combination of xylanase and debranching enzymes specific to wheat arabinoxylan improve the growth performance and gut health of broilers[J].Journal of Agricultural and Food Chemistry,2016,64(24):4932-4942.

        [3]SAWHNEY N,CROOKS C,JOHN F S,et al.Transcriptomic analysis of xylan utilization systems in Paenibacillus sp.strain JDR-2[J].Applied and Environmental Microbiology,2015,81(4):1490-1501.

        [4]GROOTAERT C,VAN DEN ABBEELE P,MARZORATI M.Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem[J].Federation of European,2009,69(2):231-242.

        [5]CHRISTOPHERSEN C T,PETERSEN A,LICHT T R,et al.Xylo-oligosaccharides and inulin affect genotoxicity and bacterial populations differently in a human colonic simulator challenged with soy protein[J].Nutrients,2013,5(9):3740-3756.

        [6]ZHENG F,HUANG J X,YIN Y H.A novel neutral xylanase with high SDS resistance from Volvariella volvacea:characterization and its synergistic hydrolysis of wheat bran with acetyl xylan esterase[J].Journal of Industrial Microbiology& Biotechnology,2013,40(10):1083-1093.

        [7]KORMELINK F J M,VORAGEN A G J.Degradation of different[(glucurono)arabino]xylans by a combination of purified xylan-degrading enzymes[J].Applied Microbiology and Biotechnology,1993,38(5):688-695.

        [8]GRUPPEN H,HAMER R J,VORAGEN A G J.Water-unextractable cell wall material from wheat flour.2.Fractionation of alkali-extracted polymers and comparison with water-extractable arabinoxylans[J].Journal of Cereal Science,1992,16(1):53-67.

        [9]SAULNIER L,MAROT C,CHANLIAUD E,et al.Cell wall polysaccharide interactions in maize bran[J].Carbohydrate Polymers,1995,26(4):279-287.

        [10]SAULNIER L,SADO P E,BRANLARD G,et al.Wheat arabinoxylans:exploiting variation in amount and composition to develop enhanced varieties[J].Journal of Cereal Science,2007,46(3):261-281.

        [11]DAMEN B,JORAN V,POLLET A,et al.Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence[J].Molecular Nutrition&Food Research,2011,55(12):1862-1874.

        [12]VAN CRAEYVELD V,SWENNEN K,DORNEZ E,et al.Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats[J].The Journal of Nutrition,2008,138(12):2348-2355.

        [13]BROEKAERT W F,COURTIN C M,VERBEKE K,et al.Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides,and xylooligosaccharides[J].Critical Reviews in Food Science and Nutrition,2011,51(2):178-194.

        [14]ORDAZ-ORTIZ J J,SAULNIER L.Structural variability of arabinoxylans from wheat flour.Comparison of water-extractable and xylanase-extractable arabinoxylans[J].Journal of Cereal Science,2005,42(1):119-125.

        [15]IZYDORCZYK M S,BILIADERIS C G.Cereal arabinoxylans:advances in structure and physicochemical properties[J].Carbohydrate Polymers,1995,28(1):33-48.

        [16]NEYRINCK A M,POSSEMIERS S,DRUART C,et al.Prebiotic effects of wheat arabinoxylan related to the increase in Bifidobacteria,Roseburia and Bacteroides/Prevotella in diet-induced obese mice[J].PLoS One,2011,6(6):e20944.

        [17]GARCIA A L,STEINIGER J,REICH S C,et al.Arabinoxylan fibre consumption improved glucose metabolism,but did not affect serum adipokines in subjects with impaired glucose tolerance[J].Hormone and Metabolic Research,2006,38(11):761-766.

        [18]CHOCT M,HUGHES R J,WANG J,et al.Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens[J].British Poultry Science,1996,37(3):609-621.

        [19]KALDHUSDAL M,SKJERVE E.Association between cereal contents in the diet and incidence of necrotic enteritis in broiler chickens in Norway[J].Preventive Veterinary Medicine,1996,28(1):1-16.

        [20]JIA W,SLOMINSKI B A,BRUCE H L,et al.Effects of diet type and enzyme addition on growth performance and gut health of broiler chickens during subclinical Clostridium perfringens challenge[J].Poultry Science,2009,88(1):132-140.

        [21]KIARIE E,NYACHOTI C M,SLOMINSKI B A,et al.Growth performance,gastrointestinal microbial activity,and nutrient digestibility in early-weaned pigs fed diets containing flaxseed and carbohydrase enzyme[J].Journal of Animal Science,2007,85(11):2982-2993.

        [22]COURTIN C M,BROEKAERT W F,SWENNEN K,et al.Dietary inclusion of wheat bran arabinoxylooligosaccharides induces beneficial nutritional effects in chickens[J].Cereal Chemistry,2008,85(5):607-613.

        [23]ROSIN E A,BLANK G,SLOMINSKI B A,et al.Enzyme supplements in broiler chicken diets:in vitro and in vivo effects on bacterial growth[J].Journal of Science and Food Agriculture,2007,87:1009-1020.

        [24]JóZEFIAK D,RUTKOWSKI A,KACZMAREK S,et al.Effect of β-glucanase and xylanase supplementation of barley-and rye-based diets on caecal microbiota of broiler chickens[J].British Poultry Science,2010,51(4):546-557.

        [25]LU Z X,GIBSON P R,MUIR J G,et al.Arabinoxylan fiber from a by-product of wheat flour processing behaves physiologically like a soluble,fermentable fiber in the large bowel of rats[J].Journal of Nutrition,2000,130(8):1984-1990.

        [26]LU Z X,WALKER K Z,MUIR J G,et al.Arabinoxylan fibre improves metabolic control in people with TypeⅡdiabetes[J].European Journal of Clinical Nutrition,2004,58(4):621-628.

        [27]VARDAKOU M,PALOP C N,GASSON M,et al.In vitro three-stage continuous fermentation of wheat arabinoxylan fractions and induction of hydrolase activity by the gut microflora[J].International Journal of Biological Macromolecules,2007,41(5):584-589.

        [28]HOPKINS M J,ENGLYST H N,MACFARLANE S,et al.Degradation of cross-linked and non-cross-linked arabinoxylans by the intestinal microbiota in children[J].Applied and Environmental Microbiology,2003,69(11):6354-6360.

        [29]HUGHES S A,SHEWRY P R,LI L,et al.In vitro fermentation by human fecal microflora of wheat arabinoxylans[J].Journal of Agricultural and Food Chemistry,2007,55(11):4589-4595.

        [30]KOROPATKIN N M,CAMERON E A,MARTENS E C,et al.How glycan metabolism shapes the human gut microbiota[J].Nature Reviews Microbiology,2012,10(5):323-335.

        [31]COLLINS T,GERDAY C,F(xiàn)ELLER G.Xylanases,xylanase families and extremophilic xylanases[J].FEMS Microbiology Reviews,2005,29(1):3-23.

        [32]COUGHLAN M P,HAZLEWOOD G P.β-1,4-D-xylan-degrading enzyme systems:biochemistry,molecu-lar biology and applications[J].Biotechnology and Applied Biochemistry,1993,17:259-289.

        [33]BASTAWDE K B.Xylan structure,microbial xylanases,and their mode of action[J].World Journal of Microbiology&Biotechnology,1992,8(4):353-368.

        [34]POLLET A,DELCOUR J A,COURTIN C M.Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families[J].Critical Reviews in Biotechnology,2010,30(3):176-191.

        [35]DAMEN B,POLLET A,DORNEZ E,et al.Xylanasemediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads and breads enriched with arabinoxylan rich materials[J].Food Chemistry,2011,131(1):111-118.

        [36]KARPPINEN S,KIILI?INEN K,LIUKKONEN K,et al.Extraction and in vitro fermentation of rye bran fractions[J].Journal of Cereal Science,2001,34(3):269-278.

        [37]GLITSO L V,GRUPPEN H,SCHOLS H A,et al.Degradation of rye arabinoxylans in the large intestine of pigs[J].Journal of the Science of Food and Agriculture,1999,79(7):961-969.

        [38]SHARMA V K,VASUDEVA R,HOWDEN C W.Changes in colorectal cancer over a 15-year period in a single United States city[J].The American Journal of Gastroenterol,2000,95(12):3615-3619.

        [39]RUMPAGAPORN P,REUHS B L,KAUR A,et al.Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota[J].Carbohydrate Polymers,2015,130:191-197.

        [40]SNELDERS J,OLAERTS H,DORNEZ E,et al.Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota[J].Journal of Functional Foods,2014,10:1-12.

        [41]HAMER H M,JONKERS D,VENEMA K,et al.Review article:the role of butyrate on colonic function[J].Alimentary Pharmacology&Therapeutics,2008,27(2):104-119.

        [42]ROMBEAU J L,KRIPKE S A.Metabolic and intestinal effects of short-chain fatty acids[J].Journal of Parenteral and Enteral Nutrition,1990,14(5 S):181S-185S.

        [43]DUNCAN S H,BARCENILLA A,STEWART C,et al.Acetate utilization and butyrylcoenzyme A(CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine[J].Applied and Environmental Microbiology,2002,68(10):5186-5190.

        [44]DUNCAN S H,HOLTROP G,LOBLEY G E,et al.Contribution of acetate to butyrate formation by human faecal bacteria[J].The British Journal of Nutrition,2004,91(6):915-923.

        [45]GEBOES K P,DE PRETER V,LUYPAERTS A,et al.Validation of lactose[15N,15N]ureide as a tool to study colonic nitrogen metabolism[J].America Journal of Physiology Gastrointestinal Liver Physiology,2005,288(5):G994-G999.

        [46]DE PRETER V,GEBOES K,VERBRUGGHE K,et al.The in vivo use of the stable isotope-labelled biomarkers lactose-[15N]ureide and[2H4]tyrosine to assess the effects of pro-and prebiotics on the intestinal flora of healthy human volunteers[J].The British Journal of Nutrition,2004,92(3):439-446.

        [47]JOHNSON K A.The Production of secondary amines by the human gut bacteria and its possible relevance to carcinogenesis[J].Medical Laboratory Science,1977,34(2):131-143.

        [48]MORTENSEN P B,CLAUSEN M R,BONNEN H,et al.Colonic fermentation of ispaghula,wheat bran,glucose,and albumin to short-chain fatty acids and ammonia evaluated in vitro in 50 subjects[J].Journal of Parenteral and Enteral Nutrition,1992,16(5):433-439.

        [49]SHARMA N,RAMACHANDRAN S,BOWERS M,et al.Multiple factors other than p53 influence colon cancer sensitivity to paclitaxel[J].Cancer Chemotherapy&Pharmacology,2000,46(4):329-337.

        [50]FALCK P,PRECHA-ATSAWANAN S,GREY C,et al.Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis[J].Journal of Agricultural and Food Chemistry,2013,61(30):7333-7340.

        [51]POLLETA,VANCRAEYVELD V,VANDE WIELE T,et al.In vitro fermentation of arabinoxylan oligosaccharides and low molecular mass arabinoxylans with different structural properties from wheat(Triticum aestivum L.)bran and psyllium (Plantago ovata Forsk)seed husk[J].Journal of Agricultural and Food Chemistry,2012,60(4):946-954.

        [52]CLOETENS L,BROEKAERT W F,DELAEDT Y,et al.Tolerance ofarabinoxylan-oligosaccharidesand their prebiotic activity in healthy subjects:a randomised,placebo-controlled cross-over study[J].British Journal of Nutrition,2013,103(5):703-713.

        [53]GERAYLOU Z,SOUFFREAU C,RURANGWA E,et al.Effects of arabinoxylan-oligosaccharides(AXOS)on juvenile Siberian sturgeon(Acipenser baerii)performance,immune responses and gastrointestinal microbial community[J].Fish&Shellfish Immunology,2012,33(4):718-724.

        [54]LECERF J M,DéPEINT F,CLERC E,et al.ylo-oligosaccharide(XOS)in combination with inulin modulates both the intestinal environment and immune status in healthy subjects,while XOS alone only shows prebiotic properties[J].The British Journal of Nutrition,2012,108(10):1847-1858.

        [55]CAMPBELL J M,F(xiàn)AHEY G C,Jr,WOLF B W.Selected indigestible oligosaccharides affect large bowel mass,cecal and fecal short-chain fatty acids,pH and microflora in rats[J].The Journal of Nutrition,1997,127(1):130-136.

        Research Progress on Prebiotic Effects of Arabinoxylan and Arabinoxylan Oligosaccharides

        LEI Zhao YIN Dafei YUAN Jianmin?
        (College of Animal Science,China Agricultural University,Beijing 100193,China)

        The research on regulation of gut health of livestock has been focused on in recent years.As novel prebiotics,arabinoxylan(AX)and arabinoxylan oligosaccharides(AXOS)show better proliferation effects on Bifidobacterium than fructooligosaccharides and other oligosaccharides.Besides,AX and AXOS can efficiently regulate the health of hindgut(colon and cecum)via fermentation in the hindgut to produce non-branched short chain fatty acids and inhibit protein fermentation to lower the production of toxic substance(phenol,ammonia and so on).Structural differently AX and AXOS have different fermentation properties and can produce synergistic effect.This paper reviewed the research progress of prebiotic effects of AX and AXOS in recent years,which provides a theoretical basis and instruction for their application in livestock industry.[Chinese Journal of Animal Nutrition,2017,29(2):365-373]

        arabinoxylan;arabinoxylan oligosaccharides;prebiotic effects;gut health

        S816.7

        A

        1006-267X(2017)02-0365-09

        10.3969/j.issn.1006-267x.2017.02.001

        (責(zé)任編輯 田艷明)

        2016-07-14

        國(guó)家自然科學(xué)基金(31572424)

        雷 釗(1988—),男,湖北赤壁人,博士研究生,從事飼料高效利用與畜禽腸道健康方面的研究。E-mail:rayzhao1988@163.com

        ?通信作者:袁建敏,副教授,博士生導(dǎo)師,E-mail:yuanjm@cau.edu.cn

        ?Corresponding author,associate professor,E-mail:yuanjm@cau.edu.cn

        猜你喜歡
        木糖支鏈聚糖
        一個(gè)空瓶
        相對(duì)分子質(zhì)量對(duì)木聚糖結(jié)晶能力的影響
        有心的小蘑菇
        布谷鳥(niǎo)讀信
        飼料用β-甘露聚糖酶活力的測(cè)定
        湖南飼料(2019年5期)2019-10-15 08:59:10
        產(chǎn)木聚糖酶菌株的篩選、鑒定及其酶學(xué)性質(zhì)研究
        低聚木糖在家禽中的應(yīng)用
        廣東飼料(2016年8期)2016-02-27 11:10:01
        臭氧護(hù)理皮支鏈皮瓣200例觀察分析
        卵內(nèi)注射支鏈氨基酸對(duì)雞胚胎生長(zhǎng)發(fā)育和孵化時(shí)間的影響
        飼料博覽(2015年4期)2015-04-05 10:34:14
        血清半乳甘露聚糖試驗(yàn)對(duì)侵襲性肺曲霉菌感染的診斷價(jià)值
        欧美激欧美啪啪片| 黑人免费一区二区三区| 色噜噜狠狠色综合中文字幕| 人妻无码人妻有码不卡| 看黄色亚洲看黄色亚洲| 91国内偷拍一区二区三区| 国产夫妻精品自拍视频| 亚洲一区精品在线中文字幕| 老熟妇乱子交视频一区| 乱码1乱码2美美哒| 台湾佬综合网| 国产精品色内内在线播放| 97人妻精品一区二区三区免费 | 国产亚洲av一线观看| 日本午夜剧场日本东京热| 在线观看一级黄片天堂| 国产激情久久久久影院老熟女| 欧美国产亚洲日韩在线二区| 在线成人tv天堂中文字幕| 邻居少妇太爽在线观看| 国产亚洲精品av一区| 久久综合九色综合97欧美| 亚洲天堂第一区| 91精品国产乱码久久久| 大陆成人精品自拍视频在线观看| 日韩不卡的av二三四区| 呦系列视频一区二区三区| 无码av天堂一区二区三区| 香蕉久久人人97超碰caoproen| 亚洲熟妇色xxxxx欧美老妇| 手机av在线观看视频| 三级国产高清在线观看| 久久精品第九区免费观看| 亚洲精品乱码久久久久久蜜桃图片 | 男女视频在线观看一区| 一性一交一口添一摸视频| 日本大片免费观看完整视频| 国产va精品免费观看| 国产成人夜色在线视频观看| 全亚洲最大的私人影剧院在线看| 午夜男女很黄的视频|