劉芳,景戍旋,胡健,肖燕*,張英俊
(1.南京農(nóng)業(yè)大學(xué)草業(yè)學(xué)院,江蘇 南京210095;2.中國(guó)農(nóng)業(yè)大學(xué)草業(yè)科學(xué)系,北京100193)
鎘污染和接種叢枝菌根真菌對(duì)紫花苜蓿生長(zhǎng)和氮吸收的影響
劉芳1,景戍旋1,胡健1,肖燕1*,張英俊2
(1.南京農(nóng)業(yè)大學(xué)草業(yè)學(xué)院,江蘇 南京210095;2.中國(guó)農(nóng)業(yè)大學(xué)草業(yè)科學(xué)系,北京100193)
采用盆栽試驗(yàn)研究在3個(gè)鎘污染(0,6和12 mg Cd/kg)水平下,接種5種叢枝菌根真菌[分別接種聚叢球囊Glomusaggregatum(Ga)、幼套球囊霉G.etunicatum(Ge)、扭形球囊霉G.tortuosum(Gt)、根內(nèi)球囊霉G.intraradices(Gi)和地表球囊霉G.versiforme(Gv),以不接種為對(duì)照]對(duì)紫花苜蓿生長(zhǎng)和氮吸收的影響。結(jié)果表明:與不加鎘(0 mg Cd/kg)處理相比,接種Ga、Gi 和Gt菌種處理的紫花苜蓿菌根侵染率在12 mg Cd/kg條件下降低了33.90%、19.17%和31.95%;0 mg Cd/kg水平下接種Gt菌種紫花苜??偵锪糠謩e比接種 Ga、Ge、Gi和Gv菌種處理顯著高出33.19%、67.74%、57.29%和34.91%,但在12 mg Cd/kg水平時(shí)總生物量與以上菌種處理相比,分別降低16.67%、34.07%、32.96%和52.76%;在鎘濃度為12 mg Cd/kg時(shí),接種Gv菌種處理的紫花苜蓿株高、根瘤菌數(shù)量、地上生物量、總生物量、地上植株氮含量和整株含氮量與不接種處理相比,分別增加 65.41%、95.24%、61.87%、50.30%、5.83%和71.55%;隨鎘濃度增加接種Gv菌種處理紫花苜蓿土壤中銨態(tài)氮(NH4+-N)和硝態(tài)氮(NO3--N)濃度顯著下降。綜上分析,在鎘污染條件下,接種Gv菌種能促進(jìn)紫花苜蓿生長(zhǎng)和氮吸收;當(dāng)土壤鎘濃度超過6 mg Cd/kg時(shí),接種Gt菌種不利于紫花苜蓿的生長(zhǎng)。
紫花苜蓿;叢菌根真菌;鎘;氮吸收
土壤重金屬污染具有長(zhǎng)期性、隱蔽性和不可逆性,不僅導(dǎo)致土壤肥力與作物產(chǎn)量、品質(zhì)下降,還易引發(fā)地下水污染問題,并通過食物鏈在植物、動(dòng)物和人體內(nèi)累積。鎘(cadmium,Cd)是毒性最強(qiáng)的重金屬元素之一,能夠影響植物的生長(zhǎng)和對(duì)營(yíng)養(yǎng)元素的吸收,從而影響重金屬污染土壤植被的恢復(fù)[1-2]。
叢枝菌根真菌(AMF)能與80%的陸地植物形成共生體,在植物-土壤系統(tǒng)中具有重要的功能[3]。AMF根外菌絲具有陽(yáng)離子交換能力,不僅能直接固定重金屬,減輕植物根系對(duì)重金屬元素的吸收,而且即使重金屬隨著菌絲進(jìn)入根系內(nèi),共生表面也能阻止重金屬進(jìn)入根細(xì)胞[4]。AMF的分泌物球囊霉素能夠與鎘結(jié)合并對(duì)其進(jìn)行固定[5]。AMF根外菌絲擴(kuò)展了植物吸收營(yíng)養(yǎng)元素的表面積,促進(jìn)宿主植物對(duì)營(yíng)養(yǎng)(N、P等)的吸收,促進(jìn)植物的生長(zhǎng),生物量的增加降低了植株重金屬的濃度,造成“稀釋效應(yīng)”,從而減輕重金屬的毒害[6]。因此,AMF能提高宿主植物對(duì)重金屬脅迫的耐受性[7-10]。但是也有研究表明:接種AMF不能夠提高宿主植物對(duì)重金屬脅迫的抵抗能力[11-12]。由于土壤環(huán)境的不一致,不同的AMF-植物共生體在形態(tài)、營(yíng)養(yǎng)吸收、共生效率等方面表現(xiàn)出很大的差異性[13]。因此,根據(jù)環(huán)境條件選擇合適AMF-植物共生體對(duì)宿主植物克服不利環(huán)境(如養(yǎng)分貧瘠、鹽分脅迫、重金屬污染等)非常重要[14]。
紫花苜蓿(Medicagosativa)具有生長(zhǎng)快、生物量大和對(duì)不良環(huán)境適應(yīng)性強(qiáng)等特性[15],是世界各國(guó)廣泛種植的優(yōu)良豆科牧草,應(yīng)用前景非常廣闊。紫花苜蓿對(duì)重金屬有一定的耐受性,可以吸收土壤中的重金屬,因此紫花苜蓿被作為一種理想的作物來修復(fù)被鎘污染的土地。植物本身的營(yíng)養(yǎng)物質(zhì)在耐鎘脅迫過程中起到非常重要的作用,有研究表明接種AMF可以促進(jìn)植物生長(zhǎng),而國(guó)內(nèi)外有關(guān)在一定鎘污染條件下接種AMF對(duì)紫花苜蓿生長(zhǎng)的影響的研究報(bào)道相對(duì)較少[16]。AMF是否在鎘污染條件下依然能促進(jìn)紫花苜蓿生長(zhǎng),提高其對(duì)重金屬的耐受性?本研究以紫花苜蓿為宿主植物,通過接種5種不同AMF菌劑,比較不同鎘污染水平下紫花苜蓿的生長(zhǎng)和氮吸收規(guī)律,為評(píng)價(jià)重金屬污染土壤中AMF菌根效應(yīng)提供理論依據(jù),同時(shí)探求接種不同AMF菌種對(duì)紫花苜蓿短期內(nèi)吸收無機(jī)氮的異同。
1.1 供試材料
試驗(yàn)土壤取自南京農(nóng)業(yè)大學(xué)牌樓實(shí)驗(yàn)基地,供試土壤pH 7.56,電導(dǎo)率0.77 ms/cm,總有機(jī)碳8.03 g/kg,總氮0.6 g/kg,總磷0.28 g/kg,總鉀1.72 g/kg,總鎘0.0007 mg/kg。供試紫花苜蓿,品種為百綠公司紫花苜蓿品種“三得利”,帶包衣,秋眠級(jí)別為6級(jí)。
試驗(yàn)菌種購(gòu)自北京市農(nóng)林科學(xué)院植物營(yíng)養(yǎng)與資源研究所“叢枝菌根真菌種質(zhì)資源庫(kù)”(BGC)。5種AMF分別為聚叢球囊霉Glomusaggregatum(Ga)、幼套球囊霉G.etunicatum(Ge)、扭形球囊霉G.tortuosum(Gt)、根內(nèi)球囊霉G.intraradices(Gi)、地表球囊霉G.versiforme(Gv)。 BGC 編號(hào)分別為BGC BJ06、BGC HEN02A、BGC NM03A、BGC BJ09 和 BGC GD01C。國(guó)家微生物資源平臺(tái)編號(hào)分別為1511C0001BGCAM0005、1511C0001BGCAM0028、1511C0001BGCAM0001、1511C0001BGCAM0042和1511C0001BGCAM0031。該供試菌種由北京市農(nóng)林科學(xué)院以高粱(Sorghumbicolor)為宿主,利用菌劑擴(kuò)繁培養(yǎng)而成。
1.2 試驗(yàn)設(shè)計(jì)
采取雙因素析因試驗(yàn)設(shè)計(jì),試驗(yàn)因素為鎘和AMF。施Cd有3個(gè)水平:0,6和12 mg Cd/kg,AMF包括6個(gè)水平:不接種、分別接種Ga、Ge、Gt、Gi和Gv,共18個(gè)處理,每個(gè)處理5個(gè)重復(fù),共90盆。
試驗(yàn)于2014年11月- 2015年3月在南京農(nóng)業(yè)大學(xué)牌樓教學(xué)科研基地(光華路139號(hào))溫室內(nèi)進(jìn)行,采用盆栽試驗(yàn)。土壤過2 mm篩后與河沙以2∶1(w/w)比例混合,混合基質(zhì)在120 ℃下高溫高壓蒸汽滅菌2 h,以消除土壤中的真菌孢子。每盆基質(zhì)干重500 g,鎘添加以CdCl2水溶液的形式與土壤充分混合。接種處理:每盆加菌劑15 g,不接種處理為對(duì)照。種子長(zhǎng)出真葉后間苗,每盆中保留長(zhǎng)勢(shì)相近的紫花苜蓿植株8 株,定期以去離子水平衡水分。在2015年1月13日紫花苜蓿幼苗期以NH4Cl的形式一次性施入200 mg N/kg以促進(jìn)生長(zhǎng)。
1.3 菌根侵染率、紫花苜蓿生物量以及氮素含量的測(cè)定
紫花苜蓿生長(zhǎng)8周后測(cè)定株高,并分地上和地下兩部分收獲。收獲時(shí)記錄植株根系上的有效根瘤(米粒大小的粉色根瘤)數(shù)量。取新鮮根樣,剪成1 cm根段,隨機(jī)取出部分根樣用曲利苯藍(lán)-直線截獲法測(cè)定根系侵染率,并在顯微鏡下觀察叢枝菌根侵染狀況,用十字交叉法計(jì)算菌根侵染率[17-18]。紫花苜蓿地上和地下部分在120 ℃殺青2 h,65 ℃烘干48 h至恒重,測(cè)定地上地下干重和紫花苜蓿總生物量。樣品烘干后磨碎過孔徑為0.074 mm篩,用凱氏定氮法測(cè)紫花苜蓿含氮量。地上部和地下部紫花苜蓿的吸氮量及苜蓿根冠比用下列公式計(jì)算:
紫花苜蓿吸氮量(mg/pot)=CN×MP
式中,CN為紫花苜蓿含氮量(mg/g);MP為紫花苜蓿生物量(g/pot)。
根冠比=植株根系生物量/植株地上部生物量
土壤硝態(tài)氮用氯化鉀(2 mol/L)浸提-雙波長(zhǎng)紫外分光光度法測(cè)定,土壤銨態(tài)氮用氯化鉀(2 mol/L)浸提-靛酚藍(lán)比色法測(cè)定,土壤pH以水土比5∶1(v/w)在120 r/min搖床上搖動(dòng)30 min靜置后測(cè)定,理化性質(zhì)具體實(shí)驗(yàn)方法參考土壤農(nóng)化分析[19]。
1.4 統(tǒng)計(jì)分析
用SPSS 13.0軟件進(jìn)行雙因素方差分析和5%水平下LSD多重比較檢驗(yàn)各處理平均值之間的差異顯著性。
2.1 接種叢枝菌根真菌對(duì)紫花苜蓿根侵染率的影響
在鎘濃度為0 mg/kg土壤中,接種Gi菌種處理紫花苜蓿菌根侵染率最高(100%),隨后依次為接種Ga,Gt,Ge和Gv菌種處理,但是在鎘濃度為12 mg Cd/kg土壤中,接種Gv菌種處理紫花苜蓿菌根侵染率最高(83.33%),隨后依次為接種Gi,Ge,Gt和 Ga菌種處理。與鎘濃度為0 mg Cd/kg處理相比,12 mg Cd/kg條件下接種Ga,Gi和Gt菌種處理的紫花苜蓿菌根侵染率顯著下降了33.90%,19.17%和31.95%(圖1)。雙因素方差分析結(jié)果顯示接種不同AMF對(duì)紫花苜蓿菌根侵染率影響不顯著,接種AMF和Cd之間交互作用顯著(表1)。
2.2 接種叢枝菌根真菌對(duì)紫花苜蓿株高和地上地下生物量的影響
在鎘濃度為0 mg Cd/kg處理下,接種Gt和Gv菌種與不接種處理相比都顯著增加了紫花苜蓿的株高。而在6和12 mg Cd/kg處理下,接種Gv菌種與接種其他菌種處理相比,顯著增加了紫花苜蓿的株高。在鎘濃度為0 mg Cd/kg處理下, 接種Gt菌種處理的紫花苜蓿株高最高, 但是在6和12 mg Cd/kg條件下株高顯著下降了52.16%和50.92%(圖2A)。接種AMF 和Cd污染對(duì)紫花苜蓿株高的交互作用顯著(表1)。在鎘濃度為0和12 mg Cd/kg條件下,與不接種AMF相比,只有接種Gv菌種處理顯著增加了紫花苜蓿根瘤菌的數(shù)量。然而,在鎘濃度為6和12 mg Cd/kg條件下,接種Gt菌種顯著降低了紫花苜蓿根瘤菌的數(shù)量(圖2B)。接種AMF和Cd對(duì)紫花苜蓿根瘤菌的數(shù)量交互作用不顯著。在鎘濃度為0 mg Cd/kg條件下,紫花苜蓿地上部分生物量接種不同AMF處理之間差異不顯著(圖2C)。與不接種處理相比,接種Gv菌種顯著增加了鎘濃度為6和12 mg Cd/kg處理的紫花苜蓿地上部分的生物量。AMF和Cd對(duì)紫花苜蓿地上部分生物量,地下部分生物量和總生物量交互作用顯著。然而,在鎘濃度為6和12 mg Cd/kg條件下,接種不同AMF處理之間差異不顯著。在鎘污染條件下,接種不同AMF處理之間紫花苜蓿地下部分生物量差異不顯著。然而,在鎘濃度為0 mg Cd/kg處理下,接種Gt菌種處理的紫花苜蓿地下部分和總生物量顯著高于其他菌種處理。在鎘濃度為6 mg Cd/kg處理下,接種Gv菌種處理的紫花苜??偵锪孔畲螅缓笠来螢榻臃NGe、Gt、Ga、CK和Gi菌種處理。在鎘濃度12 mg Cd/kg土壤中,紫花苜??偵锪康淖畲笾岛妥钚≈捣謩e出現(xiàn)在接種Gv和Gt菌種處理(圖2D,F(xiàn))。在鎘濃度為0和6 mg Cd/kg條件下,接種Gt菌種顯著增加了紫花苜蓿根冠比。隨著鎘污染程度的增大,紫花苜蓿根冠比有下降趨勢(shì)(圖2E)。
表1 不同鎘水平和接種叢枝菌根真菌對(duì)苜蓿各指標(biāo)影響的雙因素方差分析Table 1 The significant level of two-way ANOVA for the parameters between Cd levels and mycorrhizal inoculation
圖2 不同鎘水平和接種菌根真菌對(duì)紫花苜蓿生長(zhǎng)的影響(平均值±標(biāo)準(zhǔn)誤,n=4)Fig.2 Effects of Cd levels and mycorrhizal inoculation on growth of M. sativa (means±SE, n=4)
圖3 不同鎘水平和接種菌根真菌對(duì)紫花苜蓿氮吸收的影響(平均值±標(biāo)準(zhǔn)誤,n=4)Fig.3 Effects of Cd levels and mycorrhizal inoculation on N nutrients of M. sativa (means±SE, n=4)
2.3 接種叢枝菌根真菌對(duì)苜蓿地上地下含氮量的影響
在所有鎘水平下,接種Gv處理的紫花苜蓿地上部分氮含量都高于接種Gt菌種處理(圖3A)。與不接種AMF處理相比,所有鎘水平下接種Gv菌種處理顯著增加了紫花苜蓿地上部分的吸氮量。鎘濃度為6和12 mg Cd/kg顯著降低了接種Gt和Ga菌種處理的紫花苜蓿地上部分和全株的吸氮量(圖3C,E)。在鎘濃度為0和6 mg Cd/kg條件下接種Gv和Gt菌種處理的紫花苜蓿地下部分氮含量差異顯著(圖3B)。在鎘濃度為12 mg Cd/kg條件下,紫花苜蓿地下部分的吸氮量最大值出現(xiàn)在接種Gv菌種處理(圖3D)。接種AMF和Cd對(duì)紫花苜蓿地上部分和地下部分的氮含量交互作用顯著(表1)。
2.4 接種叢枝菌根真菌對(duì)土壤無機(jī)氮的影響
與不接種AMF菌種處理相比,接種Gt和Gv菌種顯著增加了土壤NH4+-N濃度。在鎘濃度為12 mg Cd/kg處理中,除了接種Ga菌種處理NH4+-N濃度顯著下降外,各接種處理NH4+-N濃度沒有顯著差異。各接種處理在鎘濃度為12 mg Cd/kg時(shí)土壤銨態(tài)氮濃度都下降。不添加鎘處理中,只有接種Ga菌種處理降低了硝態(tài)氮濃度。隨著鎘濃度的增加,接種Ge、Gi、Gt和Gv菌種處理的NO3--N濃度下降(圖4A,B)。在鎘濃度為0和12 mg Cd/kg條件下,接種Gt和Gv 菌種處理NO2--N濃度下降。所有鎘水平下,接種Gt和Gv菌種處理與未接種相比,pH值都顯著增加(圖4D)。接種AMF和Cd 對(duì)土壤NH4+-N,NO3--N和NO2--N濃度交互作用不顯著(表1)。
圖4 鎘水平和接種菌根真菌對(duì)紫花苜蓿土壤無機(jī)氮濃度和pH值的影響(平均值±標(biāo)準(zhǔn)誤,n=4)Fig.4 Effects of Cd levels and mycorrhizal inoculation on inorganic N concentration and pH of substrates (means±SE, n=4)
接種不同的AMF菌種能改變宿主植物耐受重金屬脅迫的能力[20]。叢枝菌根真菌-宿主植物的共生效率取決于重金屬濃度、土壤理化性質(zhì)以及宿主植物和AMF的種類[21]。菌根的狀態(tài)與環(huán)境因素,尤其是土壤重金屬的水平相關(guān)[22-23]。本研究中,沒有鎘污染條件下,接種Ga和Gi菌種處理的紫花苜蓿菌根侵染率(98.33%,100%)顯著高于接種Ge和Gv菌種處理(90.91%,90.83%)。然而,在鎘濃度為12 mg Cd/kg條件下,接種Ga,Gi和Gt處理的紫花苜蓿菌根侵染率顯著下降了33.33%、19.17%和30.91%。鎘污染程度的增加沒有影響接種Ge和Gv菌種處理的菌根侵染率。因此,在鎘濃度為12 mg Cd/kg處理下,接種Ge,Gi 和Gv菌種處理?yè)碛邢鄬?duì)較高的菌根侵染率(圖1)。前人研究表明:當(dāng)有機(jī)物污染程度增加時(shí),接種G.etunicatum的紫花苜蓿菌根侵染率下降[24],接種G.mosseae的紫花苜蓿在環(huán)境鹽濃度增加時(shí)菌根侵染率也會(huì)下降[25],重金屬會(huì)影響孢子密度、根外菌絲的形成和菌根侵染率[22,26-28]。另一方面,也有許多文獻(xiàn)報(bào)道了重金屬污染對(duì)菌根侵染率沒有影響或者有促進(jìn)作用[12,16,29-30],這可能歸因于重金屬濃度增加后根系分泌物的下降和磷的沉淀[31]。
AMF對(duì)非鎘污染條件下紫花苜蓿的地下部分生物量沒有顯著影響(圖2D)。然而,接種Gt菌種時(shí)由于根系生物量的增加,總生物量和根冠比顯著高于其他菌種處理。接種Gt菌種處理下,非鎘污染條件下總生物量最高,而鎘濃度為12 mg Cd/kg處理下總生物量最低(圖2F)。以往研究表明玉米(Zeamays) 和水稻(Oryzasativa) 接種菌根真菌后重金屬污染反而降低了生物量[12,32]。AMF能夠通過菌絲網(wǎng)絡(luò)固定重金屬,從而減少重金屬?gòu)牡叵虏糠窒虻厣喜糠值倪\(yùn)輸[7-8]。另外,AMF分泌的球囊霉素,也能起到固定重金屬的作用[33]。同樣以紫花苜蓿為宿主,不同AMF種類菌絲網(wǎng)絡(luò)的范圍、密度和分泌球囊霉素的能力也不同[34]。前人研究指出,接種AMF促進(jìn)植物的生長(zhǎng),這與接種后植物重金屬濃度降低有關(guān)[16,35]。本研究中,接種Gv菌種地上和總生物量增加,顯示接種Gv菌種能夠促進(jìn)紫花苜蓿在鎘污染條件下的生長(zhǎng)能力。在試驗(yàn)中3個(gè)鎘水平,接種Gv菌種處理的根瘤菌數(shù)量、地上部分和全株的吸氮量都最高(圖2B,圖3C,E)。豆科植物叢枝菌根真菌-根瘤菌-植物協(xié)同作用能促進(jìn)根瘤化過程并增強(qiáng)植物固氮能力[36-39]。接種Gv菌種處理下AMF促進(jìn)根瘤菌的形成可能是造成此處理下紫花苜蓿含氮量高的原因之一。
前人研究表明,隨著重金屬濃度的增加,土壤NH4+-N濃度升高[30]。而本研究中接種Gv菌種處理下,土壤NH4+-N和NO3--N濃度降低(圖4A,B),輕度重金屬污染可能會(huì)促進(jìn)植物對(duì)無機(jī)氮的吸收。前人研究報(bào)道接種AMF能夠減少土壤中無機(jī)氮的含量[40-41]。但是本研究中在鎘濃度為12 mg Cd/kg污染條件下,只有接種Ga菌種處理土壤中NH4+-N和NO3--N 濃度都顯著降低(圖4A,B),表明在養(yǎng)分虧缺的情況下,接種Ga菌種促進(jìn)紫花苜蓿短期內(nèi)對(duì)無機(jī)氮吸收的能力較強(qiáng)。根際土壤pH的增加能降低重金屬的有效態(tài)從而降低植物對(duì)重金屬的吸收[42]。在試驗(yàn)的3個(gè)鎘水平下,接種Gt和Gv菌種顯著增加了土壤pH值,有利于促進(jìn)重金屬的穩(wěn)定并保護(hù)宿主植物抵抗重金屬脅迫。
在鎘濃度為12 mg Cd/kg 條件下,接種Gv菌種顯著增加了紫花苜蓿的株高、根瘤菌數(shù)量、地上部分生物量,總生物量,地上部分和全株吸氮量。隨著鎘濃度的增加,接種Gv菌種處理土壤NH4+-N和NO3--N的濃度顯著下降。以上結(jié)果表明接種Gv菌種能夠增加紫花苜蓿在鎘污染條件下的生長(zhǎng)和氮吸收。盡管接種Gt菌種在非鎘污染條件下生物量最大,但是當(dāng)鎘濃度增加到12 mg Cd/kg 時(shí),根瘤菌、地上部分和總生物量、地上部分和全株吸氮量顯著下降,說明在鎘污染下接種Gt菌種會(huì)抑制紫花苜蓿的生長(zhǎng)和氮吸收。一旦土壤氮水平增加,接種Ga菌種有利于增加紫花苜蓿短期內(nèi)對(duì)無機(jī)氮的吸收能力。繼續(xù)研究不同氮水平下不同生長(zhǎng)階段接種菌根真菌對(duì)宿主植物無機(jī)氮吸收的影響的規(guī)律,可對(duì)AMF-宿主植物共生體吸收營(yíng)養(yǎng)元素的動(dòng)態(tài)有更深入的了解。
References:
[1] Redondo-Gómez E, Mateos-Naranjo L. Andrades-moreno accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator. Arthrocnemum Macrostachyum Journal of Hazardous Materials, 2010, 184: 299-307.
[2] Gardea-Torresdey G, De La Rosa J R. Peralta-videa use of phytofilteration technologies to remove the heavy metals: a review. Pure and Applied Chemistry, 2004, 74: 801-803.
[3] Smith S E, Read D J. Mycorrhizal Symbiosis[M]. London: Academic Press, 2008.
[4] Wu S, Zhang X, Sun Y,etal. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS and XAFS. Environmental Science & Technology, 2015, 49: 14036-14047.
[5] Qiao Y H, Crowley D, Wang K,etal. Effects of biochar and arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environmental Pollution, 2015, 206: 636-643.
[6] Chen B D, Xiao X Y, Zhu Y G. The arbuscular mycorrhizal fungusGlomusmosseaegives contradictory effects on phosphorus and arsenic acquisition byMedicagosativaLinn. Science of the Total Environment, 2007, 379: 226-234.
[7] Kaldorf M, Kuhn A J, Schr?der W H,etal. Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 1999, 154: 718-728.
[8] Andrade S A L, Grat?o P L, Azevedo R A,etal. Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany, 2010, 68: 198-207.
[9] Hernandez-Ortega H A, Alarcon A, Ferrera-Cerrato R,etal. Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity ofMelilotusalbusduring phytoremediation of a diesel-contaminated substrate. Journal of Environmental Management, 2012, 95: 319-324.
[10] Ferreira P A A, Ceretta C A, Soriani H H,etal.Rhizophagusclarusand phosphate alter the physiological responses ofCrotalariajunceacultivated in soil with a high Cu level. Applied Soil Ecology, 2015, 91: 37-47.
[11] Liao J P, Lin X G, Cao Z H,etal. Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere, 2003, 50: 847-853.
[12] Liu L Z, Gong Z Q, Zhang Y L,etal. Growth, cadmium uptake and accumulation of maize (ZeamaysL.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicology, 2014, 23: 1979-1986.
[13] Feddermann N, Finlay R, Boller T,etal. Functional diversity in arbuscular mycorrhiza-the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology, 2010, 3: 1-8.
[14] Kohler J, Caravaca F, Azcon R,etal. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Science of the Total Environment, 2015, 514: 42-48.
[15] Wang X L, Yang L, Chen G H,etal. Genetic diversity among alfalfa (MedicagosativaL.) cultivars in Northwest China. Soil and Plant Science, 2011, 61: 60-66.
[16] Carrasco-Gil S, Estebaranz-Yubero M, MedelCuesta D,etal. Influence of nitrate fertilization on Hg uptake and oxidative stress parameters in alfalfa plants cultivated in a Hg-polluted soil. Environmental and Experimental Botany, 2012, 75: 16-24.
[17] Liu R J, Li X L. Arbuscular Mycorrhizal Fungi and the Application[M]. Beijing: Science Press, 2000.
[18] Phillips J M, Hayman D S. Improved procedures for clearing and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55: 158-160.
[19] Lu R K. Agriculture Chemistry Manual[M]. Beijing: Agriculture Press, 1982.
[20] Wu F Y, Ye Z H, Wong M H. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation byPterisvittataL. Chemosphere, 2009, 76: 1258-1264.
[21] Liu H, Yuan M, Tan S Y,etal. Enhancement of arbuscular mycorrhizal fungus (Glomusversiforme) on the growth and Cd uptake by Cd-hyperaccumulatorSolanumnigrum. Applied Soil Ecology, 2015, 89: 44-49.
[22] Lin A J, Zhang X H, Yang X J. Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (OryzasativaL.) in contaminated soils. Ecotoxicology, 2014, 23: 2053-2061.
[23] Lins C E L, Cavalcante U M T, Sampaio E,etal. Growth of mycorrhized seedlings ofLeucaenaleucocephala(Lam.) de Wit. in a copper contaminated soil. Applied Soil Ecology, 2006, 31: 181-185.
[24] Wu N Y, Zhang S Z, Huang H L,etal. Enhanced dissipation of phenanthrene in spiked soil by arbuscular mycorrhizal alfalfa combined with a non-ionic surfactant amendment. Science of the Total Environment, 2008, 394: 230-236.
[25] Campanelli A, Ruta C, De Mastro G,etal. The role of arbuscular mycorrhizal fungi in alleviating salt stress inMedicagosativaL. var. icon. Symbiosis, 2013, 59: 65-76.
[26] Andrade S A L, Abreu C A, de Abreu M F,etal. Influence of lead additions on arbuscular mycorrhiza andRhizobiumsymbioses under soybean plants. Applied Soil Ecology, 2004, 26: 123-131.
[27] Chan W F, Li H, Wu F Y,etal. Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 2013, 262: 1116-1122.
[28] Lermen C, Mohr F B M, Alberton O. Growth ofCymbopogoncitratusinoculated with mycorrhizal fungi under different levels of lead. Scientia Horticulturae, 2015, 186: 239-246.
[29] Chen L H, Hu X W, Yang W Q,etal. The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution inPopuluscathayana. Ecotoxicology and Environmental Safety, 2015, 113: 460-468.
[30] Hua J F, Jiang Q, Bai J F,etal. Interactions between arbuscular mycorrhizal fungi and fungivorous nematodes on the growth and arsenic uptake of tobacco in arsenic-contaminated soils. Applied Soil Ecology, 2014, 84: 176-184.
[31] Demiranda J C C, Harris P J. The effect of soil-phosphorus on the external mycelium growth of arbuscular mycorrhizal fungi during the early stages of mycorrhiza formation. Plant and Soil, 1994, 166: 271-280.
[32] Li H, Ye Z H, Chan W F,etal. Can arbuscular mycorrhizal fungi improve grain yield, as uptake and tolerance of rice grown under aerobic conditions. Environmental Pollution, 2011, 159: 2537-2545.
[33] Cornejo P, Meier S, Borie G,etal. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Science of the Total Environment, 2008, 406: 154-160.
[34] Bedini S, Pellegrino E, Avio L,etal. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal speciesGlomusmosseaeandGlomusintraradices. Soil Biology & Biochemistry, 2009, 41: 1491-1496.
[35] Amna A N, Masood S, Mukhtar T,etal. Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake ofLinumusitatissimumin association withGlomusintraradices. Environmental Monitoring and Assessment, 2015, 187: 311.
[36] Lesueur D, Duponnois R. Relations between rhizobial nodulation and root colonization ofAcaciacrassicarpaprovenances by an arbuscular mycorrhizal fungus,GlomusintraradicesSchenk and Smith or an ectomycorrhizal fungus,PisolithustinctoriusCoker & Couch. Annals of Forest Science, 2005, 62: 467-474.
[37] Mortimer P E, Perez-Fernandez M A, Valentine A J. The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulatedPhaseolusvulgaris. Soil Biology & Biochemistry, 2008, 40: 1019-1027.
[38] Wu F Y, Bi Y L, Wong M H. Dual inoculation with an arbuscular mycorrhizal fungus andRhizobiumto facilitate the growth of alfalfa on coal mine substrates. Journal of Plant Nutrition, 2009, 32: 755-771.
[39] Baslam M, Erice G, Goicoechea N. Impact of arbuscular mycorrhizal fungi (AMF) and atmospheric CO2concentration on the biomass production and partitioning in the forage legume alfalfa. Symbiosis, 2012, 58: 171-181.
[40] Bender S F, Plantenga F, Neftel A,etal. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. International Society for Microbial Ecology Journal, 2014, 8: 1336-1345.
[41] Cheng L, Booker F L, Tu C,etal. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012, 337: 1084-1087.
[42] Shen H, Christie P, Li X. Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (ZeamaysL.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environmental Geochemistry and Health, 2006, 28: 111-119.
Effects of cadmium and arbuscular mycorrhizal fungi inoculation on the growth and nitrogen uptake of alfalfa (Medicagosativa)
LIU Fang1, JING Shu-Xuan1, HU Jian1, XIAO Yan1*, ZHANG Ying-Jun2
1.CollegeofAgro-grasslandScience,NanjingAgriculturalUniversity,Nanjing210095,China; 2.DepartmentofGrasslandScience,ChinaAgriculturalUniversity,Beijing100193,China
A pot experiment in a greenhouse was conducted to investigate the growth and nitrogen (N) uptake ofMedicagosativainoculated with different arbuscular mycorrhizal fungi [Glomusaggregatum(Ga),Glomusetunicatum(Ge),Glomusintraradices(Gi),Glomustortuosum(Gt),Glomusversiforme(Gv)] or un-inoculated in soil without or with cadmium at two concentrations (6 and 12 mg Cd/kg). Mycorrhizal colonization of alfalfa inoculated with Ga, Gi, and Gt was 33.90%, 19.17%, and 31.95% lower, respectively, in 12 mg Cd/kg soil than in 0 mg Cd/kg soil. In soil without Cd, the biomass of the Gt-inoculated plants was 33.19%, 64.74%, 57.29%, and 34.91% higher than that in the Ga, Ge, Gi, and Gv treatments, respectively. In 12 mg Cd/kg soil, the biomass of the Gt-inoculated plants was 16.67%, 34.07%, 32.96%, and 52.76% lower than that of those inocluated with Ga, Ge, Gi, and Gv, respectively. Compared with uninoculated plants, those inoculated with Gv showed significantly increased shoot height, number of nodules, shoot biomass, total biomass, shoot N content, and total N content (by 65.41%, 95.24%, 61.87%, 50.30%, 5.83%, and 71.55%, respectively) in soil containing 12 mg Cd/kg. The NH4+-N and NO3--N concentrations in soil significantly decreased with increasing Cd levels in the Gv-inoculation treatments. These results showed that Gv inoculation promoted the growth and N uptake of alfalfa in Cd-contaminated soils, whereas Gt inoculation could not benefit the growth of alfalfa grown in soils containing more than 6 mg Cd/kg.
alfalfa; arbuscular mycorrhizal fungi; cadmium; nitrogen uptake
10.11686/cyxb2016133
http://cyxb.lzu.edu.cn
2016-03-29;改回日期:2016-06-28
中央高?;究蒲袠I(yè)務(wù)專項(xiàng)資金(KYZ201554),國(guó)家自然科學(xué)基金(31501996)和江蘇省自然科學(xué)基金(BK20150665)資助。
劉芳(1989-),女,河南周口人,在讀碩士。E-mail: 838245960@qq.com
*通信作者Corresponding author. E-mail: xiaoyan@njau.edu.cn
劉芳, 景戍旋, 胡健, 肖燕, 張英俊. 鎘污染和接種叢枝菌根真菌對(duì)紫花苜蓿生長(zhǎng)和氮吸收的影響. 草業(yè)學(xué)報(bào), 2017, 26(2): 69-77.
LIU Fang, JING Shu-Xuan, HU Jian, XIAO Yan, ZHANG Ying-Jun. Effects of cadmium and arbuscular mycorrhizal fungi inoculation on the growth and nitrogen uptake of alfalfa (Medicagosativa). Acta Prataculturae Sinica, 2017, 26(2): 69-77.