王 芊 武永峰 羅良國(guó)
(農(nóng)業(yè)清潔流域創(chuàng)新團(tuán)隊(duì),農(nóng)業(yè)部農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081)
基于氮流失控制的種植結(jié)構(gòu)調(diào)整與配套生態(tài)補(bǔ)償措施*
——以竺山灣小流域?yàn)槔?/p>
王 芊 武永峰 羅良國(guó)?
(農(nóng)業(yè)清潔流域創(chuàng)新團(tuán)隊(duì),農(nóng)業(yè)部農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081)
通過實(shí)地和查閱文獻(xiàn)的方式調(diào)研了竺山灣小流域稻麥、蔬菜和果樹的常規(guī)生產(chǎn)、清潔生產(chǎn)模式下的經(jīng)濟(jì)效益和氮(N)素流失等數(shù)據(jù),采用線性優(yōu)化模型,統(tǒng)籌考慮經(jīng)濟(jì)收益最大和污染排放總量控制,根據(jù)N流失總量高低對(duì)竺山灣小流域種植業(yè)結(jié)構(gòu)設(shè)置了五種情景(Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ)進(jìn)行調(diào)整。情景Ⅰ以經(jīng)濟(jì)收益最高為目標(biāo),情景Ⅱ、Ⅲ分別在削減情景Ⅰ設(shè)定的N流失量20%和30%的約束下,各自實(shí)現(xiàn)其經(jīng)濟(jì)收益最高的兩個(gè)情景。對(duì)于情景Ⅱ和情景Ⅲ,其N投入量、N流失量分別為6 267 t、511 t和5 567 t、447 t。與常規(guī)種植結(jié)構(gòu)相比,這兩種情景均達(dá)到了N肥投入減少20%、N流失量減少30%的項(xiàng)目預(yù)期目標(biāo),相對(duì)凈收益分別達(dá)到8.456億元、7.966億元,高于未調(diào)整前常規(guī)種植結(jié)構(gòu)的7.873億元,屬于五種結(jié)構(gòu)調(diào)整情景中的最優(yōu)和次優(yōu)情景。估算了與種植結(jié)構(gòu)調(diào)整相配套的生態(tài)補(bǔ)償資金,包括機(jī)會(huì)成本補(bǔ)貼和生態(tài)效益獎(jiǎng)勵(lì)兩部分。除去交易成本后,最優(yōu)情景和次優(yōu)情景相應(yīng)的生態(tài)補(bǔ)償總金額分別為961萬(wàn)元和3 507萬(wàn)元,補(bǔ)償標(biāo)準(zhǔn)分別為739 Yuan hm-2和2 696 Yuan hm-2。提出了本區(qū)域內(nèi)種植業(yè)結(jié)構(gòu)調(diào)整的政策建議,以促進(jìn)竺山灣小流域農(nóng)田面源污染治理,加快本區(qū)域種植業(yè)由傳統(tǒng)生產(chǎn)方式向清潔生產(chǎn)方式的轉(zhuǎn)型升級(jí)。
面源污染;種植結(jié)構(gòu)優(yōu)化;清潔生產(chǎn)模式;N流失量;竺山灣小流域;補(bǔ)償政策
在太湖地區(qū),據(jù)估算農(nóng)業(yè)面源污染據(jù)占總污染負(fù)荷的30%~40%,種植業(yè)污染占農(nóng)業(yè)面源污染的比重在30%左右。而種植業(yè)普遍存在著不合理的N肥施用方式,在蔬菜生產(chǎn)中過量施肥現(xiàn)象尤為嚴(yán)重,對(duì)太湖水質(zhì)安全造成了極大威脅。蔬菜、瓜果等經(jīng)濟(jì)作物的種植面積增加與復(fù)種指數(shù)的提高,進(jìn)一步加劇了農(nóng)業(yè)面源污染形勢(shì)[1-2]。為了扭轉(zhuǎn)這種嚴(yán)竣污染現(xiàn)狀,既要通過推廣清潔生產(chǎn)技術(shù)的應(yīng)用從根本上減少N素淋失,也要通過調(diào)整種植面積來降低N素流失總量。從事種植業(yè)生產(chǎn)的農(nóng)戶是種植業(yè)結(jié)構(gòu)調(diào)整針對(duì)的目標(biāo)對(duì)象,他們能否在種植中使用清潔生產(chǎn)技術(shù)是決定種植業(yè)結(jié)構(gòu)調(diào)整成效的關(guān)鍵所在。由于多數(shù)農(nóng)戶出于對(duì)經(jīng)濟(jì)收益的顧慮不愿改變種植習(xí)慣,因此實(shí)際中清潔生產(chǎn)技術(shù)并不會(huì)直接取代傳統(tǒng)的種植方式,還需要設(shè)計(jì)出經(jīng)濟(jì)激勵(lì)的手段來促進(jìn)農(nóng)戶主動(dòng)采用清潔技術(shù)。如歐盟通過制定環(huán)境政策及開展環(huán)保計(jì)劃以促進(jìn)農(nóng)業(yè)環(huán)境正外部性的行為,美國(guó)則側(cè)重于減少農(nóng)業(yè)環(huán)境的負(fù)外部性,通過耦合經(jīng)濟(jì)評(píng)價(jià)模型與環(huán)境污染模擬模型以尋求區(qū)域內(nèi)的最佳實(shí)施方案,取得了良好的效果[3-7]。目前我國(guó)已在太湖、撫仙湖和三峽庫(kù)區(qū)等流域開展了基于面源污染控制的農(nóng)業(yè)結(jié)構(gòu)調(diào)整的研究工作[8-10],但是在小流域尺度同時(shí)開展種植業(yè)結(jié)構(gòu)調(diào)整與生態(tài)補(bǔ)償措施的研究鮮有報(bào)道。
竺山灣小流域毗鄰太湖西北角半封閉的竺山湖,包括宜興市的周鐵鎮(zhèn)、萬(wàn)石鎮(zhèn)、和橋鎮(zhèn)和常州市武進(jìn)區(qū)的前黃鎮(zhèn)、雪堰鎮(zhèn),主要入湖河流有太滆運(yùn)河、漕橋河和殷村港。本文選擇竺山灣小流域開展種植業(yè)結(jié)構(gòu)調(diào)整研究,調(diào)研了區(qū)域內(nèi)各主要作物常規(guī)和清潔生產(chǎn)過程中的N流失量、產(chǎn)量和經(jīng)濟(jì)效益指標(biāo)的數(shù)據(jù),獲取了區(qū)域遙感影像以計(jì)算不同作物的種植面積,根據(jù)N素輸出模型計(jì)算區(qū)域N流失量[11],利用線性規(guī)劃模型優(yōu)化調(diào)整不同作物及生產(chǎn)方式的種植面積,在兼顧經(jīng)濟(jì)收益和污染排放雙重目標(biāo)的前提下計(jì)算出不同情景下的經(jīng)濟(jì)、環(huán)境綜合收益,并得出了最優(yōu)和次優(yōu)情景下的單位面積補(bǔ)償標(biāo)準(zhǔn)。本文還提出了相應(yīng)的生態(tài)補(bǔ)償機(jī)制,確保優(yōu)化調(diào)整后的種植業(yè)結(jié)構(gòu)長(zhǎng)期穩(wěn)定,達(dá)到最終降低農(nóng)業(yè)面源污染排放量的目標(biāo),從而推進(jìn)竺山灣區(qū)域農(nóng)業(yè)可持續(xù)發(fā)展進(jìn)程。
1.1 研究區(qū)域范圍
據(jù)當(dāng)?shù)赜嘘P(guān)規(guī)定,“在環(huán)太湖1公里以及主要入湖河流上溯10公里兩側(cè)各1公里范圍內(nèi),建設(shè)有機(jī)農(nóng)業(yè)生態(tài)圈,實(shí)施有機(jī)農(nóng)業(yè)建設(shè)工程”。研究中將種植業(yè)結(jié)構(gòu)的調(diào)整范圍限定在環(huán)湖有機(jī)農(nóng)業(yè)生態(tài)圈之外。獲取了該區(qū)域2013年的SPOT6和2014年的快鳥(Quickbird)兩景遙感影像,用以提取農(nóng)業(yè)用地的遙感分類結(jié)果。
1.2 作物生產(chǎn)方式
根據(jù)調(diào)研,當(dāng)?shù)胤N植業(yè)典型的三種農(nóng)業(yè)用地類型是稻/麥輪作地、設(shè)施蔬菜和果園。其中,蔬菜生產(chǎn)按照一年種植芹菜/番茄/萵苣三茬蔬菜模式,果園則統(tǒng)一視為水蜜桃種植。清潔生產(chǎn)是通過按需施肥來減少N肥施用量、改進(jìn)施肥方式、調(diào)整輪作制度等,實(shí)現(xiàn)氮減排,同時(shí)能保證產(chǎn)量的基本穩(wěn)定[12-14]。本研究中選用的清潔生產(chǎn)方式分別是稻/綠肥種植模式[15]、稻/麥減量施肥模式[16]、設(shè)施蔬菜減量施肥和填閑結(jié)合模式[17-18],及果園肥料深施和間作三葉草模式[19]。
1.3 線性優(yōu)化模型
通過借鑒肖新成等[10]在三峽庫(kù)區(qū)種植業(yè)結(jié)構(gòu)調(diào)整的方法,利用最優(yōu)化求解軟件包LINGO進(jìn)行運(yùn)算。本研究設(shè)立了五種不同的情景,其中:情景Ⅰ要達(dá)到經(jīng)濟(jì)收益最高;情景Ⅱ-Ⅳ是在情景Ⅰ的N流失量基礎(chǔ)上分別削減20%、30%和40%,并實(shí)現(xiàn)經(jīng)濟(jì)收益最高;情景Ⅴ要達(dá)到N流失量最小。約束條件包括N流失量約束、農(nóng)用地面積約束和農(nóng)副產(chǎn)品需求量約束。
2.1 竺山灣區(qū)域生產(chǎn)與經(jīng)濟(jì)調(diào)研結(jié)果
稻麥作物、蔬菜和果樹的種植面積及比例如表1所示,首先通過遙感影像可以計(jì)算出有機(jī)農(nóng)業(yè)生態(tài)圈內(nèi)的各作物種植面積占竺山灣區(qū)域總面積的比例(14.7%、46.6%和15.0%),之后就可計(jì)算出環(huán)湖有機(jī)農(nóng)業(yè)生態(tài)圈之外的稻麥作物、蔬菜和果園的面積(10 120、1 260、1 630 hm2),三者合計(jì)為13 010 hm2。根據(jù)太湖地區(qū)開展的研究及相關(guān)調(diào)研數(shù)據(jù)[15-18,20],本研究采用的生產(chǎn)方式下N淋失量與經(jīng)濟(jì)效益指標(biāo)如表2所示。經(jīng)濟(jì)效益指標(biāo)包括人力成本、機(jī)械成本、N肥成本、毛收益和相對(duì)凈收益。因?yàn)閿?shù)據(jù)獲取限制的原因,只考慮了相對(duì)重要的成本指標(biāo),從而計(jì)算出的是相對(duì)凈收益值,而不是絕對(duì)凈收益值。
2.2 種植面積優(yōu)化模擬
五種優(yōu)化情景下不同種植模式的種植面積和所占比例如表3所示。對(duì)于稻/麥種植而言,在情景Ⅰ中全部為常規(guī)稻/麥種植模式,在情景Ⅱ-Ⅴ中常規(guī)稻/麥種植模式完全被兩種清潔種植模式所取代。蔬菜清潔種植模式(V1)的種植面積在情景Ⅰ和Ⅱ中與常規(guī)種植面積相同,在情景Ⅲ-Ⅴ中則逐漸降低,種植面積的比例由9%降至1%。果樹清潔種植模式(F1)的種植面積比例在情景Ⅰ-Ⅳ中均為12%,在情景Ⅴ中降至10%。國(guó)外開展磷(P)和農(nóng)藥的面源污染的治理中,常運(yùn)用經(jīng)驗(yàn)或機(jī)理模型對(duì)研究區(qū)域的環(huán)境風(fēng)險(xiǎn)等級(jí)進(jìn)行劃分,找到環(huán)境風(fēng)險(xiǎn)較高的地區(qū),進(jìn)而有針對(duì)性地采取清潔生產(chǎn)措施來減少面源污染產(chǎn)生[21-22],今后可以在識(shí)別環(huán)境敏感區(qū)域的基礎(chǔ)上開展種植業(yè)結(jié)構(gòu)的空間布局研究。
表1 竺山灣區(qū)域環(huán)湖有機(jī)農(nóng)業(yè)圈及以外的稻麥、蔬菜和果樹種植業(yè)面積及比例Table 1 Planting areas and ratios of rice,wheat,vegetable and fruits tree inside and outside the circum-lake organic agriculture zonein the Zhushanwan catchment
表2 竺山灣小流域作物種植N投入量、N流失量及經(jīng)濟(jì)效益參數(shù)Table 2 N input,N loss and economic benefit parameters of the crop production in the Zhushanwancatchment
表3 常規(guī)種植和五種情景下各種植模式的面積及所占比例Table 3 Planting areas and proportions of different crop production patterns in conventional cultivation system and five scenarios
表4 常規(guī)種植和五種情景下的N投入量、N流失量和經(jīng)濟(jì)收益Table 4 N inputs,N loss and economic profits in conventional production mode and five different scenarios
表4中列出了常規(guī)種植結(jié)構(gòu)及五種情景下的N投入量、N流失量及經(jīng)濟(jì)收益數(shù)據(jù)。五種情景的N投入量和N流失量均低于常規(guī)種植結(jié)構(gòu)。情景Ⅰ~Ⅲ的經(jīng)濟(jì)收益則高于常規(guī)種植結(jié)構(gòu),其余的Ⅳ、Ⅴ兩種情景的經(jīng)濟(jì)收益低于常規(guī)種植結(jié)構(gòu)。通過與常規(guī)種植結(jié)構(gòu)進(jìn)行比較,情景Ⅱ和Ⅲ的N投入量削減率分別為23.9%、32.4%,N流失量削減率分別為32.7%和41.1%,達(dá)到國(guó)家“十二五”水專項(xiàng)在竺山灣區(qū)域設(shè)定的N投入量和N流失量的削減率目標(biāo)(分別為20%、30%)。情景Ⅱ、Ⅲ的經(jīng)濟(jì)收益的增長(zhǎng)率均大于0。又因?yàn)榍榫阿蚪?jīng)濟(jì)收益相對(duì)較高,達(dá)到8.456億元,可作為最優(yōu)情景;情景Ⅲ的經(jīng)濟(jì)收益相對(duì)較低,為7.966億元,可作為次優(yōu)情景。
2.3 生態(tài)補(bǔ)償措施
補(bǔ)償標(biāo)準(zhǔn)按三部分進(jìn)行計(jì)算:一是用于補(bǔ)貼種植業(yè)結(jié)構(gòu)調(diào)整后凈收益的機(jī)會(huì)成本補(bǔ)貼。二是按每削減1千克N投入量補(bǔ)貼1.11元[23]計(jì)算的生態(tài)效益補(bǔ)貼。三是將上述兩項(xiàng)補(bǔ)貼總金額的15%作為交易成本[24]。最優(yōu)情景Ⅱ和次優(yōu)情景Ⅲ以及其中各種植模式的總生態(tài)補(bǔ)償金額與單位面積平均補(bǔ)貼金額如表5所示。情景Ⅱ中除去交易成本后的生態(tài)補(bǔ)償總金額共計(jì)961萬(wàn)元,平均補(bǔ)貼值為739 Yuan hm-2。情景Ⅲ中,除去交易成本后的補(bǔ)償總金額為3 507萬(wàn)元,平均補(bǔ)貼值為2 696 Yuan hm-2。國(guó)外開展的研究測(cè)算的生態(tài)補(bǔ)償標(biāo)準(zhǔn)介于610~4 744 Yuan hm-2之間,如:歐盟環(huán)保農(nóng)業(yè)2007-2009年的平均補(bǔ)貼值為0.061萬(wàn)元 hm-2,日本滋賀縣清潔生產(chǎn)方式補(bǔ)貼8萬(wàn)日元 hm-2(約4 744 Yuan hm-2),韓國(guó)對(duì)在旱地和水田的補(bǔ)貼標(biāo)準(zhǔn)分別為5 2.4萬(wàn)~79.4萬(wàn)韓元 hm-2、21.7萬(wàn)~39.2萬(wàn)韓元 hm-2(約2 952~4 473、1 223~2 208 Yuan hm-2)[25]。國(guó)內(nèi)在江蘇宜興、上海崇明島[23,26]開展的研究測(cè)算的補(bǔ)貼額度分別為620~7 098 Yuan hm-2和3 066~10 136 Yuan hm-2。本研究計(jì)算出的農(nóng)業(yè)清潔生產(chǎn)方式補(bǔ)貼值介于739~2 696 Yuan hm-2,與歐盟、韓國(guó)的補(bǔ)貼水平及宜興市計(jì)算值較為接近,高于我國(guó)目前推廣實(shí)施的測(cè)土配方施肥平均補(bǔ)貼的資金(不足100 Yuan hm-2)[5]。
建立針對(duì)本區(qū)域的生態(tài)補(bǔ)償機(jī)制對(duì)于長(zhǎng)期鞏固種植業(yè)結(jié)構(gòu)調(diào)整措施具有重要意義,本文主要從資金來源、支付對(duì)象、支付方式以及補(bǔ)償措施的監(jiān)督管理等方面進(jìn)行討論:(1)補(bǔ)償資金主要從土地出讓金中提取,還可向生產(chǎn)化肥和農(nóng)藥等化學(xué)投入品的農(nóng)資生產(chǎn)企業(yè)適當(dāng)征收環(huán)境稅,公開向企業(yè)和個(gè)人募集生態(tài)補(bǔ)償資金;(2)補(bǔ)償支付對(duì)象主要為規(guī)?;N植主體;(3)補(bǔ)償方式是主管部門與規(guī)?;N植主體簽訂為期5年的合同,對(duì)審核通過的主體分別按50%、20%、15%、10%、5%的比例在5年內(nèi)發(fā)放合同資金;(4)種植主體需在第三方評(píng)估機(jī)構(gòu)的協(xié)助下,提供制訂出配套清潔生產(chǎn)技術(shù)實(shí)施的年度計(jì)劃和田間管理措施,明確合同到期時(shí)需達(dá)到的農(nóng)田環(huán)境標(biāo)準(zhǔn)。另外,加快土地流轉(zhuǎn)進(jìn)程,重點(diǎn)扶持農(nóng)業(yè)專業(yè)合作社和農(nóng)業(yè)龍頭企業(yè)等規(guī)模化經(jīng)營(yíng)主體,是發(fā)展低碳農(nóng)業(yè)、提高農(nóng)業(yè)現(xiàn)代化水平的必然選擇[27]。政府還要在生產(chǎn)、加工和銷售等環(huán)節(jié)為規(guī)?;?jīng)營(yíng)主體出臺(tái)財(cái)稅、信貸等方面的優(yōu)惠政策,搭建電商平臺(tái),以創(chuàng)造良好的經(jīng)營(yíng)環(huán)境。
表5 最優(yōu)情景Ⅱ和次優(yōu)情景Ⅲ的生態(tài)補(bǔ)償方案Table 5 Eco-compensation scheme for optimal scenario Ⅱ and the second optimal scenario Ⅲ
在太湖地區(qū)針對(duì)稻/麥輪作、蔬菜和果樹種植清潔生產(chǎn)模式的研究表明,清潔生產(chǎn)方式在穩(wěn)定產(chǎn)量的同時(shí)可以大幅削減N流失量,是控制農(nóng)業(yè)面源污染的重要手段。本研究將N流失量控制和相對(duì)凈收益最大設(shè)定為雙重目標(biāo),在涉及竺山灣小流域現(xiàn)有環(huán)境規(guī)劃的基礎(chǔ)上,考慮種植業(yè)生產(chǎn)的常規(guī)模式和清潔生產(chǎn)模式,設(shè)置了耕地面積和糧食安全等約束,并利用線性規(guī)劃模型對(duì)種植業(yè)結(jié)構(gòu)進(jìn)行優(yōu)化調(diào)整。按區(qū)域內(nèi)種植業(yè)總N流失量的不同,分別計(jì)算了與不同N流失量水平相對(duì)應(yīng)的五種不同種植業(yè)結(jié)構(gòu)優(yōu)化調(diào)整情景,通過擇優(yōu)比較遴選出了經(jīng)濟(jì)收益較高且污染水平能達(dá)到現(xiàn)有規(guī)劃目標(biāo)的最優(yōu)和次優(yōu)兩種情景。為推動(dòng)當(dāng)?shù)剞r(nóng)民能主動(dòng)接受種植業(yè)結(jié)構(gòu)調(diào)整,計(jì)算了最優(yōu)和次優(yōu)兩種情景下的生態(tài)補(bǔ)償方案,補(bǔ)貼分為機(jī)會(huì)成本補(bǔ)貼和生態(tài)效益獎(jiǎng)勵(lì),除去交易成本后的補(bǔ)償總金額分別為961萬(wàn)元、3 507萬(wàn)元,對(duì)應(yīng)的補(bǔ)償標(biāo)準(zhǔn)分別為739、2 696 Yuan hm-2。研究還提出促進(jìn)生態(tài)補(bǔ)償措施能持久發(fā)揮作用的政策建議。
[1]李新艷,李恒鵬,楊桂山,等. 江蘇太湖地區(qū)農(nóng)業(yè)耕作制度變化及其對(duì)地表水土環(huán)境的影響. 長(zhǎng)江流域資源與環(huán)境,2014,23(12):1699—1704
Li X Y,Li H P,Yang G S,et al. Changes of farming systems in the past 60 years in the Taihu region of Jiangsu Province and its impact on the surface water and soil environment(In Chinese). Resources and Environment in the Yangtze Basin,2014,23(12):1699—1704
[2]王令,王文杰,高振記,等. 農(nóng)業(yè)面源污染防治的經(jīng)濟(jì)手段研究綜述. 環(huán)境與可持續(xù)發(fā)展,2013(3):57—59
Wang L,Wang W J,Gao Z J,et al. Review of economic methods of agricultural non-point source pollution control(In Chinese). Environment and Sustainable Development,2013(3):57-59
[3]Balana B B,Vinten A,Slee B. A review on costeffectiveness analysis of agri-environmental measures related to the EU WFD:Key issues,methods,and application. Ecological Economics,2011,70:1021—1031
[4]Mewes M. Diffuse nutrient reduction in the German Baltic Sea catchment:Cost-effectiveness analysis of water protection measures. Ecological Indicators,2012,22:16—26
[5]胡博,楊穎,王芊,等. 環(huán)境友好型農(nóng)業(yè)生態(tài)補(bǔ)償實(shí)踐進(jìn)展. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2016,18(1):7—17
Hu B,Yang Y,Wang Q,et al. Progress of ecocompensation practice for environmental friendly agriculture(In Chinese). Journal of Agricultural Science and Technology,2016,18(1):7—17
[6]Bouraoui F,Grizzetti B. Modeling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Science of the Total Environment,2014,468/469:1267—1277
[7]Yang W H,Khanna M,F(xiàn)arnsworth R,et al. Integrating economic,environmental and GIS modeling to target cost effective land retirement in multiple watersheds. Ecological Economics,2003,46:249— 267
[8]李萍萍,劉繼展. 太湖流域農(nóng)業(yè)結(jié)構(gòu)多目標(biāo)優(yōu)化設(shè)計(jì).農(nóng)業(yè)工程學(xué)報(bào),2009,25(10):198—203
Li P P,Liu J Z. Multi-objective optimization of agricultural structure in Taihu Lake basin(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2009,25(10):198—203
[9]夏訓(xùn)峰,顧雨,席北斗,等. 基于水環(huán)境約束的撫仙湖流域農(nóng)業(yè)結(jié)構(gòu)調(diào)整研究. 環(huán)境科學(xué)研究,2010,23 (10):1274—1278
Xia X F,Gu Y,Xi B D,et al. Research on agricultural structure regulation in Fuxian Lake Basin based on water environmental constraints(In Chinese). Research of Environmental Sciences,2010,23(10):1274—1278
[10]肖新成,謝德體,何炳輝,等. 基于農(nóng)業(yè)面源污染控制的三峽庫(kù)區(qū)種植業(yè)結(jié)構(gòu)優(yōu)化. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(20):219—227
Xiao X C,Xie D T,He B H,et al. Planting structure optimization based on agricultural non-point source pollution control in Three Gorges Reservoir Region (In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2014,30(20):219—227
[11]薛利紅,楊林章. 面源污染物輸出系數(shù)模型的研究進(jìn)展. 生態(tài)學(xué)雜志,2009,28(4):755—761
Xue L H,Yang L Z. Research advances of export coefficient model for non-point source pollution(In Chinese). Chinese Journal of Ecology. 2009,28 (4):755—761
[12]徐力剛,王曉龍,崔銳,等. 不同農(nóng)業(yè)種植方式對(duì)土壤中硝態(tài)氮淋失的影響研究. 土壤,2012,44(2):225—231
Xu L G,Wang X L,Cui R,et al. Study of nitrate nitrogen leaching characteristics in different agricultural planted farmland(In Chinese). Soils,2012,44 (2):225—231
[13]凌德,李婷,王火焰,等. 施用方式和氮肥種類對(duì)水稻土中氮素遷移的影響效應(yīng). 土壤,2015,47(3):478—482
Ling D,Li T,Wang H Y,et al. Effects of fertilization methods and forms of nitrogen fertilizers on nitrogen diffusion and migration in paddy soil(In Chinese). Soils,2015,47(3):478—482
[14]于飛,施衛(wèi)明. 近10年中國(guó)大陸主要糧食作物氮肥利用率分析. 土壤學(xué)報(bào),2015,52(6):1311—1324
Yu F,Shi W M. Nitrogen use efficiencies of major grain crops in China in recent 10 years(In Chinese). Acta Pedologica Sinica,2015,52(6):1311—1324
[15]喬俊,顏廷梅,薛峰,等. 太湖地區(qū)稻田不同輪作制度下的氮肥減量研究.中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2011,19 (1):24—31
Qiao J,Yan T M,Xue F,et al. Reduction of nitrogen fertilizer application under different crop rotation systems in paddy fields of Taihu area(In Chinese). Chinese Journal of Eco-Agriculture,2011,19(1):24—31
[16]薛利紅,俞映倞,楊林章. 太湖流域稻田不同氮肥管理模式下的氮素平衡特征及環(huán)境效應(yīng)評(píng)價(jià). 環(huán)境科學(xué),2011,32(4):1133—1138
Xue L H,Yu Y L,Yang L Z. Nitrogen balance and environmental impact of paddy field under different N management methods in Taihu Lake Region(In Chinese). Environmental Science,2011,32(4):1133—1138
[17]陸扣萍,閔炬,施衛(wèi)明,等. 不同輪作模式對(duì)太湖地區(qū)大棚菜地土壤氮淋失的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2013,19(3):689—697
Lu K P,Min J,Shi W M,et al. Effect of rotation patterns on nitrogen leaching loss from protected vegetable soil in Tai Lake region(In Chinese). Journal of Plant Nutrition and Fertilizer,2013,19(3):689—697
[18]陸扣萍,閔炬,施衛(wèi)明,等. 填閑作物甜玉米對(duì)太湖地區(qū)設(shè)施菜地土壤硝態(tài)氮?dú)埩艏傲苁У挠绊? 土壤學(xué)報(bào),2013,50(2):331—339
Lu K P,Min J,Shi W M,et al. Effect of sweet corn as a catch crop on residual and leaching loss of soil nitrate in protected vegetable soil in Taihu Lake region(In Chinese). Acta Pedologica Sinica,2013,50(2):331—339
[19]彭玲,文昭,安欣,等. 果園生草對(duì)15N利用及土壤累積的影響. 土壤學(xué)報(bào),2015,52(4):950—956
Peng L,Wen Z,An X,et al. Effects of interplanting grass on utilization,loss and accumulation of15N in apple orchard(In Chinese). Acta Pedologica Sinica,2015,52(4):950—956
[20]夏永秋,顏曉元. 太湖地區(qū)麥季協(xié)調(diào)農(nóng)學(xué)、環(huán)境和經(jīng)濟(jì)效益的推薦施肥量. 土壤學(xué)報(bào),2011,48(6):1210—1218
Xia Y Q,Yan X Y. Nitrogen fertilization rate recommendation integrating agronomic,environmental,and economic benefits for wheat season in the Taihu Lake region(In Chinese). Acta Pedologica Sinica,2011,48(6):1210—1218
[21]Ripa M N,Leone A,Garnier M,et al. Agricultural land use and best management practices to control nonpoint water pollution. Environmental Management,2006,38(2):253—266
[22]Weissteiner C J,Pistocchi A,Marinov D,et al. An indicator to map diffuse chemical river pollution considering buffer capacity of riparian vegetation—A pan-European case study. Science of the Total Environment,2014,484:64—73
[23]張印,周羽辰,孫華. 農(nóng)田氮素非點(diǎn)源污染控制的生態(tài)補(bǔ)償標(biāo)準(zhǔn)——以江蘇省宜興市為例. 生態(tài)學(xué)報(bào),
2012,32(23):7327—7335 Zhang Y,Zhou Y C,Sun H. Ecological compensation standard for controlling nitrogen non-point pollution from farmland:A case study of Yixing City in Jiangsu Province(In Chinese). Acta Ecologica Sinica,2012,32(23):7327—7335
[24]Pagiola S. Payments for environmental services in Costa Rica. Ecological Economics,2008,65:712—724
[25]馬曉春,宋莉莉,李先德. 韓國(guó)農(nóng)業(yè)補(bǔ)貼政策及啟示.農(nóng)業(yè)技術(shù)經(jīng)濟(jì),2010(7):122—128
Ma X C,Song L L,Li X D. Korea’s subsidy policy on agriculture and the enlightenment for China. Technical Economy in Agriculture,2010(7):122—128
[26]沈根祥,黃麗華,錢曉雍,等. 環(huán)境友好農(nóng)業(yè)生產(chǎn)方式生態(tài)補(bǔ)償標(biāo)準(zhǔn)探討——以崇明島東灘綠色農(nóng)業(yè)示范項(xiàng)目為例. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(5):1079—1084
Shen G X,Huang L H,Qian X Y,et al. Ecological compensation criteria for environmental-friendly agriculture production—Case study of green agriculture demonstration project in Dongtan,Chongming Island (In Chinese). Journal of Agro-Environment Science,2009,28(5):1079—1084
[27]金辰,孫波,趙其國(guó),等. 我國(guó)發(fā)展低碳農(nóng)業(yè)的政策、法規(guī)和技術(shù)體系分析. 土壤,2014,46(1):7—14
Jin C,Sun B,Zhao Q G,et al. Analysis of policies,regulations and technological systems to develop lowcarbon agriculture in China(In Chinese). Soils,2014,46(1):7—14
N-Loss-Control-Oriented Readjustment of Planting Structure and Its Matching Ecological Compensation Measures —A Case Study of Zhushanwan Catchment
WANG Qian WU Yongfeng LUO Liangguo?
(Agricultural Clean Watershed Group;Key Laboratory for Agricultural Environment,Ministry of Agriculture;Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences,Beijing 100081,China)
Through consultation of literature and field survey,data were collected of the conventional rice,wheat,vegetable and fruit production,the economic benefit of the production under the model of cleaner production and the nitrogen loss in the Zhushanwan catchment,a subwatershed in the northwest of the Taihu Lake Region,and other relevant social-economic data. An attempt was made to readjust the planting structure of the catchment in line with five simulated scenarios(Ⅰ,Ⅱ,Ⅲ,ⅣandⅤ),separately,high to low in total nitrogen loss,using the linear optimization model(Software Lingo 11)and taking into full account maximal economic benefit and total volume control of pollution discharge. In Scenario Ⅱand Ⅲ,the total N input was found to be 6 267 t and 5 567 t,respectively,and the total N loss 511 t and 447 t,respectively,which indicates that both scenarios meet their respective intended targets of reducing total N input by 20% and total N loss by 30% as compared with that in the conventional planting structure. Besides,the two scenarios may generate a relative net economic profit of 845.6 million yuan and 796.6 million yuan,respectively,both higher than that(787.3million yuan)the conventional planting structure does. So among the five scenarios,Scenario Ⅱ is the optimal one and Scenario Ⅲ the second to follow for readjustment of the planting structure of the region. The quota of eco-compensation was calculated according to opportunity cost and ecological benefit reward,and the compensation policy and mechanisms were suggested to facilitate implementation of cleaner production. The ecological compensation funds,excluding transaction cost,about 15% of the total compensation for Scenario Ⅱ andⅢ is estimated to be 9.61 and 35.07 million yuan(RMB),respectively,according to the standard for compensation,739 and 2 696 Yuan hm-2,respectively. Implementation of the policy and its matching eco-compensation measures may effectively help control nonpoint source agricultural pollution and expedite the process of transformation or escalation of the farming industry in the region from the traditional one to the one of cleaner production.
Non-point source pollution;Planting structure optimization;Cleaner production mode in agriculture;Nitrogen loss via surface runoff and leaching;Zhushanwan catchment;Compensation policy
X322
A
10.11766/trxb201604050088
(責(zé)任編輯:陳榮府)
* 國(guó)家“十二五”水體污染控制與治理科技重大專項(xiàng)(2012ZX07101-004,2014ZX07105-001)和中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)清潔流域創(chuàng)新工程共同資助 Supported by the National Major Science and Technology Project of Water Pollution Control and Management for the 12th Five-Year Plan Period (Nos. 2012ZX07101-004 and 2014ZX07105-001) and the Agriculture Cleaner Watershed Innovation Project of the Chinese Academy of Agricultural Sciences
? 通訊作者 Corresponding author,E-mail:luoliangguo@caas.cn
王 芊(1983―),男,山西晉城人,博士,助理研究員,主要研究農(nóng)業(yè)面源污染防控。E-mail: wangqian02@ caas.cn
2016-04-05;
2016-06-14;優(yōu)先數(shù)字出版日期(www.cnki.net):2016-10-10