亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        表面增強拉曼光譜檢測臍橙果皮混合農(nóng)藥殘留

        2017-02-17 02:57:59王海陽劉燕德張宇翔
        農(nóng)業(yè)工程學(xué)報 2017年2期
        關(guān)鍵詞:樂果納米線亞胺

        王海陽,劉燕德,張宇翔

        ?

        表面增強拉曼光譜檢測臍橙果皮混合農(nóng)藥殘留

        王海陽,劉燕德※,張宇翔

        (華東交通大學(xué)機電與車輛工程學(xué)院,光機電技術(shù)及應(yīng)用研究所,南昌 330013)

        為了研究果皮農(nóng)藥殘留快速檢測方法。該文以臍橙為例,混合農(nóng)藥(亞胺硫磷和樂果)為研究對象,選用銀納米線作為增強基底,利用共焦顯微拉曼光譜儀對農(nóng)藥殘留進(jìn)行檢測。通過表面增強拉曼光譜(surface enhanced Raman scattering,SERS)技術(shù),采集臍橙表皮混合農(nóng)藥殘留的SERS光譜。對混合農(nóng)藥定性分析,銀納米線對2種農(nóng)藥都有較好的增強效果。對采集的光譜進(jìn)行預(yù)處理后,建立模型,進(jìn)行定量分析,研究結(jié)果表明,經(jīng)過二階微分預(yù)處理后光譜數(shù)據(jù)結(jié)合偏最小二乘法(partial least squares,PLS)得到的模型預(yù)測效果最好,預(yù)測相關(guān)系數(shù)(R)為0.954,其預(yù)測均方根誤差(root-mean-square prediction error,RMSEP)為4.822 mg/L。挑選兩種農(nóng)藥特征峰的特征波段,混合農(nóng)藥中亞胺硫磷的特征波段經(jīng)多元散射校正(multiplicative scatter correction,MSC)處理后,建模效果較好,其中R為0.898,RMSEP為6.621 mg/L;混合農(nóng)藥中樂果的特征波段經(jīng)基線校正處理后,建模效果較好,其中R為0.911,RMSEP為7.369 mg/L。研究結(jié)果表明SERS技術(shù)是一種快速、可靠的檢測混合農(nóng)藥殘留的方法。

        農(nóng)藥;光譜分析;模型;表面增強拉曼光譜;偏最小二乘法

        0 引 言

        中國是農(nóng)業(yè)大國,農(nóng)業(yè)作為第一產(chǎn)業(yè)在國民經(jīng)濟(jì)中所占比例較大,所以每年需要使用大量的農(nóng)藥來保證農(nóng)作物的產(chǎn)量[1]。農(nóng)藥好比一把雙刃劍,雖然能夠防治病蟲害,但也會威脅生命健康。目前各國對農(nóng)產(chǎn)品中農(nóng)藥殘留的要求越來越嚴(yán)格,中國農(nóng)產(chǎn)品存在的重要問題是農(nóng)產(chǎn)品中農(nóng)藥殘留超標(biāo),并且農(nóng)作物上的農(nóng)藥殘留種類十分復(fù)雜,檢測需要借助大型儀器[2-5]。因農(nóng)藥自身存在毒性,外加不合理使用,所以,為提升食用安全,圍繞農(nóng)產(chǎn)品開展農(nóng)殘檢測至關(guān)重要。

        目前常規(guī)農(nóng)藥殘留檢測方法主要包括氣相色譜(gas chromatography,GC)[6-8]、高效液相色譜(high performance liquid chromatography,HPLC)[9]、液-質(zhì)聯(lián)用(liquid chromatography with mass spectrometry,LC/MS)法[10-11]酶聯(lián)免疫吸附法[12]、近紅外光譜法[13]、熒光光譜法[14]等,這些方法雖然穩(wěn)定可靠且重復(fù)性好,但這些方法都需要對樣品進(jìn)行一系列的前處理,樣品大都是破壞性的,用于實際殘留量測量時不但費時費力,而且結(jié)果也不理想。

        拉曼光譜是研究分子振動、轉(zhuǎn)動的一種光譜方法,其優(yōu)點是無損、快速、不受水環(huán)境干擾,目前已廣泛應(yīng)用于各個學(xué)科[15]。表面增強拉曼散射(serface enhanced Raman scattering,SERS)是吸附在特定納米級粗糙界面的分析物的拉曼散射被極大增強的一種效應(yīng)[16],相對于普通拉曼光譜,SERS具有百萬級的光譜增強能力。SERS 技術(shù)具有分析速度快、所需樣品濃度低、樣品無需預(yù)處理、不需破壞樣品、靈敏度較高、水溶液體系對拉曼測試無干擾等優(yōu)點,是一種快速發(fā)展,逐漸成熟、超靈敏的前沿表征技術(shù)[17],引起了科學(xué)家們廣泛的研究興趣。Liu等[18-23]利用不同基底如金膠、銀膠、Klarite芯片等將表面增強拉曼光譜與化學(xué)計量學(xué)相結(jié)合檢測了臍橙果皮亞胺硫磷、樂果、毒死蜱等農(nóng)藥殘留,得到較好的效果。李俊杰等[24]采用表面增強拉曼光譜技術(shù)結(jié)合化學(xué)計量方法快速分析臍橙果皮中的三唑磷農(nóng)藥殘留,建立臍橙果皮中三唑磷農(nóng)藥殘留的偏最小二乘法預(yù)測模型,模型預(yù)測能力和重現(xiàn)性良好。王曉彬等[25]采用表面增強拉曼光譜(SERS)技術(shù)結(jié)合快速溶劑前處理方法建立臍橙果肉中三唑磷農(nóng)藥的快速檢測方法,以臍橙果肉提取液為基質(zhì)的三唑磷溶液最低檢測質(zhì)量濃度為0.5 mg/L。李俊杰等[26]采用表面增強拉曼光譜技術(shù)快速分析臍橙果肉中的噻菌靈農(nóng)藥殘留,對以臍橙果肉提取液為基質(zhì)的不同濃度噻菌靈溶液的SERS光譜進(jìn)行分析,利用該方法快速檢測臍橙果肉中噻菌靈,最低檢測質(zhì)量分?jǐn)?shù)為5 mg/kg。劉培培等[27]以銀鏡為表面增強拉曼活性增強基底,檢測農(nóng)藥敵草快,得到較好的效果,檢測限可以達(dá)到10-8mol/L。黃梅英等[28]以金納米粒子為活性基底,直接檢測食品中游離香豆素,在質(zhì)量濃度范圍1.0~100.0 mg/L的線性相關(guān)系數(shù)為0.9987,檢出限為0.91 mg/L,可以實現(xiàn)香豆素的快速檢測。Pan等[29]將聚苯乙烯/銀(PS/銀)納米顆粒作為SERS增強基底檢測有機磷殺蟲劑,其中有機磷氧磷的檢測限是96 nmol/L,殺螟松的檢測限是34 nmol/L。Fateixa等[30]以基于銀納米粒子和明膠A的表面增強拉曼散射技術(shù)檢測二乙基二硫代氨基甲酸鈉,檢測限可達(dá)10-5mol/L,該銀納米材料具有一定SERS活性,可用于定性檢測。

        本文采用SERS光譜技術(shù),銀納米線作為SERS基底,以混合農(nóng)藥(亞胺硫磷和樂果混合)為研究對象,萃取出臍橙表皮的農(nóng)藥殘留溶液,采集農(nóng)藥殘留溶液的拉曼光譜,結(jié)合化學(xué)計量學(xué)方法對采集的拉曼光譜經(jīng)預(yù)處理后,建立模型,從而實現(xiàn)混合農(nóng)藥的定性和定量分析,以期為混合農(nóng)藥殘留檢測提供參考。

        1 材料與方法

        1.1 儀器與材料

        采用德國布魯克公司的SENTERRA型共聚焦顯微拉曼光譜儀,激光波長為785 nm,積分時間為10 s,激光功率選擇10 mw。

        純度99.7%的亞胺硫磷(粉末)和純度99.5%的樂果(粉末)購于阿拉丁試劑(上海)有限公司;超純水作為試驗用水;贛南臍橙購于南昌農(nóng)貿(mào)市場。

        銀納米線的制備:稱取0.509 4 g AgNO3加入15 mL乙二醇中,混合均勻得到0.2 mol/L的AgNO3溶液;稱取0.499 5 g的聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)加入15 mL分析純乙二醇中,混合均勻得到0.3 mol/L的PVP溶液。將AgNO3溶液與PVP溶液均勻混合后,緩慢滴加到30 mL乙二醇中,保持溫度160 ℃,持續(xù)加熱至混合溶液顏色變?yōu)椴煌该鞯幕疑?。冷卻至20 ℃后,用乙醇和丙酮離心洗滌[31]。所制備的銀納米線紫外光譜圖如圖1a所示,銀納米線在300~400 nm間有2個吸收峰。銀納米線的掃描電鏡圖如圖1b所示,銀納米線的直徑約為70 nm。

        a. 銀納米線的紫外吸收光譜圖a. UV absorption spectra of Ag nanowiresb. 銀納米線的掃描電鏡圖b. SEM image of Ag nanowires

        1.2 樣品的制備

        以臍橙為試驗載體,分析亞胺硫磷和樂果混合農(nóng)藥在其表皮萃取后的溶液。首先,將臍橙表皮清洗干凈后擦干,切成若干面積(2 cm×2 cm)、質(zhì)量約為2 g的小塊。分別用移液槍移取0.5 mL亞胺硫磷和0.5 mL樂果的農(nóng)藥樣品標(biāo)準(zhǔn)溶液(5 000 mg/L)于臍橙表皮小塊上,風(fēng)干。將小塊臍橙表皮切碎放入燒杯中,加入乙腈10 mL,依次攪拌(20 min)、超聲(20 min)、震蕩、過濾,得到農(nóng)藥殘留溶液。以甲醇和超純水稀釋萃取液,得到亞胺硫磷和樂果質(zhì)量濃度均為10~60 mg/L的26個均勻濃度梯度的混合農(nóng)藥殘留萃取溶液。

        1.3 拉曼光譜采集

        以銀納米線為增強基底,用移液槍取5L銀納米線溶液滴到預(yù)先洗凈的石英片上,晾干后做基底。取5L待測樣品溶液,滴在已晾干的基底上,晾干后采集其SERS光譜,每個樣品均采集5條有效SERS光譜。

        2 結(jié)果與分析

        2.1 基于銀納米線的混合農(nóng)藥殘留定性分析

        以銀納米線為增強基底,采集臍橙表皮亞胺硫磷和樂果混合農(nóng)藥殘留的表面增強拉曼光譜,并與亞胺硫磷和樂果粉末的拉曼光譜對比,如圖2所示。

        由圖2可以看出,雖然兩種農(nóng)藥互相會產(chǎn)生一定干擾,但銀納米線對兩種農(nóng)藥均有增強作用,混合農(nóng)藥的譜峰峰位歸屬分別參照兩種農(nóng)藥的譜峰歸屬。在圖2中,排除銀納米線基底的影響,混合農(nóng)藥增強的峰位有352、406、510、607、712、772、978、1 015、1 189、1 330、1 602 cm-1。501 cm-1處的振動峰同時是亞胺硫磷和樂果的特征峰,501 cm-1附近的CH3扭轉(zhuǎn)振動峰紅移至510 cm-1。其中359、605、712、977、1 016、1 188、1 611 cm-1處為亞胺硫磷的特征峰,359 cm-1附近的骨架變形振動峰藍(lán)移至352 cm-1,605 cm-1附近的環(huán)變形振動峰紅移至607 cm-1,712 cm-1附近的CH面外變形振動峰不變,977 cm-1附近的C-C-O伸縮振動峰紅移至978 cm-1,1 016 cm-1附近的骨架伸縮振動峰藍(lán)移至1015 cm-1,1 611 m-1附近的C=N伸縮振動峰藍(lán)移至1 602 cm-1。407、766、1 328 cm-1處為樂果的特征峰,407 cm-1附近的P-O-C形變振動峰藍(lán)移至406 cm-1,766 cm-1附近的P-O-C伸縮振動峰紅移至772 cm-1,1 328 cm-1附近的CH變形振動峰紅移至1 330 cm-1。

        2.2 基于銀納米線的混合農(nóng)藥殘留的定量分析

        將配置好的26個不同濃度臍橙表皮混合農(nóng)藥殘留樣品,濃度范圍為10~60 mg/L,每個樣品采集5條SERS光譜,光譜范圍選擇300~2 000 cm-1,取其平均光譜,根據(jù)平均光譜建立數(shù)學(xué)模型。圖3中分別為60、40、20 mg/L混合農(nóng)藥SERS光譜,從圖中可以看出銀納米線對混合農(nóng)藥有一定增強,且隨著農(nóng)藥濃度的逐漸增加,峰強逐漸增強。采用平滑處理(smoothing),基線校正(baseline),一階微分(1stderivatives),二階微分(2ndderivatives)4種方法對光譜數(shù)據(jù)進(jìn)行預(yù)處理。基于(partial least squares,PLS)建立混合農(nóng)藥的定量模型,校正集選擇19個樣品,預(yù)測集選擇7個樣品,校正集和預(yù)測集樣品的質(zhì)量濃度列表如表1所示。為盡可能減弱或消除各種因素對光譜的影響,比較不同的預(yù)處理方法建模結(jié)果以優(yōu)化模型,如表2所示。

        表1 校正集和預(yù)測集樣品的濃度

        表2 不同預(yù)處理后混合農(nóng)藥殘留SERS光譜的PLS建模結(jié)果

        結(jié)果表明,混合農(nóng)藥原始光譜經(jīng)過二階微分預(yù)處理之后,建模效果較好,其中R為0.954,RMSEP為4.822 mg/L。

        結(jié)合上述預(yù)處理方法的建模結(jié)果,利用二階微分預(yù)處理方法,分別采用PLS、PCR算法對混合物農(nóng)藥建立定量分析模型,并比較所建立模型的預(yù)測效果。校正集選擇19個樣品,預(yù)測集選擇7個樣品,建模結(jié)果如表3所示。

        表3 不同算法混合農(nóng)藥殘留的建模結(jié)果

        由表3知,依據(jù)PLS算法建立的模型效果較好?;旌限r(nóng)藥殘留中亞胺硫磷和樂果的驗證結(jié)果如圖4所示。

        為了保證農(nóng)藥樣品的每個特征峰均被分析,根據(jù)特征峰出現(xiàn)的位置對其進(jìn)行人工的篩選。由于混合農(nóng)藥增強的峰位有352、406、510、607、712、772、978、1 015、1 189、1 330、1 602 cm-1,為了保證所有不同濃度的農(nóng)藥樣品的特征峰均被分析,結(jié)合各濃度的混合農(nóng)藥SERS光譜,根據(jù)這11個特征峰分別選擇7個波段作為特征波段,其中亞胺硫磷對應(yīng)的波段為:347~357,602~612,973~983,1 010~1 020,1 184~1 194 cm-1;樂果對應(yīng)的波段為:401~411,767~777 cm-1。分別對應(yīng)兩種農(nóng)藥的特征波段,基于PLS算法建立定量模型,其中19個樣品為校正集,7個樣品為預(yù)測集。由表4可以看出,混合農(nóng)藥中亞胺硫磷的特征波段經(jīng)基線校正處理后,建模效果較好,其中R為0.898,RMSEP為6.621 mg/L,混合農(nóng)藥中亞胺硫磷的預(yù)測結(jié)果如圖4a所示;由表5可以看出,混合農(nóng)藥中樂果的特征波段經(jīng)多元散射校正處理后,建模效果較好,其中R為0.911,RMSEP為7.369 mg/L,混合農(nóng)藥中樂果的預(yù)測結(jié)果如圖4b所示。

        表4 PLS算法用于混合農(nóng)藥殘留SERS光譜中亞胺硫磷特征波段的建模結(jié)果

        表5 PLS算法用于混合農(nóng)藥殘留SERS光譜中樂果特征波段的建模結(jié)果

        3 結(jié) 論

        本文通過運用共焦顯微拉曼光譜儀對臍橙表皮混合農(nóng)藥萃取液進(jìn)行光譜采集。對原始光譜數(shù)據(jù)運用不同預(yù)處理方法進(jìn)行處理,并通過偏最小二乘法(partial least squares,PLS)建立模型,結(jié)果表明,經(jīng)過二階微分預(yù)處理后的光譜數(shù)據(jù)結(jié)合PLS算法得到的模型預(yù)測效果最好,預(yù)測相關(guān)系數(shù)(R)為0.954,其預(yù)測均方根誤差(Root mean square error of prediction, RMSEP)為4.822 mg/L。挑選兩種農(nóng)藥特征峰的特征波段,其中亞胺硫磷對應(yīng)的波段為:602~612,707~717,1 009 ~1 019,1 262~1 272 cm-1;樂果對應(yīng)的波段為:400~410,765~775,1 151~1 161 cm-1?;旌限r(nóng)藥中亞胺硫磷的特征波段經(jīng)基線校正處理后,建模效果較好,其中R為0.898,RMSEP為6.621 mg/L;混合農(nóng)藥中樂果的特征波段經(jīng)多元散射校正處理后,建模效果較好,其中R為0.911,RMSEP為7.369 mg/L。通過對臍橙表皮農(nóng)藥殘留的SERS檢測,結(jié)合化學(xué)計量學(xué)方法對采集的拉曼光譜經(jīng)預(yù)處理后,建立模型,從而實現(xiàn)混合農(nóng)藥進(jìn)行定性和定量分析。

        [1] 孫沫. 加強農(nóng)藥殘留監(jiān)測確保食品質(zhì)量安全[J]. 吉林農(nóng)業(yè),2016(3):70.

        Sun Mo. Strengthen the detection of pesticide residues to ensure the quality and safety of food[J]. Jilin Agriculture, 2016(3): 70. (in Chinese with English abstract)

        [2] Lisec J, Schauer N, Kopka J, et al. Gas chromatography mass spectrometry-based metabolite profiling in plants[J]. Nature Protocol, 2006, 1(1): 387-396.

        [3] Tan G, Yang T, Miao H, et al. Characterization of compounds in psoralea corylifolia using high-performance liquid chromatography diode array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry[J]. Journal of Chromatographic Science, 2015, 53(9): 1455-1462.

        [4] 羅彥波,鄭浩博,姜興益,等. 在線凝膠滲透色譜-氣相色譜-串聯(lián)質(zhì)譜聯(lián)用檢測煙葉中的農(nóng)藥殘留[J]. 分析化學(xué),2015,43(10):1538-1544.

        Luo Yanbo, Zheng Haobo, Jiang Xingyi, et al. Determination of pesticide residues in tobacco using modified QuEChERS procedure coupled to on-line gel permeation chromatography-gas chromatography/tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(10): 1538-1544. (in Chinese with English abstract)

        [5] 李穎暢,李作偉,呂艷芳,等. 驢血清膽堿酯酶抑制法快速檢測蔬菜中農(nóng)藥殘留[J]. 食品工業(yè)科技,2013,34(3):293-295.

        Li Yingchang, Li Zuowei, Lv Yanfang, et al. Rapid determination of pesticide residues in vegetables by enzyme inhibition method with cholinesterase from donkey serum[J]. Science and Technology of Food Industry, 2013, 34(3): 293-295. (in Chinese with English abstract)

        [6] 季錦美. 氣相色譜法測定蔬菜中幾種農(nóng)藥殘留[J]. 現(xiàn)代農(nóng)業(yè)科技,2016(21):90-98.

        Ji Jinmei, Determation of several pesticide residue in vegetables by gas chromatography[J]. Modern Agricultural Science and Technology, 2016(21): 90-98. (in Chinese with English abstract)

        [7] 王麗娜,馮敏鈴,李盛安,等. 固相萃取—氣相色譜法測定農(nóng)田溝渠水中6種有機磷農(nóng)藥[J]. 現(xiàn)代農(nóng)業(yè)科技,2016,20:96-97.

        Wang Lina, Feng Minling, Li Shengan, et al. Determination of 6 organophosphorous pesticides in farmland ditch water by solid phase extraction-gas chromatography[J]. Modern Agricultural Science and Technology, 2016, 20: 96-97. (in Chinese with English abstract)

        [8] 彭曉俊,梁偉華,彭梅,等. 固相萃取/氣相色譜法測定新會陳皮及其制品中8種有機磷農(nóng)藥[J]. 分析測試學(xué)報,2016,35(10):1267-1272.

        Peng Xiaojun, Liang Weihua, Pengmei, et al. Determination of 8 organophosphorous pesticides in Xinhui dried orange peel and its products by gas chromatography with solid phase extraction[J]. Journal of Instrumental Analysis, 2016, 35(10): 1267-1272. (in Chinese with English abstract)

        [9] Ye Jianzhi, Lin Ling, Zha Yubing, et al. Simultaneous determination of four pesticide residues in fruit juice by HPLC[J]. Agricultural Science & Technology, 2016, 17(10): 2399-2402.

        [10] 王利強,葛含光,王永芳,等. QuEChERS-高效液相色譜-串聯(lián)質(zhì)譜法測定蘋果中丁醚脲及其代謝物殘留量[J]. 食品安全質(zhì)量檢測學(xué)報,2015(2):436-441.

        Wang Liqiang, Ge Hanguang, Wang Yongfang, et al. Determination of diafenthiuron and its metabolites residue in apple by QuEChERS-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety & Quality, 2015(2): 436-441. (in Chinese with English abstract)

        [11] Hildmann Fanny, Gottert Christina, Frenzel Thomas, et al. Pesticide residues in chicken eggs-A sample preparation methodology for analysis by gas and liquid?chromatography/tandem mass spectrometry[J]. Journal of Chromatography A, 2015, 14(3): 1-20.

        [12] 馮敏,李亞楠,高麗霞,等. 酶聯(lián)免疫吸附法在食品安全性指標(biāo)檢測中的研究進(jìn)展[J].食品安全質(zhì)量檢測學(xué)報,2016(10):3973-3979.

        Feng Min, Li Yanan, Gao Lixia,et al.Advances in food safety indicators determination of enzyme-linked immunosorbent assay[J]. Journal of Food Safety & Quality, 2016(10): 3973-3979. (in Chinese with English abstract)

        [13] 黎靜,薛龍,劉木華,等. 基于可見-近紅外光譜識別氧樂果污染的臍橙[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(2):366-369.

        Li Jing, Xue Long, Liu Muhua, et al. Recognition of navel orange contaminated by omethoate based on Vis-NIR spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 366-369. (in Chinese with English abstract)

        [14] 薛龍,黎靜,劉木華,等. 熒光光譜檢測臍橙表面敵敵畏殘留試驗研究[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報,2011,33(2):394-398.

        Xue Long, Li Jing, Liu Muhua, et al. A study on detection of dichlorvos residue on navel orange surface by means of fluorescence spectrum[J]. Journal of Jiangxi Agricultural University, 2011, 33(2): 394-398. (in Chinese with English abstract)

        [15] 李瓊. 微型拉曼光譜儀的拉曼光譜數(shù)據(jù)處理方法研究[D]. 重慶:重慶大學(xué),2008.

        Li Qiong. Study on Data Processing of Raman Spectrum Based on Mini-Spectroscopy[D]. Chongqing: Chongqing University, 2008. (in Chinese with English abstract)

        [16] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275(5303): 1102-1106.

        [17] Li J F, Huang Y F, Ding Y, et al.Shell-isolated nanoparticle- enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.

        [18] Liu Yande ,He Bingbing, Zhang Yuxiang, et al. Detection of phosmet residues on navel orange skin by surface-enhanced Raman spectroscopy[J] Intelligent Automation and Soft Computing. 2015, 21(3): 423-432.

        [19] Liu Yande, Ye Bing, Wan Changlan, et al. Quantitative detection of pesticides by confocal microscopy Raman spectroscopy[J]. Sensor Letters, 2013, 11(6/7): 1383-1388.

        [20] Liu Yande, Ye Bing, Wan Changlan, et al. Rapid quantitative analysis of dimethoate pesticide using surface-enhanced Raman spectroscopy[J]. Transactions of the ASABE, 2013, 56(3): 1043-1049.

        [21] Liu Yande, He Bingbing. Quantitative of pesticide residue on the surface of navel orange by confocal microscopy Raman spectrometer[J] Journal of Innovative Optical Health Sciences, 2015, 8(2): 1550001.

        [22] 劉燕德,何冰冰. 基于便攜式拉曼光譜儀的氧樂果含量定量分析[J]. 西北農(nóng)林科技大學(xué)學(xué)報:自然科學(xué)版,2014,42(2):136-141.

        Liu Yande, He Bingbing. Quantitative analysis of omethoate content based on portable Raman spectrometer[J]. Journal of Northwest A&F University: Natural Science Edition, 2014, 42(2): 136-141. (in Chinese with English abstract)

        [23] 劉燕德,葉冰. 基于拉曼光譜技術(shù)的氧樂果含量定量分析[J]. 中國農(nóng)機化學(xué)報,2014,35(1):88-92.

        Liu Yande, Ye Bing. Quantitative analysis of omethoate solution content based on raman spectrometer[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(1): 88-92. (in Chinese with English abstract)

        [24] 李俊杰,曾海龍,劉木華,等. 臍橙果皮中三唑磷農(nóng)藥殘留的表面增強拉曼光譜快速檢測研究[J]. 現(xiàn)代食品科技,2015,31(8):334-339.

        Li Junjie, Zeng Hailong, Liu Muhua1,et al. Rapid detection of triazophos residues in navel orange peel based on surface-enhanced Raman spectroscopy[J]. Modern Food Science and Technology, 2015, 31(8): 334-339. (in Chinese with English abstract)

        [25] 王曉彬,曾海龍,吳瑞梅,等. 基于SERS技術(shù)的臍橙果肉中三唑磷農(nóng)藥殘留快速檢測研究[J]. 食品工業(yè)科技,2015,36(10):83-85.

        Wang Xiaobin, Zeng Hailong, Wu Ruimei, et al.Study on rapid detection of triazophos residues in flesh of navel orange by SERS[J]. Science and Technology of Food Industry, 2015, 36(10): 83-85. (in Chinese with English abstract)

        [26] 李俊杰,嚴(yán)霖元,劉木華,等. 臍橙果肉中噻菌靈農(nóng)藥的SERS快速檢測研究[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報,2014(6):1229-1233.

        Li Junjie, Yan Linyuan, Liu Muhua, et al. Rapid detection of thiabendazole residues in navel orange flesh by SERS[J]. Journal of Jiangxi Agricultural University, 2014(6): 1229-1233. (in Chinese with English abstract)

        [27] 劉培培,韓曉霞,趙冰,等. 基于表面增強拉曼散射的敵草快檢測方法[J]. 高等學(xué)校化學(xué)學(xué)報,2015,36(8):1517-1520.

        Liu Peipei, Han Xiaoxia, Zhao Bing, et al. Surface- enhanced Raman scattering- based diquat detection[J]. Chemical Journal of Chinese Universities, 2015, 36(8): 1517-1520. (in Chinese with English abstract)

        [28] 黃梅英,李攻科,胡玉玲. 表面增強拉曼光譜法定量檢測食品中香豆素[J]. 分析化學(xué),2015,43(8):1218-1223.

        Huang Meiying, Li Gongke, Hu Yuling, Quantitative determination of coumarin in food by surface-enhanced Raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2015, 43(8): 1218-1223. (in Chinese with English abstract)

        [29] Pan L, Dong R, Wu Y, et al. Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides[J]. Talanta, 2014, 12(7): 269-275.

        [30] Fateixa S, Soares S F, Daniel-Da-Silva A L, et al. Silver-Gelatine bionanocomposites for qualitative detection of a pesticide by SERS[J]. Analyst, 2015, 140(5): 1693-1701.

        [31] Shi H Y, Hu B, Yu X C, et al. Ordering of disordered nanowires: Spontaneous formation of highly aligned, ultralong Ag nanowire films at oil-water-air interface[J]. Advanced Functional Materials, 2010, 20(6): 958-964.

        Surface enhanced Raman scattering detection of mixing pesticide residual on orange peel

        Wang Haiyang, Liu Yande※, Zhang Yuxiang

        (,330013)

        In recent years, pesticide has been mass-producing and widely used. The problem of pesticide residues has attracted more and more attention. As the problem of food safety is becoming the focus of society, the pesticide residue detection has become a research hotspot. Among numerous methods of pesticide detection,surface-enhanced Raman spectroscopy (SERS) has become an area of intense research owing to a highly sensitive probe for the trace level detection of pesticide. The spectroscopic merits of SERS are the representation in the aspects of super sensitivity, high selection and water resistance, which make it one of the most popular detection techniques currently. In this paper, the organophosphorus pesticide phosmet and dimethoate were selected as the research objects. The blended pesticide residues of phosmet and dimethoate on navel orange were detected by the SERS combined with chemometrics algorithm. The silver nanowires were used as SERS substrate to detecte pesticide residue on navel orange. Firstly, the navel orange samples were fabricated with pesticide residues. Secondly, the silver nanowires SERS substrate was fabricated. Then the sample solution to be measured was dripped onto the dried SERS substrate. When the sample was dried, spectral data were collected. The spectral data were used to analyze pesticide residue qualitatively and quantitatively. It had a better enhancement effect on the qualitative analysis of mixing pesticides for silver nanowires substrate. Pesticide original spectral data were processed by the partial least square (PLS) modeling algorithm and the different pretreatment methods. The PLS regression combined with different data preprocessing methods was used to develop quantitative models of mixing pesticide residue. And the advantages and disadvantages of the models were compared. The results showed that the model built by the PLS combined with the second derivatives data preprocessing was ideal for mixing pesticides, whose correlation coefficient (R) for the prediction was 0.954, and root mean square error of prediction (RMSEP) was 4.822 mg/L. The model combined with the baseline was ideal for phosmet, whoseRwas 0.898 and RMSEP was 6.621 mg/L. The model combined with the multiplicative scattering correction (MSC) was ideal for dimethoate, whoseRwas 0.911 and RMSEP was 7.369 mg/L. Therefore, the study combines the SERS and chemometrics algorithm to detect pesticide residues qualitatively and quantitatively, which is feasible. Raman spectroscopy can be used as a fast and simple tool to detecte mixing pesticide residues. It provides a basis for the more insightful study on pesticide residues detection.

        pesticides;spectrum analysis; models; surface enhanced Raman spectroscopy (SERS); partial least squares

        10.11975/j.issn.1002-6819.2017.02.040

        O433.4

        A

        1002-6819(2017)-02-0291-06

        2016-07-29

        2016-11-23

        南方山地果園智能化管理技術(shù)與裝備協(xié)同創(chuàng)新中心(贛教高字[2014]60號),華東交通大學(xué)校立科研基金項目(14JD01)資助,江西省載運工具與裝備重點實驗室資助

        王海陽,女,助理實驗師,主要從事光譜檢測技術(shù)。南昌 華東交通大學(xué)機電與車輛工程學(xué)院,光機電技術(shù)及應(yīng)用研究所,330013。Email:wanghaiyangjl1988@163.com .

        劉燕德,女,博士,教授,主要從事光機檢測技術(shù)及應(yīng)用。南昌 華東交通大學(xué)機電與車輛工程學(xué)院,光機電技術(shù)及應(yīng)用研究所,330013。Email:jxliuyd@163.com.

        王海陽,劉燕德,張宇翔. 表面增強拉曼光譜檢測臍橙果皮混合農(nóng)藥殘留[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(2):291-296. doi:10.11975/j.issn.1002-6819.2017.02.040 http://www.tcsae.org

        Wang Haiyang, Liu Yande, Zhang Yuxiang. Surface enhanced Raman scattering detection of mixing pesticide residual on orange peel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 291-296. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.040 http://www.tcsae.org

        猜你喜歡
        樂果納米線亞胺
        3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
        可樂果,尼日爾的快樂果
        神奇美味可樂果
        溫度對NiAl合金納米線應(yīng)力誘發(fā)相變的影響
        磁性金屬Fe納米線的制備及其性能
        秘密
        清明(2016年6期)2016-12-17 15:35:25
        環(huán)氧樹脂/有機硅改性雙馬來酞亞胺的性能研究
        中國塑料(2015年6期)2015-11-13 03:02:55
        亞胺培南西司他丁鈉在危重癥感染降階梯治療中的效果觀察
        基于β-二亞胺配體的鋁氧硼六元環(huán)化合物和其中間體的合成、表征及其反應(yīng)性研究
        不對稱二亞胺席夫堿的合成、表征和抗菌活性
        国产亚洲精品日韩香蕉网| 久久久国产精品免费a片3d| 国产成人久久777777| 精品无吗国产一区二区三区av| 国产三级c片在线观看| 欧美最猛性xxxx| 成av免费大片黄在线观看| 无码av免费永久免费永久专区| 成年女人午夜特黄特色毛片免| 人妻精品在线手机观看| 久久精品国产精品国产精品污| 亚洲毛片网| 久久网站在线免费观看| 7194中文乱码一二三四芒果| 无码成人aaaaa毛片| 亚洲欧美日韩一区二区在线观看| 极品精品视频在线观看| 国产aⅴ无码专区亚洲av| 老湿机香蕉久久久久久| 日韩人妻无码中文字幕一区| 女人18毛片aa毛片免费| 人人人妻人人澡人人爽欧美一区| 天美麻花果冻视频大全英文版| 亚洲女同同性少妇熟女| 久久av不卡人妻出轨一区二区| 中文无码一区二区不卡av| 亚洲成在人线久久综合| 日本视频一区二区二区| 情爱偷拍视频一区二区| 亚洲18色成人网站www| 最新在线观看精品国产福利片| 美女免费观看一区二区三区| 国产综合在线观看| 久热这里只有精品99国产| 日日噜噜夜夜久久密挑| 久久久久亚洲精品男人的天堂| 亚洲日韩精品欧美一区二区一 | 亚洲精品无码久久久久| 国产精品久久这里只有精品| 精品一区二区三区人妻久久福利 | 亚洲最新国产av网站|