亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于低頻信號注入法的無軸承異步電機轉(zhuǎn)速自檢測控制

        2017-02-17 02:55:35楊澤斌李方利孫曉東
        農(nóng)業(yè)工程學(xué)報 2017年2期
        關(guān)鍵詞:異步電機氣隙繞組

        楊澤斌,李方利,陳 正,孫曉東

        ?

        基于低頻信號注入法的無軸承異步電機轉(zhuǎn)速自檢測控制

        楊澤斌1,李方利1,陳 正1,孫曉東2

        (1. 江蘇大學(xué)電氣信息工程學(xué)院,鎮(zhèn)江 212013; 2. 江蘇大學(xué)汽車工程研究院,鎮(zhèn)江 212013)

        針對無軸承異步電機運行中懸浮轉(zhuǎn)子轉(zhuǎn)速檢測問題,提出了一種基于低頻信號注入法的無速度傳感器控制新策略。該策略在無軸承異步電機基波模型基礎(chǔ)上,通過注入低頻信號引起的響應(yīng)來構(gòu)造轉(zhuǎn)子位置偏差角,進一步通過PI控制器對偏差角進行調(diào)節(jié),得到電機氣隙磁場旋轉(zhuǎn)速度,進而估計電機轉(zhuǎn)速。運用該轉(zhuǎn)速自檢測方法,在Matlab/Simulink平臺中搭建了無軸承異步電機無速度傳感器矢量控制系統(tǒng)仿真模型,并進行了仿真研究。仿真結(jié)果表明,該方法能夠在0.15 s內(nèi)快速跟蹤轉(zhuǎn)子轉(zhuǎn)速,并且具有優(yōu)良的懸浮和轉(zhuǎn)矩特性。試驗結(jié)果同樣表明,該方法不僅具有良好的轉(zhuǎn)速在線自檢測能力,而且能在無速度傳感器方式下實現(xiàn)轉(zhuǎn)子穩(wěn)定懸浮運行,驗證了所提方法的有效性和實用性。

        控制;模型;計算機仿真;無軸承異步電機;低頻信號;傳感器;矢量控制

        0 引 言

        近年來,隨著工業(yè)的快速發(fā)展,人們對電機的需求越來越大,要求也越來越高[1-3]。和其他傳統(tǒng)電機相比,無軸承異步電機(bearingless induction motor,BIM)具有無摩擦、無磨損、無需潤滑、耐腐蝕、壽命長、能實現(xiàn)高速運行等特點,被廣泛應(yīng)用在定期維修困難的生命科學(xué)領(lǐng)域,易受酸、堿腐蝕的化工領(lǐng)域,以及半導(dǎo)體工業(yè)等領(lǐng)域。又因其結(jié)構(gòu)簡單、氣隙均勻、成本低等優(yōu)點,使其在機械加工、中小型發(fā)電設(shè)備、人工心臟泵以及對精度要求較高的數(shù)控機床等特種電氣驅(qū)動/傳動領(lǐng)域具有潛在的應(yīng)用市場[4-5]。然而,BIM速度傳感器的安裝,阻礙了其高速運行,除此之外,還增大了BIM的軸向尺寸。因此開展對BIM的無傳感器研究,對其低成本實用化運行具有重要的理論價值和現(xiàn)實意義[6-9]。

        為了解決機械式速度傳感器帶來的弊端,經(jīng)過多年研究,BIM無速度傳感器矢量控制取得了一定的成就[10-12]。研究人員提出了模型參考自適應(yīng)法[13-16]、磁鏈觀測法[17-18]、滑模觀測器法[19]、定轉(zhuǎn)子電阻在線辨識等[20-24],但這些方法都利用了BIM的非理想特性,易受電機結(jié)構(gòu)及參數(shù)的影響,因此在實際控制系統(tǒng)中很難得到真正應(yīng)用[25-26]。為了彌補以上方法的不足,又有學(xué)者提出了高頻信號注入法[27-28],其基本原理是利用注入的高頻電壓信號估計轉(zhuǎn)子位置偏差角。但是,注入的高頻信號極易和其他高頻諧波信號摻雜在一起,不容易分離,需要另外安裝信號處理裝置,使控制系統(tǒng)變得更加復(fù)雜,同時也增加了成本投入,故限制了BIM向?qū)嵱没较虬l(fā)展。

        本文以BIM為研究對象,提出了一種基于BIM基波模型的低頻電流信號注入法,該方法通過構(gòu)造轉(zhuǎn)子位置角度偏差,來實現(xiàn)對轉(zhuǎn)速的估計。由于該方法具有不依賴電機的各種非理想特性、不易引入其他諧波信號、構(gòu)造簡單等優(yōu)點,使其具有較強的適用性。本文在Matlab/Simulink工具箱中對其搭建了仿真模型,并在BIM數(shù)字控制系統(tǒng)平臺上進行了試驗研究。

        1 BIM電機工作原理及數(shù)學(xué)模型

        1.1 BIM工作原理

        圖1給出了BIM懸浮力產(chǎn)生原理。和傳統(tǒng)異步電機相比,如果在定子槽中再加入一套懸浮力繞組,就構(gòu)成了懸浮力可控的新型BIM。此時,定子槽中包含了兩套繞組:轉(zhuǎn)矩繞組和懸浮力繞組,兩套繞組極對數(shù)分別為12,電角頻率分別為12,若滿足121,12,則能夠生成徑向可控的懸浮力[29-30]。如果單獨給轉(zhuǎn)矩繞組加上電流1,則會產(chǎn)生對稱分布的兩極磁鏈2,若單獨給懸浮力繞組加上電流2,則產(chǎn)生對稱分布的四極磁鏈4。若同時給兩套繞組加上如圖中所示方向的電流,則產(chǎn)生的磁場將會疊加。此時,由于2和4磁場的方向在軸正方向相同,則會使氣隙上側(cè)的磁密增加,軸負(fù)方向的磁場方向相反,使得此處的磁密減少。不對稱的氣隙磁密分布導(dǎo)致了軸正方向上懸浮力F的產(chǎn)生,徑向懸浮力屬于麥克斯韋力。同理,如果想得到沿方向的力,只需在懸浮力繞組中加上與2方向垂直的電流即可。由以上分析可知,通過改變1、2的大小和方向,可以產(chǎn)生任意方向的徑向懸浮力。BIM電磁轉(zhuǎn)矩的產(chǎn)生原理和普通異步電機電磁轉(zhuǎn)矩產(chǎn)生的原理相同,都是來源于洛倫茲力,在此不再贅述。

        1.2 BIM數(shù)學(xué)模型

        以BIM為研究對象,本文選取轉(zhuǎn)矩繞組的極對數(shù)1=1、懸浮力繞組2=2。當(dāng)滿足1=2±1、1=2時,由力磁關(guān)系可知,徑向懸浮力在、軸上的分量F、F表示為

        式中為常數(shù),K=K+K,K為麥克斯韋力常數(shù),K為洛倫茲力常數(shù),且,,其中,L2為徑向懸浮力繞組互感,H;為鐵芯有效長度,mm;為轉(zhuǎn)子外徑,mm;0為空氣磁導(dǎo)率,H/m;1、2分別為轉(zhuǎn)矩繞組和徑向懸浮力繞組每相串聯(lián)的有效匝數(shù)。文中指定下標(biāo)表示定子;1表示轉(zhuǎn)矩繞組參數(shù);2表示徑向懸浮力繞組參數(shù);為磁鏈;為繞組電流;為在軸上的分量;為在軸上的分量。

        由于BIM定子槽中又嵌入一套懸浮力繞組,使得電機的原磁場分布被迫改變。兩套繞組的嵌入,也使得BIM成為了高階非線性系統(tǒng)。由于懸浮力繞組對轉(zhuǎn)子的轉(zhuǎn)矩影響很小,為簡化起見,忽略其影響?;诖思僭O(shè),可得到以下BIM的基本方程:

        磁鏈方程

        轉(zhuǎn)子電壓方程

        電磁轉(zhuǎn)矩方程

        式中L1,L1分別為轉(zhuǎn)矩繞組的轉(zhuǎn)子自感和定子自感,H;L1為轉(zhuǎn)矩繞組互感,H;R1為轉(zhuǎn)矩繞組轉(zhuǎn)子電阻,Ω;L1l為轉(zhuǎn)矩繞組轉(zhuǎn)子漏感,H;為氣隙磁場轉(zhuǎn)速,r/min;為轉(zhuǎn)子轉(zhuǎn)速,r/min;是微分算子。

        基于3/2變換,可得到轉(zhuǎn)矩繞組氣隙磁鏈的另一表達方式

        當(dāng)旋轉(zhuǎn)部分選用氣隙磁場定向控制時,得到

        1d=1,1q=0

        因此可將式(4)電磁轉(zhuǎn)矩方程簡化為

        式中T為電磁轉(zhuǎn)矩。由于洛侖茲里對轉(zhuǎn)子的徑向懸浮力影響很小,可以忽略不計。徑向懸浮力公式簡化為

        由式(6)、式(7)可知,可以通過改變轉(zhuǎn)矩繞組和懸浮力繞組電流的大小,分別對電磁轉(zhuǎn)矩和徑向懸浮力進行控制。

        2 低頻信號注入的BIM轉(zhuǎn)速自檢測

        在實際運行過程中,轉(zhuǎn)子的實際位置和估計位置之間會產(chǎn)生一個偏差角,如圖2所示。若能使偏差角為0,可求得轉(zhuǎn)子準(zhǔn)確的位置,進而可估計出轉(zhuǎn)子轉(zhuǎn)速。

        為了構(gòu)造轉(zhuǎn)子位置偏差角,在d軸方向施加一個低頻電流i=csin(c),此電流將在軸和軸上分別產(chǎn)生分量ii。由式(6)可知由i引起的電磁轉(zhuǎn)矩響應(yīng)T

        為得到,將式(8)兩邊都乘以電流i,可得

        對式(9)進行低通濾波處理,將其中的高頻項cos(2t)濾除。則有

        式中l(Ti)為Ti經(jīng)低通濾波器LPF處理后的值。由式(10)可得

        當(dāng)足夠小時,可得

        因為式(12)求得的偏差角依然有較大誤差,本文利用PI控制器對偏差角實行進一步調(diào)節(jié)。如圖3所示。

        注:1為給定氣隙磁鏈,Wb;T為電流i產(chǎn)生的電磁轉(zhuǎn)矩,N·m;ε為給定位置偏差角,(°);LPF為低通濾波器;PI為PI控制器;為氣隙磁場轉(zhuǎn)速,rad·s-1。

        Note:1is given air-gap flux, Wb; Tis the electromagnetic torque generated by currenti, N·m; εis given position deviation angle, (°); LPF is low pass filter; PI is PI controller;is the air gap magnetic field speed,rad·s-1.

        圖3 偏差角控制框圖

        Fig.3 Control frame of error angle

        電機轉(zhuǎn)速

        式中為氣隙磁場旋轉(zhuǎn)速度,為電機轉(zhuǎn)差,其中:

        式中T1=L1/R為轉(zhuǎn)子時間常數(shù);T1l=L1l/R。

        對氣隙磁場轉(zhuǎn)速進行積分,可得到轉(zhuǎn)子磁鏈角度θ,即

        3 控制系統(tǒng)仿真及試驗結(jié)果分析

        3.1 控制系統(tǒng)的組成及仿真參數(shù)

        為驗證該策略在BIM轉(zhuǎn)速自檢測矢量控制系統(tǒng)中的可行性,本文在Matlab/Simulink工具箱中搭建了仿真模型,并進行了仿真。給定轉(zhuǎn)速*=3 000 r/min,給定徑向位移x=0m、*=0m。電機參數(shù)如表1所示。注入軸的低頻電流信號幅值為0.286 A,頻率為10 Hz。

        圖4為無速度傳感器控制系統(tǒng)框圖。如圖4所示,整個控制系統(tǒng)由懸浮和旋轉(zhuǎn)兩部分組成。其中,旋轉(zhuǎn)部分輸入的電壓、電流經(jīng)過3/2變換得到1d、1q,將1d、1q和1代入式(6),可得電磁轉(zhuǎn)矩T。將變形處理后的電磁轉(zhuǎn)矩和1d經(jīng)低通濾波后代入式(12),可得到偏差角。將得到的偏差角經(jīng)PI控制器進一步調(diào)節(jié)后,可得到電機氣隙磁場轉(zhuǎn)速,然后經(jīng)式(13),可得到轉(zhuǎn)子角速度,對氣隙旋轉(zhuǎn)速度進行積分,可得到轉(zhuǎn)子磁鏈角度θ。懸浮部分:將徑向位移給定值*、*與電渦流傳感器實際測得的、作差,其差值經(jīng)過PID調(diào)節(jié)器調(diào)節(jié)后,可得F*、F*。然后將F*、F*經(jīng)過力電流轉(zhuǎn)換器、2/3變換、電流反饋型脈沖寬度調(diào)制后,最終得到懸浮繞組三相電流。

        表1 無軸承異步電機參數(shù)

        3.2 系統(tǒng)仿真結(jié)果及分析

        圖5a~圖5d是轉(zhuǎn)速、徑向位移及轉(zhuǎn)矩仿真結(jié)果。圖5a給出了在=0~0.35 s時間段內(nèi)電機轉(zhuǎn)子自檢測速度與給定轉(zhuǎn)子速度的對比波形圖,由圖5a可知,自檢測轉(zhuǎn)速能夠很好地跟蹤轉(zhuǎn)子給定轉(zhuǎn)速,誤差較小,0.11 s后自檢測轉(zhuǎn)速基本和給定轉(zhuǎn)速重合,轉(zhuǎn)速響應(yīng)在0.15 s內(nèi)達到穩(wěn)定轉(zhuǎn)速,控制精度高。圖5b、5c為采用本文方法與采用高頻電壓信號注入法時轉(zhuǎn)子徑向位移對比圖,從圖中知,本文所提方法不僅能使轉(zhuǎn)子最大徑向偏移距離縮小,且能夠使其在更短的時間內(nèi)穩(wěn)定懸浮在中心位置處。圖5d為轉(zhuǎn)矩響應(yīng),可以看出電機起動轉(zhuǎn)矩較大,響應(yīng)較快,穩(wěn)定誤差很小。仿真結(jié)果表明BIM不僅有效實現(xiàn)了轉(zhuǎn)速自檢測,且具有良好的懸浮性能和動態(tài)性能。

        a. 轉(zhuǎn)速響應(yīng)

        a. Speed response

        b.軸徑向位移

        b. Offset in-axis

        c.軸徑向位移

        c. Offset in-axis

        3.3 試驗及結(jié)果分析

        為進一步驗證基于低頻信號注入法的轉(zhuǎn)速自檢測控制策略的有效性,利用一臺改裝的鼠籠式無軸承異步電機作為試驗樣機。試驗中控制芯片選用美國TI公司生產(chǎn)的DSP TMS320F2812,樣機參數(shù)與仿真參數(shù)一致。為了能夠更準(zhǔn)確對比自檢測轉(zhuǎn)速與實際轉(zhuǎn)速的誤差,在樣機上安裝了光電編碼盤,將轉(zhuǎn)速設(shè)置為3 000 r/min。圖6是試驗樣機。圖7是采用本文所提基于低頻信號注入法的BIM轉(zhuǎn)速自檢測控制策略建立的控制系統(tǒng)試驗框圖。

        圖8a是光電編碼盤存在時,檢測到的電機轉(zhuǎn)子實際轉(zhuǎn)速波形圖,圖8b為去掉光電編碼盤時,分別采用低頻信號注入法與高頻信號注入法時的自檢測轉(zhuǎn)速對比圖。對比圖8b中的2條波形圖可以發(fā)現(xiàn),雖然2種方法都能跟蹤轉(zhuǎn)子的實際轉(zhuǎn)速,但采用低頻信號注入法檢測到的轉(zhuǎn)速的峰-峰值小于高頻信號注入法時的峰-峰值,表明本文所設(shè)計的轉(zhuǎn)速自檢測控制系統(tǒng)不僅能夠有效跟蹤轉(zhuǎn)子轉(zhuǎn)速,而且轉(zhuǎn)速自檢測精度比采用高頻信號注入法時更高。只是電機在無速度傳感器狀態(tài)運行時,轉(zhuǎn)子轉(zhuǎn)速的峰-峰值略大,但在誤差允許的范圍之內(nèi),同仿真結(jié)果一致,驗證了基于低頻信號注入法的BIM轉(zhuǎn)速自檢測控制策略的合理性與有效性。

        圖8c和8d為分別采用高頻信號注入法、低頻信號注入法,轉(zhuǎn)速為3 000 r/min時轉(zhuǎn)子的質(zhì)心運動軌跡圖,從圖中可以看出前者轉(zhuǎn)子質(zhì)心運動軌跡半徑明顯大于后者,表明本文所提控制策略下的轉(zhuǎn)子穩(wěn)定懸浮性能優(yōu)于采用高頻信號注入法時的懸浮性能。另外,從圖8d還可以看出,轉(zhuǎn)子質(zhì)心在、軸方向的最大偏移距離分別為30、35m,都遠(yuǎn)小于電機的氣隙值0.4 mm。該試驗結(jié)果驗證了本策略能夠快速跟蹤轉(zhuǎn)子實際轉(zhuǎn)速,且實現(xiàn)了BIM轉(zhuǎn)速自檢測方式下的穩(wěn)定懸浮運行。

        a. 光電編碼盤存在時實際轉(zhuǎn)速

        a. Actual speed with optical encoder

        b. 去掉光電編碼盤時自檢測轉(zhuǎn)速

        b. Self-detecting speedwithout optical encoder

        c. 轉(zhuǎn)速為3 000 r·min-1時轉(zhuǎn)子質(zhì)心運動軌跡(高頻信號注入法)

        c. Trajectory of rotor center of mass when the speed is 3 000 r·min-1(high-frequency signal injection)

        4 結(jié) 論

        為消除機械式速度傳感器對無軸承異步電機(bearingless induction motor,BIM)高速運行時的不利影響,減小BIM的軸向尺寸,促進BIM向小型化、實用化和低成本方向發(fā)展,本文設(shè)計了一種基于低頻信號注入法的BIM轉(zhuǎn)速自檢測矢量控制系統(tǒng)。通過仿真和試驗可得出以下結(jié)論:

        1)基于低頻信號注入法的轉(zhuǎn)速自檢測控制系統(tǒng)瞬態(tài)響應(yīng)好,不僅實現(xiàn)了BIM的穩(wěn)定懸浮運行,而且轉(zhuǎn)子質(zhì)心在、軸方向的最大偏移距離分別為30、35m,都遠(yuǎn)小于電機的氣隙值0.4 mm。除此之外,控制系統(tǒng)還具有很強的魯棒性,以及優(yōu)良的轉(zhuǎn)矩特性。

        2)通過與高頻信號注入法進行比較,基于低頻信號注入法的轉(zhuǎn)速自檢測控制系統(tǒng)能夠快速跟蹤轉(zhuǎn)子轉(zhuǎn)速,轉(zhuǎn)速響應(yīng)在0.15 s內(nèi)達到穩(wěn)定轉(zhuǎn)速,控制精度高。

        [1] Khoo W K S, Kalita K, Garvey S D. Practical implementation of the bridge configured winding for producing controllable transverse forces in electrical machines[J]. IEEE Transactions on Magnetics, 2011, 47(6):1712-1718.

        [2] Warberger B, Kaelin R, Nussbaumer T. 50 N·m/2 500 W bearingless motor for high-purity pharmaceutical mixing[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5):2236-2247.

        [3] De Almeida A T, Ferreira F J T E, Quintino D A. Technical and economical considerations on super high-efficiency three-phase motors[J].IEEE Transactions on Industry Applications, 2014, 50(2): 1274-1285.

        [4] 李輝,許艮,楊超,等. 天窗電機噪聲測試及特征頻率提取方法[J]. 中國電機工程學(xué)報,2011,18(29):87-92.

        Li Hui, Xu Gen, Yang Chao, et al. Noise testing and characteristic frequency extraction method of sunroof motor[J]. Proceedings of the CSEE, 2011, 18(29): 87-92.(in Chinese with English abstract)

        [5] 孫會來,金純,張文明,等. 考慮驅(qū)動電機激振的電動車油氣懸架系統(tǒng)振動分析[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(12):41-49.

        Sun Huilai, Jin Chun, Zhang Wenming, et al. Vibration analysis of hydro-pneumatic suspension system based on drive motor excitation force[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(12): 41-49. (in Chinese with English abstract)

        [6] 卜文紹,萬山明,黃聲華,等. 無軸承電機的通用可控磁懸浮力解析模型[J]. 中國電機工程學(xué)報,2009,29(30):84-89.

        Bu Wenshao, Wan Shanming, Huang Shenghua, et al. General analytical model about controllable magnetic suspension force of bearingless motor[J]. Proceedings of the CSEE, 2009, 29(30): 84-89. (in Chinese with English abstract)

        [7] 楊澤斌,汪明濤,孫曉東. 基于自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)的無軸承異步電機控制[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(2):78-86.

        Yang Zebin, Wang Mingtao, Sun Xiaodong.Control system of bearingless induction motoes based on adaptive neuro-fuzzy inference system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 78-86. (in Chinese with English abstract)

        [8] 戈素貞. 新型無軸承無刷直流電動機結(jié)構(gòu)與模型研究[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(2):131-135.

        Ge Suzhen. Configuration and model of innovative direct current motor without bearing and brush[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(2): 131-135. (in Chinese with English abstract)

        [9] 陳波,吳政球. 基于約束因子限幅控制的雙饋感應(yīng)發(fā)電機有功功率平滑控制[J]. 中國電機工程學(xué)報,2011,31(27):131-137.

        Chen Bo, Wu Zhengqiu. Power smoothing control strategy of doubly-fed induction generator based on constraint factor extent-limit control[J]. Proceedings of the CSEE, 2011, 31(27): 131-137. (in Chinese with English abstract)

        [10] 武俊峰,王世明. 一種基于模糊控制的兩步法預(yù)測控制方法[J]. 電機與控制學(xué)報,2010,14(7):75-80.

        Wu Junfeng, Wang Shiming. Research method on a two-step general predictive control based on fuzzy control[J]. Electric Machines and Control, 2010, 14(7): 75-80. (in Chinese with English abstract)

        [11] Hsu C F, Lee B K. FPGA-based adaptive PID control of a DC motor driver via sliding-mode approach[J]. Expert Systems with Applications, 2011, 38(9): 11866-11872.

        [12] Hou B J, Gao J S, Li X Q, et al. Study on repetitive PID control of linear motor in wafer stage of lithography[J]. Procedia Engineering, 2012, 29(1): 3863-3867.

        [13] 張勇軍,孫寅飛,王京. 基于單維離散滑模的模型參考自適應(yīng)轉(zhuǎn)速辨識方法[J]. 電工技術(shù)學(xué)報,2012,27(4):54-58.

        Zhang Yongjun, Sun Yinfei, Wang Jing. A speed estimation algorithm based on single-manifold discrete time sliding mode model reference adaptive system[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 54-58. (in Chinese with English abstract)

        [14] 尹忠剛,劉靜,鐘彥,等. 基于雙參數(shù)模型參考自適應(yīng)的感應(yīng)電機無速度傳感器矢量控制低速性能[J]. 電工技術(shù)學(xué)報,2012,27(7):124-130.

        Yin Zhonggang, Liu Jing, Zhong Yan, et al. Low-speed performance for induction motor sensorless vector control based on two-parameter model reference adaptation[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 124-130. (in Chinese with English abstract)

        [15] Gadoue S M, Giaouris D, Finch J W. MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy-logic adaptation mechanisms[J]. IEEE Transactions on Energy Conversion, 2010, 25(2):394-402.

        [16] 王高林,楊榮峰,張家皖,等. 一種感應(yīng)電機轉(zhuǎn)子時間常數(shù)MRAS的在線辨識方法[J]. 電工技術(shù)學(xué)報,2012,27(4):48-53.

        Wang Gaolin, Yang Rongfeng, Zhang Jiawan, et al. Rotor time constant on-line estimation of induction motors based on MRAS[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 48-53. (in Chinese with English abstract)

        [17] 陳振鋒,鐘彥儒,李潔,等. 基于改進磁鏈觀測器的感應(yīng)電機轉(zhuǎn)速辨識[J]. 電工技術(shù)學(xué)報,2012,27(4):42-47.

        Chen Zhenfeng,Zhong Yanru, Li Jie, et al. Speed identification for induction motor based on improved flux observer[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 42-47. (in Chinese with English abstract)

        [18] 韋文祥,劉國榮. 基于擴展?fàn)顟B(tài)觀測器模型與定子電阻自適應(yīng)的磁鏈觀測器及其無速度傳感器應(yīng)用[J]. 中國電機工程學(xué)報,2015,23(17):6194-6202.

        Wei Wenxiang, Liu Guorong. Sensorless control with flux observer based on parallel stator resistance adaptation and extended state observer model[J]. Proceedings of the CSEE 2015, 23(17): 6194-6202. (in Chinese with English abstract)

        [19] 程帥,姜海博,黃進,等. 基于滑模觀測器的單繞組多相無軸承電機無位置傳感器控制[J]. 電工技術(shù)學(xué)報,2012,27(7):71-77.

        Chen Shuai, Jiang Haibo, Huang Jin, et al.Position sensorless control based on sliding model observer for multiphase bearingless motor with singel set of windings[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 71-77. (in Chinese with English abstract)

        [20] 孔武斌,黃進,曲榮海,等. 帶轉(zhuǎn)子參數(shù)辯識的五相感應(yīng)電動機無速度傳感器控制策略研究[J]. 中國電機工程學(xué)報,2016,36(2):532-539.

        Kong Wubin, Huang Jin, Qu Ronghai, et al. Research on speed sensorless control strategeis for five-phasen induction motor with rotor parameter identification[J]. Proceedings of the CSEE, 2016, 36(2): 532-539. (in Chinese with English abstract)

        [21] 何飚,齊智平,馮之鉞. 無速度傳感器矢量控制系統(tǒng)的電機參數(shù)測算[J]. 農(nóng)業(yè)機械學(xué)報,2005,36(2):85-88.

        He Biao, Qi Zhiping, Feng Zhiyue. Estimation of induction motor equivalent circuit parameters in speed sensorless vector control inverter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(2): 85-88. (in Chinese with English abstract)

        [22] Chiba A, Akamatsu D, Fukao T, et al. An improved rotor resistance identi?cation method for magnetic field regulation in bearingless induction motor drives[J]. IEEE Transaction on Industrial Electronics, 2008, 55(2): 852-860.

        [23] Silber S, Amrhein W, Bosch P, et al. Design aspects of bearingless slice motors[J]. IEEE/ASME Transactions on Mechatronics, 2006, 10(6):611-617.

        [24] Sinervo A, Arkkio A. Rotor radial position control and its effect on the total efficiency of a bearingless induction motor with a cage rotor[J]. IEEE Transactions on Magnetics, 2014, 50(4): 1-9.

        [25] 王明渝,陳楊裕,鄧威,等. 定轉(zhuǎn)子電阻在線辨識的感應(yīng)電機轉(zhuǎn)速估計方法[J]. 電機與控制學(xué)報,2010,14(4):66-71.

        Wang Mingyu, Chen Yangyu, Deng Wei , et al. Rotor speed estimation for induction motor with stator and rotor resistance online identification[J]. Electric Machines and Control, 2010, 14(4): 66-71. (in Chinese with English abstract)

        [26] 楊澤斌,董大偉,樊榮,等. 無軸承異步電機無徑向位置傳感器控制[J]. 北京航空航天大學(xué)學(xué)報,2015,41(8):

        1388-1395.

        Yang Zebin, Dong Dawei, Fan Rong, et al. Radial displacement-sensorless control for bearingless induction motor[J]. Journal of Beijing University of Aeronautics and a Stronautics, 2015, 41(8): 1388-1395. (in Chinese with English abstract)

        [27] 秦峰,賀益康,劉毅,等. 兩種高頻信號注入法的無傳感器運行研究[J]. 中國電機工程學(xué)報,2005,25(5):116-121.

        Qin Feng, He Yikang, Liu Yi, et al. Comparative investigation of sensorless control with two high-frequency signal injection schemes[J]. Proceedings of the CSEE, 2005, 25(5): 116-121. (in Chinese with English abstract)

        [28] 朱昊,肖曦,李永東. 永磁同步電機高頻信號注入法啟動過程可靠性研究[J]. 清華大學(xué)學(xué)報:自然科學(xué)版,2010(10):1637-1640.

        Zhu Hao, Xiao Xi, Li Yongdong. Reliable starting of high frequency injection permanent magnet synchronous motor control[J]. Journal of Tsinghua University: Science and Technology,2010(10): 1637-1640. (in Chinese with English abstract)

        [29] 朱熀秋,成秋良. 基于磁鏈等效虛擬繞組電流分析方法的無軸承電機徑向懸浮力控制[J]. 科學(xué)通報,2009,54(9):

        1590-1598.

        Zhu Huangqiu, Cheng Qiuliang. Bearingless motor’s radial suspension force control based on flux equivalent with virtual winding current analysis method[J]. Chinese Science Bulletin, 2009, 54(9): 1590-1598. (in Chinese with English abstract)

        [30] Sun X D, Zhu H Q, Pan W. Decoupling control of bearingless permanent magnet-type synchronous motor using artificial neural networks-based inverse system method[J]. International Journal of Modelling Identification & Control, 2009, 8(2): 114-121(8).

        Revolving speed self-detecting control based on low-frequency signal injection for bearingless induction motor

        Yang Zebin1, Li Fangli1, Chen Zheng1, Sun Xiaodong2

        (1.212013,;2.212013,)

        A bearingless induction motor has the advantages of no friction, no wear, high speed, ultra-high-speed operation, and so on, so it is widely used in the field of life science with the difficulties of periodic maintenance, the field of chemical industry, the semiconductor industry and other fields. However, the installation of mechanical speed sensor not only leads to the increase of axial length of the motor and the cost issue, but also limits the high-speed, ultra-high-speed development of bearingless induction motors. In order to eliminate the adverse effect of the mechanical speed sensor on the high speed running of the bearingless induction motor, to reduce the axial dimension of the bearingless induction motor, to promote the development of bearingless induction motors towards being small, low-cost and practical, exploring a new kind of speed self-detecting strategy is particularly important. A new speed sensorless control strategy based on low-frequency signal injection method was proposed to solve the problem of rotor speed identification in the operation of bearingless induction motor. This strategy has many advantages such as non ideal characteristics of the motor, not easy to introduce other high-frequency harmonic signal and simple structure, so it has strong applicability. With the bearingless induction motor fundamental model, through the response caused by low-frequency signal injection, rotor position deviation angle was constructed, which was adjusted further through the PI (proportion integration) controller, and then the rotational speed of the motor’s air gap magnetic field was obtained. Then, the rotor speed was estimated. Using this speed self-detecting method, the simulation model of bearingless induction motor’s speed sensorless vector control system was built in MATLAB/Simulink platform. The simulation included the rotor speed response, the radial offset in x and y axis, the torque response and the self-tracking ability to detect rotor speed when the rotor speed mutated. Simulation results showed that this method could fast track the rotor speed, besides, the rotor speed curve from the self-detecting and the actual speed curve could be fully consistent in a short time. In addition, the radial displacement obtained by the low-frequency signal injection method was compared with that obtained by the high-frequency signal injection method. The comparison results showed that the proposed method not only could reduce the maximum radial deviation of the rotor, but also enabled it at the center position in a shorter time. At the same time the starting torque of the motor was large. After the speed mutation, the control system also had a good tracking ability for a given speed, and a fast response, besides, stable error was very small. Finally, in the bearingless induction motor’s control system experimental platform, the experiment was carried out using the proposed strategy. We selected the DSP TMS320F2812 as experiment control chip; a bearingless induction motor was used as a prototype, and the prototype parameters and simulation parameters were consistent. In order to more accurately compare the actual speed with the self-testing speed, the prototype was equipped with optical encoder disk. Test results showed that the self-detecting speed using the low-frequency signal injection method was more accurate than that using the high-frequency signal injection method, and the rotor center of mass offset distance using low-frequency signal injection method was smaller than that using high-frequency signal injection method. The results verify that the method has not only a good capability of speed online self-testing, but also a stable suspension operation of the rotor, and therefore the proposed method is effective and practical.

        control; models; computer simulation; bearingless induction motor; low-frequency signal; sensor; vector control

        10.11975/j.issn.1002-6819.2017.02.006

        TM346

        A

        1002-6819(2017)-02-0041-07

        2016-05-03

        2016-12-09

        國家自然科學(xué)基金(51475214、51305170)

        楊澤斌,男,漢族,湖北孝感人,教授、博導(dǎo),主要從事農(nóng)業(yè)電氣裝備自動化、磁懸浮傳動技術(shù)及電機非線性智能控制。鎮(zhèn)江 江蘇大學(xué)電氣信息工程學(xué)院,212013。Email:zbyang@ujs.edu.cn

        楊澤斌,李方利,陳 正,孫曉東. 基于低頻信號注入法的無軸承異步電機轉(zhuǎn)速自檢測控制[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(2):41-47. doi:10.11975/j.issn.1002-6819.2017.02.006 http://www.tcsae.org

        Yang Zebin, Li Fangli, Chen Zheng, Sun Xiaodong. Revolving speed self-detecting control based on low-frequency signal injection for bearingless induction motor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 41-47. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.02.006 http://www.tcsae.org

        猜你喜歡
        異步電機氣隙繞組
        常用定轉(zhuǎn)子氣隙測量工具的設(shè)計及使用
        戶外防腐蝕型防爆三相異步電機設(shè)計
        防爆電機(2020年5期)2020-12-14 07:03:58
        大型變頻調(diào)速異步電機的設(shè)計
        防爆電機(2020年4期)2020-12-14 03:11:16
        基于Halbach陣列磁鋼的PMSM氣隙磁密波形優(yōu)化
        防爆電機(2020年4期)2020-12-14 03:11:08
        同步發(fā)電機理論的一個奇點與氣隙中心論
        防爆電機(2020年3期)2020-11-06 09:07:30
        基于FPGA的雙繞組無刷直流電機軟件設(shè)計
        電子制作(2017年1期)2017-05-17 03:54:12
        基于AL1676的單繞組LED驅(qū)動電源設(shè)計
        基于三步隱式Adams法的同步電機阻尼繞組電流計算
        電測與儀表(2016年2期)2016-04-12 00:24:42
        10KV配變繞組材質(zhì)鑒別初探
        直線電機氣隙監(jiān)測技術(shù)的實際應(yīng)用與展望
        久久免费的精品国产v∧| 网红尤物泛滥白浆正在播放| 国产精品综合一区久久| 男人扒开添女人下部免费视频 | 中文字幕一区二区三区久久网| 亚洲av综合a色av中文| 国产思思99re99在线观看| 日本老年人精品久久中文字幕| 蜜桃久久综合一区二区| 欧美性猛交xxxx免费看蜜桃 | 丰满老熟妇好大bbbbb| 国产女奸网站在线观看| 亚洲二区精品婷婷久久精品| 无码专区一ⅴa亚洲v天堂| 无码人妻精品一区二区三区不卡| 久久久精品国产亚洲AV蜜| 亚洲av午夜福利一区二区国产| 国产一区高清在线观看| 欧美肥胖老妇做爰videos| 亚洲精品黄网在线观看| 99国语激情对白在线观看| 亚洲av无码国产精品久久| 国产全肉乱妇杂乱视频| 中日韩欧美高清在线播放| 麻豆视频av在线观看| 亚洲精品色午夜无码专区日韩| 富婆如狼似虎找黑人老外| 亚洲av综合色区久久精品天堂| 国产情侣自拍在线视频| 国产午夜精品一区二区三区嫩草| 国产精品自产拍在线18禁| 亚洲一区二区三区1区2区| 亚洲va久久久噜噜噜久久天堂 | 素人系列免费在线观看| 少妇被粗大进猛进出处故事| 亚洲h在线播放在线观看h| 国产日韩A∨无码免费播放| 日韩黄色大片免费网站| 无码人妻h动漫中文字幕| 亚洲成在人线av| 日韩精品极品在线观看视频|