孫勝童,武培怡,3
(1.先進(jìn)低維材料中心(東華大學(xué)),上海201620;2.東華大學(xué)化學(xué)化工與生物工程學(xué)院,上海201620;3.復(fù)旦大學(xué)高分子科學(xué)系,上海200433)
溫敏水溶性聚合物的二維分子光譜表征
孫勝童1,2,武培怡1,2,3
(1.先進(jìn)低維材料中心(東華大學(xué)),上海201620;2.東華大學(xué)化學(xué)化工與生物工程學(xué)院,上海201620;3.復(fù)旦大學(xué)高分子科學(xué)系,上海200433)
基于二維相關(guān)光譜的多維分子光譜技術(shù)是近些年發(fā)展起來的先進(jìn)光譜分析手段,特別適合于在分子水平上研究各種外擾作用下的物理化學(xué)體系的結(jié)構(gòu)變化.本文就二維相關(guān)光譜及其衍生的外擾相關(guān)移動(dòng)窗口技術(shù)對(duì)溫敏水溶性聚合物體系尤其是LCST型聚合物體系的研究進(jìn)展進(jìn)行了綜述.LCST型聚合物水溶液在LCST(低臨界溶解溫度)變化前后會(huì)發(fā)生線團(tuán)-膠束的分子鏈構(gòu)象變化,而在凝膠體系內(nèi)則表現(xiàn)為體積的塌縮與溶脹.紅外光譜可以很好地跟蹤這一溫度變化的過程,而一維及二維相關(guān)光譜分析可以方便地確定相轉(zhuǎn)變溫度、轉(zhuǎn)變溫度區(qū)間、響應(yīng)程度及各基團(tuán)的響應(yīng)次序,非常有助于詮釋溫敏聚合物體系的響應(yīng)機(jī)制.本文綜述了二維相關(guān)光譜分析在LCST型均聚物、共聚物和共混物、凝膠以及聚合物刷體系中的典型應(yīng)用.
溫敏水溶性聚合物;LCST;相轉(zhuǎn)變;二維相關(guān)光譜;外擾相關(guān)移動(dòng)窗口
刺激響應(yīng)聚合物是指一類具有“智能”行為的大分子體系,即當(dāng)外界環(huán)境如溫度、pH、光、壓力、電場(chǎng)強(qiáng)度、磁場(chǎng)強(qiáng)度、離子強(qiáng)度或添加物濃度等改變時(shí),大分子會(huì)做出相應(yīng)的鏈構(gòu)象或分子結(jié)構(gòu)上的轉(zhuǎn)變,進(jìn)而表現(xiàn)為外在的可檢測(cè)到的宏觀性質(zhì)變化[1].刺激響應(yīng)聚合物通常伴隨著表觀的相轉(zhuǎn)變現(xiàn)象.由于這一獨(dú)特的刺激響應(yīng)性質(zhì),刺激響應(yīng)聚合物在智能器件、藥物控釋、納米材料、化學(xué)傳感和生物技術(shù)等領(lǐng)域表現(xiàn)出了極為廣泛的應(yīng)用前景[2-5].
在刺激響應(yīng)聚合物的大家庭中,溫敏水溶性聚合物有著極其重要的地位.溫敏水溶性聚合物有低臨界溶解溫度(LCST)型與高臨界溶解溫度(UCST)型之分.其中,LCST型聚合物被研究得最為廣泛.如圖1所示,LCST型聚合物相轉(zhuǎn)變又被稱為線團(tuán)-膠束(coil?to?globule)轉(zhuǎn)變,在水溶液中低溫下溶解而高溫下由于疏水相互作用發(fā)生分子鏈聚集或塌縮從而形成穩(wěn)定的膠束,降溫后又可重新恢復(fù)到原狀[6-8].UCST型聚合物的相變情況則與此相反[9].與常見高分子隨溫度升高溶解性增加不同,LCST型聚合物隨溫度升高溶解性急劇下降.由于很多水溶性聚合物的LCST比較接近生理溫度(~37℃),因而,LCST型聚合物在生物醫(yī)學(xué)領(lǐng)域應(yīng)用極為廣泛,如載藥及藥物控制釋放[10]、組織工程[11]、生物分子響應(yīng)[12-13]、蛋白質(zhì)吸附[14]、有機(jī)-無機(jī)復(fù)合材料[2]等.
圖1 LCST型聚合物coil?to?globule轉(zhuǎn)變示意圖[8]Fig.1 Schematic coil?to?globule transition of LCST?type polymers[8]
溫敏水溶性聚合物轉(zhuǎn)變機(jī)制的研究對(duì)于探討這類聚合物材料的響應(yīng)行為及其應(yīng)用有著至關(guān)重要的意義.除了常見的濁度分析、量熱分析、光散射、小角X射線衍射、顯微鏡觀測(cè)等,分子光譜,尤其是紅外光譜對(duì)于鏈段構(gòu)象或基團(tuán)相互作用極為敏感,近年來逐漸發(fā)展成為研究溫敏聚合物的重要分析手段.但由于一維分子光譜的分辨能力有限,分子光譜對(duì)溫敏聚合物體系的研究并不特別深入.這一方面是因?yàn)闇孛艟酆衔矬w系較為復(fù)雜,涉及到聚合物與水及聚合物自身之間的多重相互作用;另一方面,一維光譜中譜峰重疊的現(xiàn)象較為嚴(yán)重.
為了解決一維分子光譜的低分辨率及譜峰重疊問題,Noda于1986年首次提出了二維相關(guān)分析的概念[15],后于1989年將其發(fā)展為廣義二維相關(guān)光譜[16-17],即能夠?qū)θ我馔鈹_作用下的系列譜圖進(jìn)行相關(guān)分析處理,從而獲得了極為廣泛的應(yīng)用進(jìn)展.由于不同基團(tuán)對(duì)外界擾動(dòng)的響應(yīng)不同,二維相關(guān)光譜將譜峰信息在二維尺度上進(jìn)行延展,對(duì)隱藏在一維譜峰下不明顯的峰數(shù)目和峰位置進(jìn)行了很好的區(qū)分.二維相關(guān)光譜還可以辨識(shí)在可控外擾下各基團(tuán)的運(yùn)動(dòng)順序,從而廣泛用于研究分子內(nèi)和分子間的結(jié)構(gòu)或構(gòu)象變化.
本文首先對(duì)二維相關(guān)光譜及其衍生外擾相關(guān)移動(dòng)窗口技術(shù)進(jìn)行簡(jiǎn)要描述,接著重點(diǎn)介紹近些年來一維及二維相關(guān)光譜對(duì)溫敏水溶性聚合物體系的研究進(jìn)展.為便于討論,本文將溫敏聚合物體系分為了LCST型均聚物、LCST型共聚物和混合物、LCST型聚合物凝膠和LCST型聚合物刷.由于二維相關(guān)光譜對(duì)UCST型聚合物體系研究相對(duì)較少[18],本文不多做介紹.最后,對(duì)本領(lǐng)域的未來發(fā)展重點(diǎn)進(jìn)行了展望.
1.1 二維相關(guān)光譜
二維相關(guān)光譜的譜圖獲取及多維光譜分析如圖2所示.二維相關(guān)光譜本質(zhì)上是一種數(shù)學(xué)處理,是對(duì)復(fù)雜矩陣變換的一種簡(jiǎn)化表達(dá),通常由等高線圖表示,顏色深淺或等高線密度代表該位置處的強(qiáng)度高低.二維相關(guān)分析的數(shù)學(xué)表達(dá)本文不做詳細(xì)介紹,可參考其他文獻(xiàn)表述[16,19].
由圖2可以看出,二維相關(guān)光譜在譜圖上是由同步譜和異步譜2張譜組成[20].同步譜是關(guān)于主對(duì)角線對(duì)稱的.位于主對(duì)角線上的峰稱為自動(dòng)峰,自動(dòng)峰總是正峰,它的強(qiáng)度大小代表了該處吸收峰對(duì)于外擾的敏感程度.主對(duì)角線之外的峰稱為交叉峰,交叉峰可正可負(fù),它的出現(xiàn)表明官能團(tuán)之間存在對(duì)外擾的協(xié)同響應(yīng).交叉峰為正表示2個(gè)官能團(tuán)的峰強(qiáng)度隨外擾的變化而升高或降低的方向相同,反之則相反.
異步譜是關(guān)于主對(duì)角線反對(duì)稱的,它沒有自動(dòng)峰,只在對(duì)角線之外存在交叉峰,代表了官能團(tuán)之間是否存在強(qiáng)的化學(xué)作用、直接相連或成對(duì)現(xiàn)象.異步譜可大大提高譜圖的分辨率.如圖2所示,盡管3個(gè)相鄰譜峰有所疊加,在異步譜中它們可以被完全分辨出來,這在實(shí)際體系中尤為實(shí)用.異步譜交叉峰亦有正負(fù)之分,其符號(hào)可用來判斷分子基團(tuán)的運(yùn)動(dòng)次序.判斷規(guī)則又被稱為Noda規(guī)則.簡(jiǎn)單說來,對(duì)于2個(gè)吸收峰v1>v2,如果同步譜與異步譜符號(hào)相同,則波數(shù)較大的v1先變化,反之,符號(hào)相反則波數(shù)較小的v2先變化.例如,圖2中A、B、C 3個(gè)峰強(qiáng)度均隨外擾變化增加,因而在同步譜上相關(guān)峰均為正峰,表現(xiàn)為同步變化.異步譜(因譜圖反對(duì)稱,只分析左上角譜峰)上,A與B相關(guān)峰為負(fù),A與C相關(guān)峰為正,B與C相關(guān)峰為正.根據(jù)Noda規(guī)則判斷,B變化最先,A次之,C最后.這一順序與圖2(b)的強(qiáng)度變化曲線完全一致,而二維光譜的優(yōu)勢(shì)在于它反映的是一段光譜范圍所有位置的變化情況.
圖2 二維相關(guān)光譜的譜圖獲取及二維光譜分析[20]Fig.2 Acquisition of two?dimensional correlation spectroscopy and two?dimensional spectral analysis:(a)simulated three peak variations and their overlaid dynamic spectra;(b)peak intensity variations as a function of perturbation variable;(c)generated 2D synchronous and asynchronous spectra(red,positive;blue,negative)[20]
1.2 外擾相關(guān)移動(dòng)窗口技術(shù)
基于同樣外擾下的動(dòng)態(tài)光譜,除了能夠從中獲取關(guān)于譜峰的數(shù)目、位置及變化次序等方面的信息外,通常還需要對(duì)光譜隨外界擾動(dòng)的變化情況做一個(gè)整體的了解.特別是一些具有轉(zhuǎn)變點(diǎn)的相變體系,相變點(diǎn)的確定通常對(duì)二維相關(guān)光譜分析的區(qū)域選擇至關(guān)重要[21].移動(dòng)窗口技術(shù)由此發(fā)展而來.
移動(dòng)窗口(Moving window)最初由M.Thomas提出[22],本質(zhì)上基于二維同步譜的power spectra(即對(duì)角線上的切線譜)的變化.它允許選定一個(gè)合適的窗口大小,然后逐點(diǎn)移動(dòng),通過 power spectra的變化情況便可以反映出所研究光譜區(qū)域隨外擾的變化快慢,從而確定轉(zhuǎn)變點(diǎn)的位置.
2006年S.Morita[23]將外擾變量也引入到了相關(guān)方程,提出了外擾相關(guān)移動(dòng)窗口二維相關(guān)光譜(perturbation correlation moving window two?dimen?sional correlation spectroscopy,簡(jiǎn)稱 PCMW2D).PCMW2D譜圖開始有了同步與異步之分,如圖3所示.同步譜與原來的移動(dòng)窗口譜圖幾乎完全相同,但同時(shí)引入了符號(hào)的變化來反映一維譜圖的變化方向.異步譜通過二階導(dǎo)數(shù)轉(zhuǎn)換,可反映出譜圖變化更為精細(xì)的信息.
PCMW2D譜圖的判斷規(guī)則如圖3所示:在外擾變量為增量的情況下,同步譜為正表示光譜強(qiáng)度增加,同步譜為負(fù)表示光譜強(qiáng)度減??;異步譜為正表示光譜強(qiáng)度變化為一凸形變化,異步譜為負(fù)表示光譜強(qiáng)度變化為一凹形變化.
對(duì)于有明顯相轉(zhuǎn)變的溫敏聚合物體系,光譜強(qiáng)度變化通常表現(xiàn)為S形或反S形.如圖3所示的例子,PCMW2D同步譜可以確定LCST的轉(zhuǎn)變溫度,而異步譜的峰確定的是S或反S形曲線的拐點(diǎn),即相轉(zhuǎn)變溫度區(qū)間(相關(guān)信息匯總在圖3左欄最下圖).由此可以看出,PCMW2D非常適合研究溫敏聚合物體系的相變行為.
圖3 外擾相關(guān)移動(dòng)窗口二維相關(guān)光譜(PCMW2D)譜圖及判斷規(guī)則(外擾增量的情況下)Fig.3 Perturbation correlation moving window two dimensional correlation(PCMW2D)spectra and the determination rule(in case of perturbation increment)
2.1 LCST型均聚物
LCST型均聚物是最為簡(jiǎn)單的水溶性聚合物相轉(zhuǎn)變體系,同時(shí)也是研究其他復(fù)雜體系的基礎(chǔ).近十年來,二維相關(guān)光譜及PCMW2D被大量用以研究了線性LCST型均聚物體系,相關(guān)體系類型、LCST轉(zhuǎn)變溫度及文獻(xiàn)引用見表1.
表1 二維相關(guān)光譜研究的典型LCST型均聚物體系Table 1 Two dimensional correlation spectroscopy study of typical LCST type Homo system
其中,PNIPAM是最為典型的LCST型聚合物,也是目前研究最多的溫敏水溶性聚合物.PNIPAM的LCST約為32℃,轉(zhuǎn)變溫度受分子量和濃度的影響不大.低溫時(shí),PNIPAM與水存在強(qiáng)烈的氫鍵和水合作用.隨著溫度的升高,PNIPAM與水之間的氫鍵逐漸解離,而PNIPAM自身酰胺鍵之間的分子間氫鍵逐漸形成,導(dǎo)致PNIPAM分子鏈發(fā)生塌縮進(jìn)而形成穩(wěn)定的膠束.基于變溫紅外的PCMW2D很好地跟蹤了這一過程,確定了PNIPAM的相轉(zhuǎn)變溫度和溫度區(qū)間分別為31.2℃和29.1~31.1℃[26].二維相關(guān)分析發(fā)現(xiàn),升溫過程中,甲基首先發(fā)生了兩步的脫水過程,主鏈的塌縮次之,酰胺鍵的氫鍵變化最后發(fā)生[24].降溫過程的順序與之相反.加入少量的乙醇會(huì)降低PNIPAM的LCST,從二維分析結(jié)果上來看,乙醇的加入主要通過抑制疏水基團(tuán)的水合過程削弱了PNIPAM的相變[25].
聚甲基丙烯酸寡聚乙二醇酯(POEGMA)是近年來研究非常熱門的LCST型聚合物.POEGMA實(shí)際上是由不同PEG長(zhǎng)度的甲基丙烯酸寡聚乙二醇酯單體無規(guī)共聚形成,但由于不同結(jié)構(gòu)單元的相似性,將其劃分到了均聚物的范疇.POEGMA的LCST可以通過改變不同OEGMA單體的比例在27~60℃內(nèi)可調(diào)[39].筆者所在的課題組研究了P(MEO2MA?co?OEGMA475)在重水中升溫及降溫過程中的分子鏈構(gòu)象變化[32].與PNIPAM不同,P(MEO2MA?co?OEGMA475)不存在分子間的締和作用,在紅外光譜變化上表現(xiàn)為低于LCST時(shí)劇烈變化而高于LCST時(shí)緩慢變化,在動(dòng)態(tài)光散射上則表現(xiàn)為相轉(zhuǎn)變前不存在分子鏈的預(yù)塌縮過程.PCMW確定了該聚合物的轉(zhuǎn)變溫度和轉(zhuǎn)變溫度區(qū)間分別為32.5℃和28.5~37℃.二維相關(guān)分析表明,在P(MEO2MA?co?OEGMA475)的相轉(zhuǎn)變過程中,分子鏈存在著“水合鏈-脫水合鏈-松散聚集膠束-密集聚集膠束”4個(gè)階段,如圖4所示.降溫過程與之相反.當(dāng)其中1個(gè)OEGMA單體長(zhǎng)度加長(zhǎng)后,如P(MEO2MA?co?PEGMA2080)又表現(xiàn)出了多步聚集的相轉(zhuǎn)變行為[33].
圖4 P(MEO2MA?co?OEGMA475)相轉(zhuǎn)變過程中的分子鏈構(gòu)象變化[32]Fig.4 Schematic conformational changes of P(MEO2MA?co?OEGMA475)chains during phase transition[32]
2.2 LCST型共聚物和共混物
LCST共聚物由2種和多種不同類型的單體共聚生成.無規(guī)共聚物的結(jié)構(gòu)相對(duì)簡(jiǎn)單,多用來做比較分析.嵌段聚合物和共混物由于不同聚合物鏈之間迥異的親疏水性或溫敏性,對(duì)它們的研究有助于理解不同聚合物之間復(fù)雜的相互作用,從而為設(shè)計(jì)更為多樣的溫敏自組裝體系提供一定的理論指導(dǎo).
PEO?PPO?PEO三嵌段共聚物是采用二維相關(guān)分析方法研究較早的一類LCST型共聚物.二維相關(guān)分析法辨別了PEO?PPO?PEO在LCST相轉(zhuǎn)變過程中各嵌段的運(yùn)動(dòng)次序,發(fā)現(xiàn)EO嵌段的旁式-順式構(gòu)象轉(zhuǎn)變首先發(fā)生,亞甲基脫水次之,之后C—O—C與水氫鍵逐漸解離,最后疏水基團(tuán)成核形成核殼結(jié)構(gòu)膠束[40].
此后,二維相關(guān)分析研究了其他類型的嵌段共聚物,如PNIPAM與聚離子液體嵌段共聚物poly(NIPAM?b?BVImBr)[41]、PNIPAM?b?PEO[42]、POEGMA?b?P4VP[43]、PVCL?b?PEO[44]等.這些共聚物的特點(diǎn)是均含有1個(gè)LCST型的聚合物嵌段和1個(gè)親水聚合物嵌段.升高溫度會(huì)誘導(dǎo)LCST型聚合物嵌段發(fā)生親水-疏水轉(zhuǎn)變,疏水段發(fā)生聚集導(dǎo)致核殼結(jié)構(gòu)膠束的形成.二維相關(guān)分析可以分辨不同嵌段的基團(tuán)運(yùn)動(dòng),從而揭示在這個(gè)轉(zhuǎn)變過程中不同嵌段所發(fā)揮的作用及氫鍵變化情況.
此外,更為復(fù)雜的非線性三嵌段共聚物如由PNI? PAM、Poly(acrylic acid)(PAA)、Poly(N?vinylpyr?rolidone)(PVP)組成的不同拓?fù)浣Y(jié)構(gòu)的四臂共聚物的LCST型相轉(zhuǎn)變行為也被加以研究,其中,PNIPAM的LCST相轉(zhuǎn)變引起的微環(huán)境變化導(dǎo)致即使本身無溫敏效應(yīng)的PAA嵌段在紅外光譜上也表現(xiàn)出了類似的相轉(zhuǎn)變行為[45-46].
如果1個(gè)嵌段聚合物由2種不同的LCST型聚合物組成,在發(fā)生相轉(zhuǎn)變時(shí)2個(gè)嵌段會(huì)因體系不同發(fā)生或協(xié)同或獨(dú)立的相互作用.以PNIPAM?b?PVL為例,相轉(zhuǎn)變過程中PNIPAM和PVCL段協(xié)同作用導(dǎo)致只有1個(gè)LCST被檢測(cè)到[47].而與之類似,PNIPAM/PVCL共混物和無規(guī)共聚物由于2個(gè)嵌段協(xié)同聚集,也只表現(xiàn)為1個(gè)LCST.一維及二維光譜分析發(fā)現(xiàn),無規(guī)和嵌段共聚物較共混物相轉(zhuǎn)變更加劇烈,而PNIPAM與PVCL單元由于水合程度不同在相變過程中會(huì)發(fā)生聚集的競(jìng)爭(zhēng)效應(yīng),導(dǎo)致最終膠束的結(jié)構(gòu)有所不同[48].
筆者所在課題組還比較了PIPOZ/PVCL及PIPOZ/PNIPAM共混體系的相轉(zhuǎn)變行為.發(fā)現(xiàn)由于PIPOZ與PVCL的強(qiáng)烈相互作用,該體系只存在1個(gè)LCST相轉(zhuǎn)變,但PIPOZ與PNIPAM的相互作用較弱則表現(xiàn)為2個(gè)LCST相轉(zhuǎn)變(圖5)[49].此外,其他的共混體系如PNIPAM與聚離子液體 P[P4,4,4,4][SS]共混,P[P4,4,4,4][SS]的溫敏性被抑制而不再表現(xiàn)出LCST相轉(zhuǎn)變行為[50].
圖5 PIPOZ/PNIPAM與PIPOZ/PVCL共混物的相轉(zhuǎn)變機(jī)理[49]Fig.5 Phase transition mechanisms of PIPOZ/PNIPAM and PIPOZ/PVCL mixtures[49]
2.3 LCST型聚合物凝膠
LCST型聚合物凝膠是應(yīng)用極為廣泛的一類溫敏聚合物材料[3].由于交聯(lián)結(jié)構(gòu)的存在,聚合物凝膠會(huì)表現(xiàn)出與水溶液中截然不同的相轉(zhuǎn)變性質(zhì).LCST型聚合物凝膠在升溫過程中會(huì)發(fā)生溶脹-收縮的體積變化,因而相應(yīng)的轉(zhuǎn)變溫度又被稱為體積相轉(zhuǎn)變溫度.
由于LCST型聚合物凝膠較高的聚合物濃度,非常適合原位紅外跟蹤分析.例如,筆者所在課題組利用二維相關(guān)光譜研究了PNIPAM的本體凝膠的體積相轉(zhuǎn)變行為,發(fā)現(xiàn)與水溶液中不同,PNIPAM凝膠的C—H及C=O存在著很多中間態(tài).升溫過程中,PNIPAM凝膠網(wǎng)絡(luò)首先發(fā)生塌縮進(jìn)而導(dǎo)致水分子擴(kuò)散出凝膠網(wǎng)絡(luò),而降溫過程與之相反[51].稍后又研究了PNIPAM?co?AA共聚物水凝膠的體積相轉(zhuǎn)變行為,發(fā)現(xiàn)AA結(jié)構(gòu)單元的引入導(dǎo)致了該凝膠的降溫過程不能完全回復(fù),原因在于AA結(jié)構(gòu)單元之間形成了難以解離的氫鍵相互作用[52].
微凝膠的體積相轉(zhuǎn)變由于被限定在了納米尺度,水的擴(kuò)散距離較短,因而在溫度變化引起的體積收縮或溶脹過程中可以被忽略.如圖6所示.
圖6 POEGMA/PDMA及PNIPAM/PDMA核殼結(jié)構(gòu)微凝膠的體積相轉(zhuǎn)變機(jī)理[53]Fig.6 Volume phase transition mechanisms of POEGMA/PDMA and PNIPAM/PDMA core?shell structured microgels[53]
L.Hou等合成了分別以POEGMA和PNIPAM為核,poly(N,N'?dimethylacrylamide)(PDMA)為殼的核殼結(jié)構(gòu)微凝膠,并利用原位紅外光譜研究了這兩類微凝膠的體積相轉(zhuǎn)變機(jī)理[53].二維相關(guān)分析表明,POEGMA/PDMA微凝膠中POEGMA的C=O連續(xù)緩慢脫水導(dǎo)致了微凝膠的線性體積變化,而PNIPAM/PDMA微凝膠中PNIPAM的氫鍵劇烈轉(zhuǎn)化導(dǎo)致了微凝膠的反S形體積變化.
此外,二維相關(guān)光譜還被用以研究了PNIPAM與poly(2?hydroxyethyl methacrylate)(PHEMA)互穿網(wǎng)絡(luò)微凝膠[54-55]、聚離子液體交聯(lián)的POEGMA微凝膠[56]及金納米粒子負(fù)載的PVCL微凝膠[57]等體系的體積相轉(zhuǎn)變行為.
2.4 LCST型聚合物刷
溫敏性聚合物刷具有非常特殊的表面結(jié)構(gòu),一端在基板表面化學(xué)連接,而另一端在溶劑中自由伸展.溫度變化時(shí),聚合物刷會(huì)發(fā)生可控的塌縮或伸展,引起表面性質(zhì)如親疏水性的顯著變化.這一性質(zhì)使得溫敏聚合物刷在超疏水表面或可控細(xì)胞吸附方面有著非常重要的應(yīng)用[11,58].
二維相關(guān)光譜也被用于研究LCST型聚合物刷的鏈構(gòu)象轉(zhuǎn)變.如圖7所示,K.Jalili等利用原位紅外光譜跟蹤了高密度PHEMA?b?PNIPAM聚合物刷的LCST相轉(zhuǎn)變行為[59].與之前介紹的非線性三嵌段PNIPAM?PAA?PVP共聚物[45]類似,在該體系中,無溫度敏感性的 PHEMA段受PNIPAM相轉(zhuǎn)變的影響也表現(xiàn)出了“假”的親疏水性變化.頂層PNIPAM嵌段和底層PHEMA嵌段的LCST分別被確定為33和33.5℃.二維相關(guān)分析辨別了升降溫過程中所有相關(guān)基團(tuán)的運(yùn)動(dòng)次序.溫度高于LCST時(shí),PNIPAM段塌縮成了很小的團(tuán)簇緊靠著密集排列的PHEMA層,從而整體呈現(xiàn)“海島”狀的表面形貌.
圖7 PHEMA?b?PNIPAM聚合物刷在升降溫過程中的分子鏈構(gòu)象變化[59]Fig.7 Conformational changes of PHEMA?b?PNIPAM brushes during heating and cooling[59]
得益于二維相關(guān)光譜與外擾相關(guān)移動(dòng)窗口等先進(jìn)分子光譜技術(shù)的發(fā)展,人們得以從分子層面上更加深入地了解溫敏聚合物體系的刺激響應(yīng)機(jī)制.這一方面有助于人們考察溫敏水溶性聚合物的溫度敏感性,另一方面也可以啟發(fā)人們?cè)O(shè)計(jì)合成新型的溫敏響應(yīng)聚合物材料.但同時(shí),不可否認(rèn)的是,盡管二維相關(guān)光譜技術(shù)在溫敏聚合物尤其是LCST型聚合物體系中取得了長(zhǎng)足進(jìn)步,但隨著越來越多新型溫敏聚合物及更為復(fù)雜的多組分體系的發(fā)現(xiàn),基于二維相關(guān)分析的多維分子光譜技術(shù)在這類體系中的應(yīng)用還遠(yuǎn)遠(yuǎn)不足.在未來的研究工作中,二維相關(guān)分析工作者應(yīng)關(guān)注以下幾點(diǎn):
首先,現(xiàn)有的被用于二維相關(guān)光譜研究的LCST型聚合物體系多集中于本文所介紹的存在形式,即多為溶液和凝膠.但實(shí)際上,LCST型聚合物材料的應(yīng)用范圍極為廣泛,除了文中介紹的聚合物刷之外,還有諸如薄膜、微膠囊、有機(jī)-無機(jī)雜化材料、乳液等多種形態(tài).這就需要研究工作者在今后的工作中進(jìn)一步拓展二維相關(guān)分析的應(yīng)用范圍.
其次,目前針對(duì)溫敏聚合物的二維相關(guān)光譜研究多基于中紅外光譜,但中紅外光譜在很多體系中有著一定的局限性,比如,聚合物濃度低導(dǎo)致譜峰強(qiáng)度不足,透射液體池厚度不易控制,水干擾嚴(yán)重等.對(duì)于一些不適合中紅外光譜表征的體系,可設(shè)法采用其他的分子光譜技術(shù)進(jìn)行跟蹤,如拉曼光譜、近紅外光譜等.
再次,二維相關(guān)光譜分析工作者常常過于關(guān)注二維分析的結(jié)果而忽視了一維光譜常規(guī)分析的重要性.實(shí)際上,只有當(dāng)二維光譜分析的結(jié)果與一維光譜分析相一致時(shí)才能夠被認(rèn)為是確鑿無誤的.這也是本文中提倡多維分子光譜分析的原因.
最后,基于二維相關(guān)光譜分析的結(jié)果涉及到了較深層次的分子結(jié)構(gòu)的變化,除了在機(jī)理解釋上力求合理之外,還須盡量做到與其他分析手段的結(jié)果相互驗(yàn)證.這樣也有助于人們更加合理地理解二維相關(guān)光譜分析的結(jié)果.
[1]STUART M A C,HUCK W T S,GENZER J,et al.Emerging applications of stimuli?responsive polymer materials[J].Nature Materials,2010,9(2):101-113.
[2]MOLINA M,ASADIAN?BIRJAND M,BALACH J,et al.Stimuli?responsive nanogel composites and their application in nanomedicine[J].Chemical Society Reviews,2015,44(17):6161-6186.
[3]MOTORNOV M,ROITER Y,TOKAREV I,et al.Stimuli?responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems[J].Progress in Polymer Science,2010,35(1/2):174-211.
[4]MA X,TIAN H.Stimuli?responsive supramolecular polymers in aqueoussolution [J].Accountsof Chemical Research,2014,47(7):1971-1981.
[5]MURA S,NICOLASJ,COUVREURP.Stimuli?responsive nanocarriers for drug delivery[J].Nature Materials,2013,12(11):991-1003.
[6]BAJPAI A,SHUKLA SK,BHANU S,etal.Responsive polymers in controlled drug delivery[J].Progress in Polymer Science,2008,33(11):1088- 1118.
[7]SCHMALJOHANN D.Thermo?and pH?responsive poly?mers in drug delivery[J].Advanced Drug Delivery Reviews,2006,58(15):1655-1670.
[8]DESHMUKH S A,KAMATH G,SUTHAR K J,et al.Non?equilibrium effects evidenced by vibrational spectra during the coil?to?globule transition in poly(N?isopropylacrylamide)subjected to an ultrafast heating?cooling cycle[J].Soft Matter,2014,10(10):1462-1480.
[9]ROY D,BROOKS W L A,SUMERLIN B S.New directions in thermoresponsive polymers[J].Chemical Society Reviews,2013,42(17):7214-7243.
[10]QIU Y,PARK K.Environment?sensitive hydrogels for drug delivery[J].Advanced Drug Delivery Reviews,2001,53(3):321-339.
[11]WISCHERHOFF E,UHLIG K,LANKENAU A,et al.Controlled cell adhesion on PEG?based switchable surfaces [J].Angewandte Chemie International Edition,2008,47(30):5666-5668.
[12]MIYATA T,URAGAMI T,NAKAMAE K.Biomole?cule?sensitive hydrogels[J].Advanced Drug Delivery Reviews,2002,54(1):79-98.
[13]ASHER S A,ALEXEEV V L,GOPONENKO A V,et al.Photonic crystal carbohydrate sensors:Low ionic strength sugar sensing[J].Journal of the American Chemical Society,2003,125(11):3322-3329.
[14]YANG W,TANG Z,LUAN Y,et al.Thermorespons?ive copolymer decorated surface enables controlling the adsorption of a target protein in plasma[J].ACS Applied Materials& Interfaces,2014,6(13):10146-10152.
[15]NODA I.Two?dimensional infrared spectroscopy of synthetic and biopolymers[J].Bull Am Phys Soc,1986,31:520.
[16]NODA I.Generalized two?dimensional correlation method applicable to infrared,Raman,and other types of spectroscopy[J].Applied Spectroscopy,1993,47(9):1329-1336.
[17]NODA I.Two?dimensional infrared spectroscopy[J].Journal of the American Chemical Society,1989,111(21):8116-8118.
[18]HOU L, WU P.Understanding the UCST?type transition of P(AAM?co?AN) in H2O and D2O:Dramatic effects of solvent isotopes[J].Soft Matter,2015,11(35):7059-7065.
[19]NODA I.Two?dimensional correlation analysis useful for spectroscopy,chromatography,and other analytical measurements[J].Analytical Sciences,2007,23(2):139-146.
[20]CZARNIK?MATUSEWICZ B,PILORZ S,ASHTONL,et al.Potential pitfalls concerning visualization of the 2D results[J].Journal of Molecular Structure,2006,799(1/2/3):253-258.
[21]WANG M,SUN S,WU P.Spectral insight into intensity variations in phase?transition processes using two?dimensional correlation analysis[J].Applied Spectroscopy,2010,64(12):1396-1406.
[22]THOMAS M,RICHARDSON H H.Two?dimensional FT?IR correlation analysis of the phase transitions in a liquid crystal,4’?n?octyl?4?cyanobiphenyl(8CB)[J].VibrationalSpectroscopy, 2000, 24(1):137-146.
[23]MORITA S,SHINZAWA H,NODA I,et al.Pertur?bation?correlation moving?window two?dimensional cor?relation spectroscopy[J].Applied Spectroscopy,2006,60(4):398-406.
[24]SUN B,LIN Y,WU P,et al.A FTIR and 2D?IR spectroscopic study on the microdynamics phase sepa?ration mechanism of the poly(N?isopropylacrylamide)aqueous solution[J].Macromolecules,2008,41(4):1512-1520.
[25]SUN S,WU P.Role of water/methanol clustering dy?namics on thermosensitivity of poly(N?isopropylacryl?amide)from spectral and calorimetric insights[J].Macromolecules,2010,43(22):9501-9510.
[26]LAI H J,WU P Y.A infrared spectroscopic study on the mechanism of temperature?induced phase transition ofconcentrated aqueous solutions of poly(N?isopropylacrylamide) and N?isopropylpropionamide[J].Polymer,2010,51(6):1404-1412.
[27]GUO Y,SUN B,WU P.Phase separation of poly(vinyl methyl ether) aqueous solution:A near?infrared spectroscopic study[J].Langmuir,2008,24(10):5521-5526.
[28]SUN B J,LAI H J,WU P Y.Integrated microdynam?ics mechanism of the thermal?induced phase separation behavior of poly(vinyl methyl ether)aqueous solution[J].The Journal of Physical Chemistry B,2011,115(6):1335-1346.
[29]SUN S,WU P.Infrared spectroscopic insight into hy?dration behavior of poly(N?vinylcaprolactam)in water[J].The Journal of Physical Chemistry B,2011,115(40):11609-11618.
[30]LAI H J,CHEN G T,WU P Y,et al.Thermorespons?ive behavior of an LCST?type polymer based on a pyr?rolidone structure in aqueous solution[J].Soft Mat?ter,2012,8(9):2662-2670.
[31]LI T,TANG H,WU P.Molecular evolution of poly(2?isopropyl?2?oxazoline)aqueous solution during the liq?uid?liquid phase separation and phase transition process[J].Langmuir,2015,31(24):6870-6878.
[32]SUN S,WU P.On the thermally reversible dynamic hydration behavior of oligo(ethylene glycol)methacry?late?based polymers in water[J].Macromolecules,2013,46(1):236-246.
[33]ZHANG B,TANG H,WU P.In depth analysis on the unusual multistep aggregation process of oligo(ethylene glycol)methacrylate?based polymers in water[J].Macromolecules,2014,47(14):4728-4737.
[34]LI W,WU P.Unusualthermalphasetransition behavior of an ionic liquid and poly(ionic liquid)in water with significantly different LCST and dynamic mechanism[J].Polymer Chemistry,2014,5(19):5578-5590.
[35]WANG G,WU P.In?depthstudyofthephase separation behaviour of a thermoresponsive ionic liquid and a poly(ionic liquid)in concentrated aqueous solution[J].Soft Matter,2015,11(26):5253-5264.
[36]JING Y,WU P.Study on the thermoresponsive two phase transition processes of hydroxypropyl cellulose concentrated aqueous solution:From a microscopic perspective[J].Cellulose,2013,20(1):67-81.
[37]WANG H, SUN S,WU P.Thermodynamicsof hyperbranched poly(ethylenimine)with isobutyramide residues during phase transition:An insight into the molecular mechanism[J].The Journal of Physical Chemistry B,2011,115(28):8832-8844.
[38]SUN S,WANG H,WU P.Dynamic self?aggregation and disaggregation behavior of thermoresponsive hyperbranched polyethylenimine with peripheral NIPAM groups:An infrared spectroscopic study[J].Soft Matter,2013,9(10):2878-2888.
[39]LUTZ J F, HOTH A.Preparation ofidealPEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2?(2?methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol)methacrylate[J].Macromolecules,2006,39(2):893-896.
[40]JIA L,GUO C,YANG L,et al.Mechanism of PEO?PPO?PEO micellization in aqueous solutions studied by two?dimensional correlation FTIR spectroscopy[J].Journal of Colloid and Interface Science,2010,345(2):332-337.
[41]WANG Z,LAI H,WU P.Influence of PIL segment on solution properties of poly(N?isopropylacrylamide)?b?poly(ionic liquid) copolymer:Micelles,thermal phase behavior and microdynamics[J].Soft Matter,2012,8(46):11644-11653.
[42]WANG Q,TANG H,WU P.Aqueous solutions of poly(ethylene oxide)?poly(N?isopropylacrylamide):Thermosensitive behavior and distinct multiple assembly processes[J].Langmuir,2015,31(23):6497-6506.
[43]DAI Y,WU P.Exploring the influence of the poly(4?vinyl pyridine)segment on the solution properties and thermal phase behaviours of oligo(ethylene glycol)methacrylate?based block copolymers:The different aggregation processes with various morphologies[J].Physical Chemistry Chemical Physics,2016,18(31):21360-21370.
[44]WANG Q,TANG H,WU P.Dynamic phase transition behavior and unusual hydration process in poly(ethylene oxide)?b?poly(N?vinylcaprolactam) aqueous solution[J].Journal of Polymer Science Part B:Polymer Physics,2016,54(3):385-396.
[45]SUN S,ZHANG W,ZHANG W,et al.Dynamic self?aggregation behavior of a PNIPAM?based nonlinear multihydrophilic block copolymer revealed by two?dimensional correlation spectroscopy[J].Soft Matter,2012,8(14):3980-3987.
[46]SUN S,WU P,ZHANG W,et al.Effect of structural constraint on dynamic self?assembly behavior of PNI?PAM?based nonlinear multihydrophilic block copolymers[J].Soft Matter,2013,9(6):1807-1816.
[47]HOU L,WU P.LCST transition of PNIPAM?b?PVCL in water:Cooperative aggregation of two distinct thermally responsive segments[J].Soft Matter,2014,10(20):3578-3586.
[48]HOU L,WU P.Comparison of LCST?transitions of homopolymer mixture,diblock and statistical copolymers of NIPAM and VCL in water[J].Soft Matter,2015,11(14):2771-2781.
[49]LI T,TANG H,WU P.Remarkable distinctions in the heat?induced phase transition processes of two poly(2?isopropyl?2?oxazoline)?based mixed aqueous solutions[J].Soft Matter,2015,11(15):3046-3055.
[50]WANG G,WU P.Unusual phase transition behavior of poly(N?isopropylacrylamide)?co?poly(tetrabutylphos?phonium styrenesulfonate)in water:Mild and linear changes in the poly(N?isopropylacrylamide)part[J].Langmuir,2016,32(15):3728-3736.
[51]SUN S,HU J,TANG H,et al.Chain collapse and re?vival thermodynamics of poly(N?isopropylacrylamide) hydrogel[J].The Journal of Physical Chemistry B,2010,114(30):9761-9770.
[52]SUN S,HU J,TANG H,et al.Spectral interpretation of thermally irreversible recovery of poly(N?isopropy?lacrylamide?co?acrylic acid)hydrogel[J].Physical Chemistry Chemical Physics,2011,13(11):5061-5067.
[53]HOU L,MA K,AN Z,et al.Exploring the volume phase transition behavior of POEGMA?and PNIPAM?based core?shell nanogels from infrared?spectral insights[J].Macromolecules,2014,47(3):1144-1154.
[54]ZHANG B,SUN S,WU P.Synthesis and unusual volume phase transition behavior of poly(N?isopropylacrylamide)?poly(2?hydroxyethyl methacrylate)interpenetrating polymer network microgel[J].Soft Matter,2013,9(5):1678-1684.
[55]ZHANG B,TANG H,WU P.The unusual volume phase transition behavior of the poly(N?isopropylacrylamide)?poly(2?hydroxyethyl methacrylate) interpenetrating polymer network microgel:Different roles in different stages[J].PolymerChemistry, 2014, 5(20):5967-5977.
[56]ZHOU Y,TANG H,WU P.Volume phase transition mechanism of poly[oligo(ethylene glycol)methacrylate]based thermo?responsive microgelswith poly(ionic liquid)cross?linkers[J].Physical Chemistry Chemical Physics,2015,17(38):25525-25535.
[57]HOU L,WU P.The effect of added gold nanoparticles on the volume phase transition behavior for PVCL?based microgels[J].RSC Advances,2014,4(74):39231-39241.
[58]MASUDA T,HIDAKA M,MURASE Y,et al.Self?oscillating polymer brushes[J].Angewandte Chemie International Edition,2013,52(29):7468-7471.
[59]JALILI K, ABBASI F, MILCHEV A.Surface microdynamics phase transition and internal structure of high?density,ultrathin PHEMA?b?PNIPAM diblock copolymer brushes on silicone rubber [J].Macromolecules,2013,46(13):5260-5278.
(編輯 程利冬)
Two?dimensional spectral characterization of thermoresponsive water?soluble polymers
SUN Shengtong1,2,WU Peiyi1,2,3
(1.Center for Advanced Low?Dimension Materials(Donghua University),Shanghai 201620,China;2.College of Chemistry,Chemical Engineering and Biotechnology,Donghua University,Shanghai 201620,China;3.Department of Macromolecular Science,F(xiàn)udan University,Shanghai 200433,China)
Two?dimensional spectral analysis based on two?dimensional correlation spectroscopy has been proved to be a very powerful tool to study the structural changes of various physical?chemical systems at the molecular level.This review summarize the recent research progress of two?dimensional correlation spectroscopy and its derivative technique,perturbation correlation moving window,in the investigation of thermoresponsive water?soluble polymers,especially LCST(lower critical solution temperature)?type polymers.Around LCST,LCST?type polymers in aqueous solutions undergo coil?to?globule conformational changes while in gel,volume phase transitions LCST?type polymers exhibit collapsing and swelling,which can be well traced by in?situ IR spectroscopy.Based on dynamic IR spectra,the combined one?and two?dimensional correlation spectroscopy analysis can be used to easily determine the transition temperature,transition temperature range,temperature?responsiveness,and the sequence order of different species,which are very helpful to illustrate the whole transition process.In this review,we will mainly emphasize on the typical applications of two?dimensional correlation spectroscopy analysis in the systems of LCST?type homopolymers,copolymers and mixtures,gels,and polymer brushes.
thermoresponsive water?soluble polymer;LCST;phase transition;two?dimensional correlation spectroscopy;perturbation correlation moving window
O631.1
A
1005-0299(2017)01-0001-09
10.11951/j.issn.1005-0299.20160386
2016-10-31.< class="emphasis_bold">網(wǎng)絡(luò)出版時(shí)間:
時(shí)間:2016-12-14.
國家自然科學(xué)基金資助項(xiàng)目(21274030,51473038,21604024).
孫勝童(1986—),男,特聘研究員;武培怡(1968—),男,教授,博士生導(dǎo)師,國家杰出青年基金獲得者.
武培怡,E?mail:peiyiwu@fudan.edu.cn.