黃麗坤,王廣智,李 偉,屈凡琦,王敬元,趙慶良
(1.哈爾濱商業(yè)大學(xué) 食品工程學(xué)院,哈爾濱150076;2.哈爾濱工業(yè)大學(xué) 市政環(huán)境工程學(xué)院,哈爾濱 150090)
Cu2+和Ni2+對(duì)水解-MBR工藝處理效能的影響特性
黃麗坤1,2,王廣智2,李 偉2,屈凡琦1,王敬元1,趙慶良2
(1.哈爾濱商業(yè)大學(xué) 食品工程學(xué)院,哈爾濱150076;2.哈爾濱工業(yè)大學(xué) 市政環(huán)境工程學(xué)院,哈爾濱 150090)
為降低電鍍廢水中重金屬對(duì)生物處理系統(tǒng)的沖擊,采用水解-膜生物反應(yīng)器(MBR)組合工藝對(duì)電鍍綜合廢水進(jìn)行處理,以重金屬離子Cu2+、Ni2+為代表,重點(diǎn)研究不同質(zhì)量濃度的重金屬?zèng)_擊下對(duì)水解-MBR工藝處理電鍍廢水效能的影響,以及水中DOMs與微生物活性的變化情況.結(jié)果表明:在Cu2+、Ni2+質(zhì)量濃度5~20 mg/L沖擊下,水解-MBR組合工藝對(duì)COD和NH4+-N去除效率分別在75%和45%以上.硝化細(xì)菌抗重金屬?zèng)_擊能力較差,水解-MBR組合工藝對(duì)重金屬Cu2+、Ni2+的耐受質(zhì)量濃度可達(dá)20 mg/L,而單純MBR工藝僅為10 mg/L.水解反應(yīng)器可將污水中HPI大部分轉(zhuǎn)化為HPO-A,改善難降解有機(jī)物可生化性,芳香族化合物的含量明顯降低.隨著重金屬Cu2+、Ni2+質(zhì)量濃度的升高,MBR反應(yīng)器內(nèi)活性污泥的SOUR值逐步下降,但水解-MBR工藝SOUR受重金屬的抑制率均比單獨(dú)MBR工藝低5%左右.由于水解使重金屬毒性減弱,水解-MBR系統(tǒng)中微生物的活性較高,系統(tǒng)中EPS含量和出水質(zhì)量濃度均顯著低于單獨(dú)MBR工藝,且可以有效減少膜表面膠體物質(zhì)和溶解性有機(jī)物形成,降低污泥濾餅層的形成速度,有效減緩膜污染的速率.
電鍍廢水;水解酸化;膜生物反應(yīng)器;重金屬
電鍍行業(yè)是當(dāng)今全球三大污染行業(yè)之一,生產(chǎn)廢水成分復(fù)雜,有毒有害物質(zhì)多,污染物質(zhì)量濃度高,可生化性差,其主要污染物為重金屬(Cu、Ni、Cr、Zn和Cd)、氰化物、有機(jī)物等[1].針對(duì)電鍍廢水不同的污染物有不同的處理方法,如廢水中重金屬、氰化物、酸堿等主要通過物化法處理[2-6],COD、氮類等污染物主要通過生化法處理達(dá)標(biāo)排放[7-9].由于電鍍廢水中存在多種生物毒性較大的重金屬,其對(duì)生物處理單元易造成嚴(yán)重沖擊,可導(dǎo)致后續(xù)生化工藝經(jīng)常崩潰,難以穩(wěn)定運(yùn)行.賴日坤[10]采用微電解對(duì)電鍍廢水進(jìn)行預(yù)處理,再通過厭氧好氧工藝,使COD的去除率達(dá)75.08%.陸道峰等[11]采用水解酸化結(jié)合改良型A/O工藝對(duì)電鍍廢水進(jìn)行處理,為了降低電鍍廢水中有毒有害物質(zhì)對(duì)生物處理系統(tǒng)的沖擊,將電鍍廢水和生活污水按1∶3比例混合后進(jìn)入生物處理單元,對(duì)COD、NH4+-N去除率可達(dá)83%和98%.隨著國(guó)家新的《電鍍污染物排放標(biāo)準(zhǔn)》(GB 21900—2008)啟動(dòng)實(shí)施,對(duì)電鍍廢水的COD、NH4+-N、TN等生化指標(biāo)排放限值顯著提高[12],如何在多種重金屬存在條件下使電鍍廢水達(dá)標(biāo)排放,成為急需解決的主要問題.
近年來,膜生物反應(yīng)器(membrane bioreactor, MBR)因占地小、容積負(fù)荷高、污泥產(chǎn)量少、出水水質(zhì)高等特點(diǎn)廣泛應(yīng)用于各種類型污水處理中[13-15],以滿足更高的排放要求.但在大多數(shù)MBR反應(yīng)器中,反硝化受到抑制,系統(tǒng)的脫氮效率受到影響.針對(duì)電鍍廢水的水質(zhì)特點(diǎn),本研究采用了水解酸化作為MBR預(yù)處理手段,同時(shí)為提高系統(tǒng)的脫氮能力,在MBR中設(shè)置缺氧區(qū),對(duì)好氧區(qū)的硝化液進(jìn)行回流[16-18],并以重金屬離子Cu2+和Ni2+為代表,研究了不同質(zhì)量濃度的重金屬?zèng)_擊下對(duì)水解-MBR工藝處理電鍍廢水效能的影響,以及水中溶解性有機(jī)物(dissolved organic matter, DOMs)的變化及微生物活性的變化,以期為該組合工藝的在電鍍廢水處理工程應(yīng)用提供技術(shù)支持.
1.1 實(shí)驗(yàn)用水
反應(yīng)器啟動(dòng)期間,采用哈爾濱工業(yè)大學(xué)二校區(qū)的生活污水進(jìn)行馴化培養(yǎng)微生物,其水質(zhì)特征如表1所示.參考重金屬的毒性和電鍍廢水排放標(biāo)準(zhǔn),綜合考慮后向生活污水中投加重金屬(Cu2+和Ni2+)和電鍍中常用的表面活性劑(十二烷基磺酸鈉)、光亮劑(糖精鈉)和穩(wěn)定劑(聚乙二醇)模擬電鍍廢水.水中十二烷基磺酸鈉、糖精鈉、聚乙二醇的質(zhì)量濃度分別為2.5、1、3.5 mg/L,重金屬?zèng)_擊實(shí)驗(yàn)分3階段進(jìn)行,不同階段Cu2+、Ni2+的質(zhì)量濃度分別為5、10和20 mg/L.
表1 水質(zhì)特征Tab.1 Water quality characteristics
1.2 實(shí)驗(yàn)裝置
水解-MBR反應(yīng)裝置由水解反應(yīng)器和MBR反應(yīng)器組成(見圖1),記為HMBR工藝.MBR反應(yīng)器有效容積20 L,水解反應(yīng)器有效容積為11.8 L.反應(yīng)器由有機(jī)玻璃制成,其中水解反應(yīng)器直徑D=150 mm,有效高度670 mm,有效容積為11.8 L,MBR規(guī)格為L(zhǎng)×B×H=400 mm×200 mm×250 mm,總有效容積為20 L.水解反應(yīng)器和MBR的水力停留時(shí)間(hydraulic retention time, HRT)分別為5和9 h.水解反應(yīng)器采用連續(xù)進(jìn)水、連續(xù)出水的運(yùn)行方式,由進(jìn)水泵控制停留時(shí)間.MBR采用連續(xù)進(jìn)水、間歇出水的運(yùn)行方式,出水通過三針式液位計(jì)進(jìn)行控制,保證進(jìn)水流速小于出水速度.中空纖維膜直接浸入到反應(yīng)器中與廢水接觸,中空纖維膜的材質(zhì)為聚偏氟乙烯(PVDF),孔徑為0.2 μm,膜面積為0.2 m2.由壓力傳感器檢測(cè)跨膜壓差(transmembrane pressure difference, TMP),當(dāng)壓力為0.2 MPa時(shí),取出膜組件進(jìn)行清洗.MBR反應(yīng)器改進(jìn)后增加缺氧區(qū),有效容積為4 L.在MBR反應(yīng)器的好氧區(qū)設(shè)置微孔曝氣管,采用曝氣泵進(jìn)行不間斷曝氣,由轉(zhuǎn)子流量計(jì)控制曝氣量,曝氣量為14 mL/min.硝化液回流通過蠕動(dòng)泵完成,回流比為150%.
對(duì)照反應(yīng)裝置為單獨(dú)MBR反應(yīng)器,記為MBR工藝.反應(yīng)器進(jìn)水與HMBR工藝進(jìn)水保持一致,其他運(yùn)行參數(shù)不變.實(shí)驗(yàn)以每6 d為一個(gè)階段,每階段結(jié)束后,改用生活污水純培養(yǎng),使系統(tǒng)的微生物活性恢復(fù).當(dāng)連續(xù)2 d的COD去除率穩(wěn)定在85%以上,恢復(fù)期結(jié)束,開始下一階段實(shí)驗(yàn).
圖1 水解-MBR反應(yīng)器示意
Fig.1 Schematic diagram of the lab-scale hydrolysis acidification-MBR reactor
1.3 污泥接種
冬春季節(jié)大棚蔬菜種植由于季節(jié)溫度偏低,空氣濕度過大,容易誘發(fā)病蟲害的發(fā)生,并且容易造成植株徒長(zhǎng)、落花落果,嚴(yán)重時(shí)造成減產(chǎn),科學(xué)地控制大棚內(nèi)空氣濕度顯得十分重要。下面根據(jù)北方地區(qū)生產(chǎn)實(shí)際介紹幾種有效控制棚內(nèi)空氣濕度的方法。
MBR反應(yīng)器的接種污泥取自哈爾濱市某污水廠A/O池好氧段的污泥,水解池的污泥取自污泥消化間.在啟動(dòng)階段,反應(yīng)器利用生活污水采用間歇運(yùn)行方式并監(jiān)測(cè)COD指標(biāo),反應(yīng)器經(jīng)過10 d的啟動(dòng)培養(yǎng),對(duì)COD去除率穩(wěn)定在80%左右,采用連續(xù)進(jìn)水的方式運(yùn)行.最終控制水解反應(yīng)器中污泥質(zhì)量濃度在8 000 mg/L左右,MBR反應(yīng)器中污泥質(zhì)量濃度在4 500 mg/L左右.
1.4 分析方法
COD、NH4+-N均采用國(guó)家標(biāo)準(zhǔn)方法進(jìn)行檢測(cè);MLSS和MLVSS采用重量法測(cè)定;DOMs借助樹脂分級(jí)實(shí)驗(yàn)[19],利用樹脂的吸附性能不同,將DOMs分為過渡親水性中性有機(jī)物(transphilic neutral, TPI-N)、疏水性有機(jī)酸(hydrophobic acid, HPO-A)、疏水性中性有機(jī)物(hydrophobic neutral, HPO-N)、親水性有機(jī)物(hydrophilic fraction, HPI)和過渡親水性有機(jī)酸(transphilic acid, TPI-A)5種組分,利用總有機(jī)碳測(cè)定儀(TOC-VCPN,日本島津)測(cè)定;UV254采用254 nm下紫外分光光度計(jì)[20](T6,北京普析通用)測(cè)定;多糖采用硫酸-蒽酮法檢測(cè)[21],蛋白質(zhì)采用Lowry法檢測(cè)[22];微生物代謝活性用比耗氧速率(specific oxygen consumption rate,SOUR)法測(cè)定[23](Oxi-3205SET1,德國(guó)TWT);膜組件采用掃描電子顯微鏡(scanning electron microscope,SEM)進(jìn)行觀察[28](Quanta 200,美國(guó)FEI).
重金屬的沖擊會(huì)使微生物的活性降低,不同種類微生物對(duì)重金屬的耐受性不同,受到的影響也會(huì)不同.從系統(tǒng)對(duì)污染物去除率、微生物生物活性、有機(jī)污染物轉(zhuǎn)化和膜污染等角度,研究了Cu2+和Ni2+對(duì)水解-MBR工藝的影響.
2.1 重金屬?zèng)_擊負(fù)荷對(duì)系統(tǒng)處理COD和NH4+-N的影響
在不同Cu2+和Ni2+沖擊負(fù)荷下,HMBR和MBR工藝對(duì)COD、NH4+-N的去除率見圖2、3.由圖2可知,進(jìn)水COD在260~426 mg/L波動(dòng),在3個(gè)試驗(yàn)階段進(jìn)水COD平均分別為301.0、323.0、313.0 mg/L.在此條件下,單獨(dú)MBR工藝出水COD平均為37.7、65.5、97.2 mg/L,對(duì)COD平均去除率為87.7%、79.2%、68.9%,而HMBR工藝出水COD平均為31.2、35.6、73.3 mg/L,對(duì)COD平均去除率為89.6%、88.4%、76.3%.對(duì)比來看,在第一試驗(yàn)階段(Cu2+、Ni2+質(zhì)量濃度為5 mg/L),兩種工藝對(duì)COD的去除差異不大,這主要是由于重金屬質(zhì)量濃度較低,微生物可以迅速將其吸附,且低質(zhì)量濃度重金屬對(duì)微生物的影響較小.在第二試驗(yàn)階段(Cu2+、Ni2+質(zhì)量濃度為10 mg/L),單獨(dú)MBR工藝對(duì)COD的去除率迅速下降,而HMBR工藝對(duì)COD去除率也有一定程度下降,但下降的幅度較小.到第三階段時(shí)(Cu2+、Ni2+質(zhì)量濃度為20 mg/L),單獨(dú)MBR工藝對(duì)COD去除率下降幅度進(jìn)一步加大,兩種工藝對(duì)COD去除率的差異進(jìn)一步拉大.隨著重金屬質(zhì)量濃度的增加,HMBR工藝對(duì)COD去除率穩(wěn)定在75%以上,而單獨(dú)MBR工藝對(duì)COD去除率惡化至70%以下.
圖2 各階段HMBR和MBR工藝對(duì)COD的去除效果
Fig.2 COD removal efficiency of HMBR and MBR processes in different stages
圖3 各階段HMBR和MBR工藝對(duì)NH4+-N的去除效果
Fig.3 NH4+-N removal efficiency of HMBR and MBR processes in different stages
由圖3可知,進(jìn)水NH4+-N質(zhì)量濃度在29.6~42 mg/L波動(dòng),3個(gè)試驗(yàn)階段進(jìn)水NH4+-N的平均質(zhì)量濃度分別為35.7、35.9和36.5 mg/L.在此條件下,單獨(dú)MBR工藝出水NH4+-N平均質(zhì)量濃度分別為15.9、19.6和23.3 mg/L,對(duì)NH4+-N平均去除率為55.3%、46.2%和35.8%,而HMBR工藝出水NH4+-N平均質(zhì)量濃度則為6.7、9.6和11.5 mg/L,對(duì)NH4+-N平均去除率為58.1%、52.4%和52.3%.從試驗(yàn)結(jié)果來看,隨著運(yùn)行時(shí)間的延長(zhǎng)和重金屬?zèng)_擊負(fù)荷的增加,兩種工藝對(duì)NH4+-N的去除能力都在逐步下降,表明硝化細(xì)菌與重金屬離子接觸時(shí)間越長(zhǎng),受抑制影響越大,在抗重金屬?zèng)_擊能力方面較差.在第二試驗(yàn)階段(Cu2+、Ni2+質(zhì)量濃度為10 mg/L),兩種工藝的出水水質(zhì)均迅速惡化,HMBR工藝對(duì)NH4+-N去除率為50%左右,而單獨(dú)MBR工藝則減少到40%左右.到第三階段末期(Cu2+、Ni2+質(zhì)量濃度為20 mg/L),當(dāng)重金屬質(zhì)量濃度增加到20 mg/L,單獨(dú)MBR中NH4+-N的去除率不到20%,系統(tǒng)即將崩潰,而HMBR還能保證45%的去除率.可以看出,HMBR工藝經(jīng)過水解反應(yīng)器的緩沖作用,好氧處理單元內(nèi)微生物受重金屬的影響減弱,可以保證對(duì)NH4+-N具有較高去除率.
溶解性有機(jī)物(DOMs)主要成分包括腐殖酸類、富里酸類和親水性有機(jī)酸,以及其他微量物質(zhì)如糖類物質(zhì)、氨基酸等.目前,很多學(xué)者認(rèn)為DOMs可以通過結(jié)合電子、絮凝或吸附重金屬[24-25],在重金屬?gòu)U水生物處理過程中有重要作用.圖4為在試驗(yàn)初期和后期, HMBR和MBR工藝出水組分中DOMs質(zhì)量濃度變化.
圖4 HMBR和MBR出水組分中DOMs變化Fig.4 DOMs in the effluent of HMBR and MBR processes
由圖4(a)可知,水解反應(yīng)器和MBR對(duì)TOC去除率分別達(dá)27.9%和82.3%,這與COD的去除率一致.原水中TOC的主要成分是HPI(29.0%)、HPO-A(28.1%)和HPO-N(31.2%),三者加起來占88.1%.重金屬?zèng)_擊前(Cu2+、Ni2+質(zhì)量濃度0 mg/L),原水經(jīng)過水解反應(yīng)器以后,HPI的質(zhì)量濃度進(jìn)一步增加,而HPO-A和HPO-N的質(zhì)量濃度則剛好相反,呈現(xiàn)出大幅減少的趨勢(shì),二者的消減比例達(dá)50.6%.這證明了在水解反應(yīng)優(yōu)先降解的組分是HPO-A(η=57.7%)和HPO-N(η=68.5%),這一現(xiàn)象的解釋為HPO-A和HPO-N均為疏水性物質(zhì),分子質(zhì)量較高,容易被水解細(xì)菌利用,通過水解反應(yīng)變?yōu)樾》肿拥挠H水性的有機(jī)酸(如乙酸).MBR反應(yīng)器則主要是HPI(84.6%).重金屬?zèng)_擊后(Cu2+、Ni2+質(zhì)量濃度20 mg/L),水解反應(yīng)器中DOMS的主要成分是HPO-A(42.1%),HPI含量大幅減小,去除率達(dá)32%,其他3種組分比例基本不變.這說明受金屬?zèng)_擊后,污水HPI大部分轉(zhuǎn)化為HPO-A.沖擊前,MBR出水的主要成分是HPI、HPO-A和TPI-A,HPO-N和TPI-N質(zhì)量濃度極低,表明生物降解作用能有效去除HPO-N和TPI-N.HMBR系統(tǒng)中出水DOC低于MBR系統(tǒng),此結(jié)果與之前COD 的去除情況相似;同時(shí)MBR系統(tǒng)出水中主要是HPI(33.4%)而HMBR系統(tǒng)則是HPO-A和HPO-N(二者各占32.4%).HMBR系統(tǒng)的出水以疏水性物質(zhì)為主.MBR系統(tǒng)則以親水性有機(jī)物為主.考慮到表面活性劑、固定劑、光亮劑等均為親水性物質(zhì),HMBR系統(tǒng)更適合處理含親水性物質(zhì)較多的廢水.
圖5為試驗(yàn)初期和后期, HMBR和MBR工藝出水UV254變化.
圖5 HMBR和MBR出水UV254變化Fig.5 UV254in the effluent of HMBR and MBR processes
由圖5(a)可知,原水中UV254的主要成分為HPO-N(53.4%),這說明原水中的芳香性有機(jī)物主要來自HPO-N.水解反應(yīng)器去除了原水中36.1%UV254,表明水解反應(yīng)可去除部分的芳香族化合物;而MBR出水UV254比水解出水高6.6%,表明芳香族化合物在MBR反應(yīng)器中有累積,HMBR工藝對(duì)UV254的降解主要來自于水解.水解出水中HPI是UV254的主要成分(24.5%),水解工藝對(duì)HPO-N的處理效果最好,去除率達(dá)93.61%.對(duì)照?qǐng)D5(b)中的重金屬?zèng)_擊后(Cu2+、Ni2+質(zhì)量濃度0 mg/L)水解出水可以發(fā)現(xiàn),沖擊后水解出水的芳香族化合物的含量明顯降低,這可能是由于重金屬的刺激作用使微生物的活性增加,芳香族化合物去除率升高.MBR出水中,TPI-A、HPO-N和TPI-N是UV254的主要成分,含量較水解反應(yīng)器增幅明顯,這主要是由HPI和TPI-A轉(zhuǎn)化而來的.需注意的是MBR出水中TPI-A的含量甚至比原水還高,這說明TPI-A的可生物降解性能較差,容易在生物處理單元內(nèi)累積.由圖5(b)可知,重金屬?zèng)_擊后MBR出水中芳香族化合物的含量接近HMBR的2倍,HMBR系統(tǒng)出水中芳香族化合物比水解出水僅有小幅降低,表明好氧處理單元對(duì)芳香族化合物的降解性能較差.
2.3 重金屬?zèng)_擊負(fù)荷對(duì)系統(tǒng)中好氧污泥活性的影響
SOUR是評(píng)價(jià)污泥微生物代謝活性的一個(gè)重要指標(biāo)[26-27],系統(tǒng)進(jìn)水特性的變化及污泥性質(zhì)的變化可由不同時(shí)期SOUR的變化來判斷.圖6為兩種工藝在不同重金屬?zèng)_擊下SOUR的變化.
圖6 重金屬?zèng)_擊對(duì)污泥SOUR的影響Fig.6 Effect of heavy metals shocking on activated sludge SOUR
由圖6可知,在3個(gè)試驗(yàn)階段,單獨(dú)MBR工藝受沖擊后SOUR值為18.62、16.02和12.58 mg/(g·h),抑制率為5.1%、15.4%和35.22%,而HMBR工藝SOUR值則為19.10、17.28和14.01 mg/(g·h),抑制率為4.4%、11.9%和27.18%.可以看出,隨著重金屬質(zhì)量濃度的升高,MBR反應(yīng)器內(nèi)活性污泥的SOUR值逐步下降.隨著重金屬?zèng)_擊負(fù)荷的增加,HMBR工藝SOUR的下降值遠(yuǎn)遠(yuǎn)小于單獨(dú)MBR的下降值,HMBR工藝在各階段的抑制率均比單獨(dú)MBR工藝低5%左右;HMBR工藝在第三階段(Cu2+和Ni2+質(zhì)量濃度各20 mg/L)的SOUR值接近于單獨(dú)MBR工藝第二階段(Cu2+和Ni2+質(zhì)量濃度各10 mg/L),體現(xiàn)了HMBR工藝具有較強(qiáng)的抗沖擊負(fù)荷能力.這主要是由于水解反應(yīng)器中微生物將部分重金屬吸附,或者是受重金屬的刺激分泌大量的EPS與重金屬形成螯合物,在降低重金屬質(zhì)量濃度的同時(shí)減輕重金屬的毒性作用,最大程度地保護(hù)了后續(xù)好氧處理單元內(nèi)的微生物.
2.4 重金屬?zèng)_擊負(fù)荷對(duì)系統(tǒng)出水EPS的影響
EPS是由細(xì)菌分泌形成的胞外聚合物,蛋白質(zhì)和多糖是EPS的主要成分.研究認(rèn)為重金屬可刺激好氧微生物EPS增加從而減弱重金屬的毒性影響[28-29],并且EPS是影響MBR工藝膜污染關(guān)鍵因素.多糖是污泥EPS的主要成分之一,對(duì)MBR工藝膜污染速率的影響較大,圖7為重金屬?zèng)_擊前后系統(tǒng)出水的多糖變化.
圖7 HMBR和MBR出水多糖的變化Fig.7 Polysaccharide in the effluent of HMBR and MBR processes
由圖7可知,多糖在原水中主要分布在HPO-A(22.2%)、HPO-N(31.5%)和TPI-N(24.1%)中.水解出水中多糖質(zhì)量濃度達(dá)30.72 mg/L,是原水中多糖質(zhì)量濃度的近6倍(原水多糖為6.21 mg/L).主要是因?yàn)樗夥磻?yīng)將水中懸浮的有機(jī)顆粒溶解,進(jìn)而使多糖的質(zhì)量濃度大幅升高.受重金屬?zèng)_擊后,水解反應(yīng)器出水中多糖的質(zhì)量濃度僅為18.21 mg/L,這是由于重金屬的毒害作用使水解反應(yīng)器中微生物的活性大幅降低,從而使水解效率降低,多糖的溶出速率減慢.重金屬?zèng)_擊前,MBR對(duì)溶解性多糖類有機(jī)物有較好的去除作用,去除率達(dá)66.7%,但是多糖質(zhì)量濃度較原水有所升高,是原水中多糖質(zhì)量濃度的1.83倍.這是由于水解作用將顆粒物水解后生成大量的多糖,進(jìn)而使水解出水中多糖的質(zhì)量濃度升高.單獨(dú)MBR出水中,多糖質(zhì)量濃度由高到低的順序?yàn)門PI-A(45.5%)> HPO-A和HPI>HPO-N和TPI-N,表明MBR對(duì)中性有機(jī)物的去除效果較好.對(duì)照重金屬?zèng)_擊后(Cu2+、Ni2+質(zhì)量濃度20 mg/L)MBR和HMBR出水多糖質(zhì)量濃度可以發(fā)現(xiàn),HMBR系統(tǒng)出水多糖質(zhì)量濃度較低,這主要是由于重金屬的直接沖擊作用使MBR系統(tǒng)中污泥EPS的分泌物增多,而HMBR系統(tǒng)受水解反應(yīng)器的保護(hù)作用,微生物活性較高,去除能力較強(qiáng),可將大多數(shù)多糖去除.MBR系統(tǒng)出水HPO-A和TPI-A占主要成分,而HMBR中HPO-N和TPI-N為主要成分,表明HMBR對(duì)親水性、過度親水性的有機(jī)物均有良好的去除作用.
蛋白質(zhì)也是污泥EPS的主要成分之一,通過水中溶解性蛋白的質(zhì)量濃度可以在一定程度上判斷污泥中微生物的活性.重金屬?zèng)_擊前后各系統(tǒng)出水中蛋白的變化如圖8所示.
圖8 HMBR和MBR出水溶解性蛋白質(zhì)的變化Fig.8 Soluble protein in the effluent of HMBR and MBR processes
由圖8可知,原水中溶解性蛋白質(zhì)的分布較為均勻,最多的為HPO-A(37.5%)、最少的是TPI-N(8.5%),其余3種組分的含量接近(18%左右).原水經(jīng)過水解反應(yīng)器處理后,出水中溶解性蛋白質(zhì)量濃度降低16.6 mg/L.這主要是因?yàn)镠PO-A、HPO-N和TPI-N被大幅降解,說明水解系統(tǒng)中蛋白去除的先后順序是疏水性蛋白質(zhì)、親水性蛋白質(zhì).加入重金屬?zèng)_擊后(Cu2+和Ni2+質(zhì)量濃度各20 mg/L),水解出水中蛋白的質(zhì)量濃度大幅升高達(dá)72.62 mg/L,是未加重金屬?zèng)_擊時(shí)的1.4倍,這主要是由于微生物系統(tǒng)通過分泌大量的蛋白來與重金屬結(jié)合,進(jìn)而降低重金屬的生物毒性.加重金屬的水解系統(tǒng)中HPI和HPO-A占主要成分,其他3種成分質(zhì)量濃度很低,這說明加入重金屬后,中性物質(zhì)優(yōu)先被降解去除.未加重金屬前,MBR系統(tǒng)出水中HPI的質(zhì)量濃度極低,大部分被降解去除,而HPO-A的質(zhì)量濃度增加,甚至略高于水解反應(yīng)器出水.重金屬?zèng)_擊后(Cu2+和Ni2+質(zhì)量濃度各20 mg/L),HMBR的處理效果遠(yuǎn)高于MBR,這主要是由于水解作用使水中小分子蛋白質(zhì)增加,提高了有機(jī)底物的質(zhì)量濃度,而且水解緩沖使重金屬的毒性減弱,HMBR系統(tǒng)中微生物的活性較高.此外,HMBR系統(tǒng)蛋白主要存在于HPO-N和TPI-N中,而MBR系統(tǒng)則主要是HPI,表明HMBR系統(tǒng)優(yōu)先處理親水性有機(jī)酸類.
2.5 重金屬?zèng)_擊負(fù)荷對(duì)系統(tǒng)膜組件影響
膜組件是影響MBR系統(tǒng)正常運(yùn)行的重要條件,重金屬?zèng)_擊可以刺激微生物EPS增加,加快膜污染的速率[30-31].為考察重金屬?zèng)_擊后系統(tǒng)中膜的污染情況,對(duì)膜組件的表面形態(tài)進(jìn)行SEM分析.MBR和HMBR膜組件的SEM照片如圖9所示.可以看出,單獨(dú)MBR工藝遠(yuǎn)比HMBR的膜表面粗糙,膜表面出現(xiàn)了明顯的污泥濾餅層,在同等的放大倍數(shù)下,MBR工藝的污泥濾餅層厚度大于HMBR工藝,而且MBR中的污泥濾餅層比較密室,而HMBR 中的濾餅層比較疏松.這主要是由于MBR直接受重金屬?zèng)_擊,好氧微生物EPS分泌量增加,而濾餅層在膜表面堆積增加,使得膜孔徑減小和TMP增加,膜通量降低,單位時(shí)間出水量減小,膜污染速率加快.而HMBR系統(tǒng)中經(jīng)過水解反應(yīng)器的緩沖作用后,可以有效減少膜表面膠體物質(zhì)和溶解性有機(jī)物形成,降低污泥濾餅層的形成速度,濾餅層較小,膜污染的速率較MBR慢,可有效延長(zhǎng)膜組件的使用周期[32].
圖9 重金屬?zèng)_擊后膜組件的SEM照片
Fig.9 SEM photographs of membrane module after high metals shocking
1)在重金屬Cu2+和Ni2+負(fù)荷沖擊時(shí),水解-MBR組合工藝對(duì)COD和NH4+-N去除效能顯著高于單獨(dú)MBR工藝,對(duì)COD和NH4+-N去除效率分別在75%和45%以上.隨著重金屬質(zhì)量濃度的升高,兩種工藝去除效能的差異逐漸拉大,硝化細(xì)菌在抗重金屬?zèng)_擊能力方面較差,NH4+-N去除效率受重金屬影響較為嚴(yán)重,水解-MBR組合工藝對(duì)重金屬Cu2+、Ni2+的耐受質(zhì)量濃度為20 mg/L,而單純MBR工藝僅為10 mg/L.
2)水解-MBR工藝適合處理含親水性物質(zhì)較多的廢水,在重金屬Cu2+和Ni2+負(fù)荷沖擊后,水解反應(yīng)可將污水中HPI大部分轉(zhuǎn)化為HPO-A,改善難降解有機(jī)物可生化性,芳香族化合物的含量明顯降低.水解-MBR工藝出水以疏水性物質(zhì)為主,而MBR工藝出水則是以親水性有機(jī)物為主,且出水中芳香族化合物含量接近于水解-MBR工藝出水的2倍.
3)隨著重金屬Cu2+和Ni2+質(zhì)量濃度的升高,MBR反應(yīng)器內(nèi)活性污泥的SOUR在逐步下降,但水解-MBR工藝SOUR的下降值遠(yuǎn)遠(yuǎn)小于單獨(dú)MBR,水解-MBR工藝SOUR受重金屬的抑制率均比單獨(dú)MBR工藝低5%左右.水解反應(yīng)器中微生物將部分重金屬吸附,或者是受重金屬的刺激分泌大量的EPS與重金屬形成螯合物,在降低重金屬質(zhì)量濃度的同時(shí)減輕重金屬的毒性作用,最大程度地保護(hù)了后續(xù)好氧處理單元內(nèi)的微生物,體現(xiàn)了水解-MBR工藝具有較強(qiáng)的抗沖擊負(fù)荷的能力.
4)受重金屬?zèng)_擊后,水解反應(yīng)器通過微生物系統(tǒng)分泌大量的蛋白來與重金屬結(jié)合,進(jìn)而降低重金屬生物毒性,水解出水中蛋白質(zhì)質(zhì)量濃度大幅升高,但由于微生物活性降低使多糖的溶出速率減慢.由于水解使重金屬毒性減弱,水解-MBR系統(tǒng)中微生物的活性較高,系統(tǒng)中出水質(zhì)量濃度均顯著低于單獨(dú)MBR工藝.
5)與單獨(dú)MBR工藝相比,水解-MBR系統(tǒng)中經(jīng)過水解反應(yīng)器的緩沖作用后,有效減少膜表面膠體物質(zhì)和溶解性有機(jī)物形成,降低污泥濾餅層的形成速度,濾餅層較小,膜污染的速率較MBR慢,可有效延長(zhǎng)膜組件的使用周期.
[1] 王文星. 電鍍廢水處理技術(shù)研究現(xiàn)狀及趨勢(shì)[J]. 電鍍與精飾, 2011,33(5):42-46. WANG Wenxing. Advances and trends of treatment techniques for electroplating wastewater[J]. Plating & Finishing, 2011,33(5):42-46.
[2] DAKIKY M, KHAMIS M, MANASSRA A, et al. Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents[J]. Advances In Environmental Research, 2002, 6(PII S1093-0191(01) 00079-X4):533-540.
[3] SHI T, WANG Z, LIU Y,et al. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins[J]. Journal of Hazardous Materials, 2009, 161(2/3):900-906.
[4] SAHA B, ORVIG C. Biosorbents for hexavalent chromium elimination from industrial and municipal effluents[J]. Coordination Chemistry Reviews, 2010, 254(23/24):2959-2972.
[5] OROZCO A F, CONTRERAS E M, ZARITZKY N E. Cr (VI) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication[J]. Journal of Hazardous Materials, 2010, 176(1):657-665.
[6] 黃明, 魏彩春, 陸燕勤, 等. 化學(xué)分類法處理電鍍生產(chǎn)廢水[J]. 桂林工學(xué)院學(xué)報(bào), 2003(1):85-88. HUANG Ming, WEI Caichun, LU Yanqin, et al. Chemical classification treatment in electroplating wastewater[J]. Journal of Guilin University of Technology, 2003(1):85-88.
[7] MEHMOOD C T, BATOOL A, QAZI I A. Combined biological and advanced oxidation treatment processes for COD and color removal of sewage water[J]. International Journal of Environmental Science and Development, 2013, 4(2):88-93.
[8] 高大文, 李昕芯,安瑞,等. 不同DO下MBR內(nèi)微生物群落結(jié)構(gòu)與運(yùn)行效果關(guān)系[J]. 中國(guó)環(huán)境科學(xué), 2010, 31(2):209-215. GAO Dawen, LI Xinxin, AN Rui, et al. Relationships between microbial community structure and the performance of MBR under different dissolved oxygen[J]. China Environmental Science, 2010, 31(2):209-215.
[9] 劉銳.膜生物反應(yīng)器和傳統(tǒng)活性污泥工藝的比較[J]. 環(huán)境科學(xué), 2001, 22(3):20-24. LIU Rui. A comparison between a submerged membrane bioreactor and a conventional activated sludge process[J]. Chinese Journal of Environmental Science, 2001, 22(3):20-24.
[10]賴日坤. 電鍍廢水中有機(jī)污染物處理的研究[D]. 廣州:華南理工大學(xué), 2009:60. LAI Rikun. Study on treatment of the organic contamination in plating wastewater[D]. Guangzhou: South China University of Technology, 2009:60.
[11]陸道峰, 徐樂中, 郭永福, 等. 水解酸化+改良型A/O工藝處理電鍍廢水尾水效能研究[J]. 水處理技術(shù), 2014, 40(9):89-92. LU Daofeng, XU Lezhong, GUO Yongfu, et al. Treatment of actual electroplating tail water with hydrolytic acidification and innovated A/O process[J]. Technology of Water Treatment, 2014, 40(9):89-92.
[12]KWANG H C, DAVID S H.Sequencing batch membrane reactor treatment: Nitrogen removal and membrane fouling evaluation wastewater [J]. Water Environment Research, 2000, 72(4):490498.
[13]ZHANG D J, VERSTRAETE W. The treatment of high strength wastewater containing high concentrations of ammonium in a staged anaerobic and aerobic membrane bioreactor[J]. Environmental Engineering and Science, 2002, 1(4):303-310.
[14]GUERRERO L,OMIL F,MNDEZ R,et al.Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solids and protein[J]. Water Research, 1999, 33(15): 3281-3290.
[15]HELMER C,KUNST S,JURETSCHKO S,et al.Nitrogen loss in a nitrifying biofilm system[J].Water Science and Technology, 1999, 39(7):13-21.
[16]ONG S, TOORISAKA E, HIRATA M, et al. Effects of nickel(II) addition on the activity of activated sludge microorganisms and activated sludge process[J]. Journal of Hazardous Materials, 2004,113(1/2/3):111-121.
[17]SEMERCI N, CECEN F. Importance of cadmium speciation in nitrification inhibition[J]. Journal of Hazardous Materials, 2007,147(1/2):503-512.
[18]YOU S, TSAI Y, HUANG R. Effects of heavy metals on the specific ammonia and nitrate uptake rates in activated sludge[J]. Environmental Engineering Science, 2009, 26(7):1207-1215.
[19]LABANOWSKI J, FEUILLADE G. Combination of biodegradable organic matter quantification and XAD-fractionation as effective working parameter for the study of biodegradability in environmental and anthropic samples [J]. Chemosphere, 2009, 74(4):605-611.
[20]劉瑩,盛飛,陳文婷,等. UV254在煤制氣廢水處理中的指示作用[J].環(huán)境工程學(xué)報(bào),2015, 9(4):1809-1814. LIU Ying, SHENG Fei, CHEN Wenting, et al. Indicative role of UV254in coal gasification wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2015, 9(4):1809-1814.
[21]王瓊. 銅、鋅離子對(duì)電鍍廢水生物處理單元影響的研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué), 2014:73. WANG Qiong. Influence of copper and zinc on biological treatment unit for electroplating wastewater treatment plant[D]. Harbin:Harbin Institute of Technology, 2014:73.
[22]李榮貞,王彬,李虎,等. Lowry法測(cè)定人凝血因子Ⅷ蛋白含量[J]. 北方藥學(xué), 2014(12):27-29. LI Rongzhen, WANG Bin, LI Hu, et al. Determination of protein assay of human coagulation factor Ⅷ by Lowry method[J]. Journal of North Pharmacy, 2014(12):27-29.
[23]孫曉瑩,張軼凡,聶英進(jìn),等. 活性污泥比耗氧速率的測(cè)定及其在污水處理廠的應(yīng)用[J]. 天津建設(shè)科技, 2009, 19(6):56-59. SUN Xiaoying, ZHANG Tiefan, NIE Yingjin, et al. Determination of oxygen consumption rate of activated sludge and its application in wastewater treatment plant[J]. Tianjin Construction Science and Technology, 2009, 19(6):56-59.
[24]王子超. 鹽度和重金屬對(duì)序批式生物反應(yīng)器性能及微生物群落結(jié)構(gòu)影響的研究[D]. 青島:中國(guó)海洋大學(xué), 2014:193. WANG Zichao. Effects of salinity and heavy metals on the performance and microbial community structure of sequencing batch bioreactor[D]. Qingdao: Ocean University of China, 2014:193.
[25]HU Z Q, CHANDRAN K, GRASSO D, et al. Comparison of nitrification inhibition by metals in batch and continuous flow reactors [J]. Water Research, 2004, 38(18):3949-3959.
[26]歐陽科,謝珊,劉輝,等.曝氣量對(duì)膜生物反應(yīng)器污泥特性和膜污染的影響[J]. 中國(guó)給水排水, 2011, 27(13):19-22. OUYANG Ke, XIE Shan, LIU Hui, et al. Influence of aeration rate on activated sludge characteristics and membrane fouling in membrane bioreactor[J]. China Water & Wastewater, 2011, 27(13):19-22.
[27]楊小麗,王世和,盧寧.一體式MBR控制膜污染的最佳曝氣強(qiáng)度及影響因素[J].水處理技術(shù),2006,32(5):17-19. YANG Xiaoli, WANG Shihe, LU Ning. Optimum aeration strength and its influencing factors for membrane fouling control in an integrated membrane bioreactor[J]. Technology of Water Treatment, 2006, 32(5):17-19.
[28]CHEN W, SUN F Y, WANG X M, et al. A membrane bioreactor for an innovative biological nitrogen removal process [J].Water Science and Technology, 2010, 61(3):671-676.
[29]FU Zhimin,YANG Fenglin,ZHOU Feifei,et al.Control of COD/N ratio for nutrient removal in a modified membrane bioreactor (MBR) treating high strength wastewater[J]. Bioresource Technology, 2009, 100(1):136-141.
[30]LEE W. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J]. Journal of Membrane Science, 2003, 216(1/2):217-227.
[31]WANG Z, WU Z, TANG S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor[J]. Water Research, 2009, 43(9):2504-2512.
[32]ARABI S, NAKHLA G. Impact of protein/carbohydrate ratio in the feed wastewater on the membrane fouling in membrane bioreactors[J]. Journal of Membrane Science, 2008, 324(1):142-150.
Influence characteristics of Cu2+and Ni2+on the treatment efficiency of hydrolysis-MBR process
HUANG Likun1,2, WANG Guangzhi2, LI Wei2, QU Fanqi1, WANG Jingyuan1, ZHAO Qingliang2
(1.School of Food Engineering, Harbin University of Commerce, Harbin 150076,China; 2.School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China)
In order to reduce the impact of heavy metals on the biological treatment system of electroplating wastewater, a lab-scale process combined with hydrolysis reactor and membrane bioreactor (MBR) was used to treat electroplating wastewater. Taking Cu2+and Ni2+as research objects, the effects of different metal concentrations on the electroplating wastewater treatment were studied, and the changes of DOMs and microbial activity in water were analysed simultaneously. The experimental results showed that the removal efficiencies of COD and NH4+-N were above 75% and 45%, respectively, when the concentration of Ni2+and Cu2+was 5-20 mg/L. Nitrification bacteria’s ability to resist heavy metal impact was weak. The tolerance concentration of Ni2+in hydrolysis reactor combined with MBR was 20 mg/L and only 10 mg/L in MBR. The hydrolysis reactor could convert most of HPI into HPO-A, which could improve the biodegradability of refractory organic compounds, and the content of aromatic compounds was obviously decreased. With the increase of Ni2+and Cu2+, the SOUR value of activated sludge in MBR reactor was gradually decreased, but the inhibition rate of SOUR in hydrolysis reactor combined with MBR was 5% lower than that in MBR. Due to the hydrolysis, the toxicity of heavy metals decreased. In hydrolysis reactor combined with MBR, the activity of microorganism was higher, and the content of EPS and the effluent concentration were significantly lower than those in MBR. The formation of colloid, dissolved organic matter and sludge cake layer could be reduced effectively, which retarded the rate of membrane fouling.
electroplating wastewater; hydrolysis acidification; MBR; heavy metal
10.11918/j.issn.0367-6234.2017.02.011
2016-02-16
國(guó)家重大科技專項(xiàng)(2013ZX07201-007-003); 中國(guó)博士后科學(xué)基金(2012M510965)
黃麗坤(1980—),女,博士,副教授; 趙慶良(1962—),男,教授,博士生導(dǎo)師
王廣智,hitwgz@126.com
X522
A
0367-6234(2017)02-0062-08