馬莉麗, 鐘 斌
(中國人民武裝警察部隊(duì)工程大學(xué) 裝備工程學(xué)院,陜西 西安 710086)
?
基于模型分塊逼近的三關(guān)節(jié)機(jī)器人魯棒滑??刂?/p>
馬莉麗, 鐘 斌
(中國人民武裝警察部隊(duì)工程大學(xué) 裝備工程學(xué)院,陜西 西安 710086)
三關(guān)節(jié)機(jī)器人結(jié)構(gòu)參數(shù)、作業(yè)環(huán)境的外界干擾及結(jié)構(gòu)振動(dòng)等不確定因素均會(huì)造成其動(dòng)力學(xué)模型不確定,導(dǎo)致機(jī)器人關(guān)節(jié)位置鎮(zhèn)定或軌跡跟蹤控制器的設(shè)計(jì)具有一定的難度。為此,設(shè)計(jì)三個(gè)RBF(Radical Basis Function)神經(jīng)網(wǎng)絡(luò)分別對(duì)機(jī)器人不確定模型中的三個(gè)不確定項(xiàng)進(jìn)行分塊逼近,得到三個(gè)不確定項(xiàng)的估計(jì)信息,從而得出機(jī)器人估計(jì)模型,神經(jīng)網(wǎng)絡(luò)的權(quán)值采用適應(yīng)算法。針對(duì)機(jī)器人估計(jì)模型設(shè)計(jì)魯棒滑??刂坡?其中魯棒項(xiàng)用于克服神經(jīng)網(wǎng)絡(luò)建模誤差。通過定義Lyapunov函數(shù),證明了控制系統(tǒng)是穩(wěn)定的。實(shí)驗(yàn)結(jié)果也表明了三關(guān)節(jié)均約在1s時(shí)達(dá)到期望位置或跟蹤期望軌跡,位置鎮(zhèn)定誤差或軌跡跟蹤誤差也快速、穩(wěn)定地趨于零。
三關(guān)節(jié)機(jī)器人; 模型分塊逼近; 關(guān)節(jié)控制; RBF神經(jīng)網(wǎng)絡(luò)
三關(guān)節(jié)機(jī)器人(以下簡(jiǎn)稱機(jī)器人)結(jié)構(gòu)緊湊,所占空間小,靈活性強(qiáng),工作空間較大,避障性好,廣泛應(yīng)用于工業(yè)機(jī)器人中。對(duì)機(jī)器人控制問題的研究一般集中于對(duì)其關(guān)節(jié)的位置控制,或者使每個(gè)關(guān)節(jié)能夠按照期望的動(dòng)態(tài)品質(zhì)跟蹤期望軌跡,或者使每個(gè)關(guān)節(jié)漸近穩(wěn)定于指定的某個(gè)位置,即其控制問題歸納為軌跡跟蹤或位置鎮(zhèn)定兩類[1-5]。然而,機(jī)器人本身結(jié)構(gòu)參數(shù)的變化或工作環(huán)境中的干擾往往導(dǎo)致機(jī)器人動(dòng)力學(xué)模型的不確定,這就給控制器的設(shè)計(jì)帶來了較大的難度[6-8]。通常針對(duì)這類問題采用的控制方法有滑模控制[9-11]、自適應(yīng)控制、模糊控制[12]和魯棒控制[13]。其中,滑??刂茻o需精確的動(dòng)力學(xué)模型和專門的多變量解耦,只需根據(jù)軌跡跟蹤或位置鎮(zhèn)定誤差合理設(shè)計(jì)滑模面,具有快速響應(yīng)、無超調(diào)及魯棒性強(qiáng)等優(yōu)點(diǎn),成為不確定機(jī)器人系統(tǒng)控制的首選方法。但該方法易導(dǎo)致控制器的輸出幅值波動(dòng)較大,所以滑??刂仆ǔEc其他控制方法相結(jié)合使用,才能得到較滿意的控制效果,如文獻(xiàn)[11]和文獻(xiàn)[12]。與這些文獻(xiàn)研究方法不同的是,本文采用了三個(gè)RBF神經(jīng)網(wǎng)絡(luò)分別對(duì)不確定機(jī)器人模型中三個(gè)不確定項(xiàng)進(jìn)行建模,即采用分塊逼近的方法得到其估計(jì)信息,神經(jīng)網(wǎng)絡(luò)的權(quán)值采用自適應(yīng)算法。已有研究表明,RBF神經(jīng)網(wǎng)絡(luò)能以任意精度逼近任意非線性函數(shù)[14]。針對(duì)機(jī)器人估計(jì)模型,設(shè)計(jì)誤差滑模函數(shù)和PI控制項(xiàng)及用于克服神經(jīng)網(wǎng)絡(luò)建模誤差的魯棒項(xiàng),即構(gòu)成機(jī)器人的PI魯棒滑??刂?。利用Lyapunov穩(wěn)定性理論證明了所設(shè)計(jì)的控制系統(tǒng)是全局漸近穩(wěn)定的。實(shí)驗(yàn)結(jié)果也表明三關(guān)節(jié)均能達(dá)到穩(wěn)定、快速的軌跡跟蹤和位置鎮(zhèn)定的控制要求。
三關(guān)節(jié)機(jī)器人結(jié)構(gòu)示意圖如圖1所示。后臂質(zhì)量為m2,前臂質(zhì)量為m3,后臂長為l2,前臂長為l3,后臂質(zhì)心到關(guān)節(jié)2的距離為r2,前臂質(zhì)心到關(guān)節(jié)3的距離為r3,q1、q2和q3分別為關(guān)節(jié)1、關(guān)節(jié)2和關(guān)節(jié)3的轉(zhuǎn)角,立柱轉(zhuǎn)動(dòng)慣量為I1,后臂轉(zhuǎn)動(dòng)慣量為I2,前臂轉(zhuǎn)動(dòng)慣量為I3,不計(jì)關(guān)節(jié)摩擦力矩。
圖1 三關(guān)節(jié)機(jī)器人Fig.1 Robot with three joints
三關(guān)節(jié)機(jī)器人動(dòng)力學(xué)模型為:
(1)
h11=I1+a1cos2(q2)+a2cos2(q2+a3)+ 2a3cos(q2)cos(q2+q3)
h12=h21=h13=h31=0
h22=I2+a1+a2+2a3cos(q3)
h23=h32=a2+a3cos(q3)
h33=I3+a2
c21=-c12
c31=-c13
c33=0
g1=0
g2=b1cos(q2)+b2cos(q2+q3)
g3=b2cos(q2+q3)
(2)
現(xiàn)定義滑模函數(shù):
(3)
于是,有:
(4)
(5)
將式(2)代入式(5),得:
(6)
以神經(jīng)網(wǎng)絡(luò)對(duì)H(q)的建模為例,RBF神經(jīng)網(wǎng)絡(luò)算法為:
(7)
式中:m為神經(jīng)網(wǎng)絡(luò)神經(jīng)元個(gè)數(shù);ΞH(e)=[ξH1(e),ξH2(e),…,ξHm(e)]為隱含層高斯基函數(shù)的輸出;xk=[xk1,xk2,…,xk(2m)]為第k個(gè)神經(jīng)元的中心向量;y=[y1,y2,…,ym]T為高斯基函數(shù)的基寬向量;WH=[WH1,WH2,…,WHm]為輸出層權(quán)值。
同理,有:
(8)
(9)
(10)
式中:ΓH、ΓC和ΓG均為對(duì)稱正定矩陣。
(11)
式中:KP和KI分別為比例系數(shù)和積分系數(shù),且KP>0、KI>0;τm為基于模型估計(jì)的控制律,且
(12)
其中,τr為用于克服神經(jīng)網(wǎng)絡(luò)建模誤差的魯棒項(xiàng),且
τr=Krsgn(s)
(13)
圖2 控制系統(tǒng)結(jié)構(gòu)框圖Fig.2 Control system’s structure
為分析控制系統(tǒng)的穩(wěn)定性,現(xiàn)定義基于積分型的Lyapunov函數(shù):
(14)
顯然,V是正定的,現(xiàn)對(duì)V求一階導(dǎo)數(shù),有:
(15)
(16)
由式(1)、式(4)和式(8),得:
(17)
再由式(9)、式(11)~式(13),得:
(18)
于是,由式(17)和式(18),得:
(19)
將式(19)代入式(16),得:
(20)
由于:
(21)
同理:
(22)
將式(21)和式(22)代入式(20),得:
(23)
(24)
(25)
機(jī)器人參數(shù):m2=30 kg,m3=26 kg;r2=0.6 m,r3=0.5 m;I1=3.61 (kg·m2),I2=2.35 (kg·m2),I3=1.95 (kg·m2)。
關(guān)節(jié)初始值:
三關(guān)節(jié)位置鎮(zhèn)定期望指令:
軌跡跟蹤期望指令:
RBF神經(jīng)網(wǎng)絡(luò)的神經(jīng)元個(gè)數(shù)m=5,高斯基函數(shù)基寬為3??刂破鲄?shù):KP=KI=100×I,Λ=5×I。
三關(guān)節(jié)的位置鎮(zhèn)定結(jié)果如圖3所示。從圖中可以看出,三關(guān)節(jié)約在1 s時(shí)達(dá)到并穩(wěn)定在期望位置,也能在1 s時(shí)跟蹤期望軌跡,實(shí)驗(yàn)還表明三關(guān)節(jié)也能在1 s時(shí)跟蹤期望速度。軌跡跟蹤結(jié)果如圖4所示。為了驗(yàn)證本文控制方法的有效性和優(yōu)勢(shì),與文獻(xiàn)[14]所采用的RBF神經(jīng)網(wǎng)絡(luò)滑??刂品椒ㄟM(jìn)行了對(duì)比實(shí)驗(yàn),限于篇幅,僅給出了如圖5所示的關(guān)節(jié)位置鎮(zhèn)定控制結(jié)果。通過對(duì)比圖3和圖5可以看出,采用文獻(xiàn)[14]的控制方法時(shí),三個(gè)關(guān)節(jié)約在4 s時(shí)才能達(dá)到并穩(wěn)定在期望位置。
圖3 采用本文控制方法的關(guān)節(jié)位置鎮(zhèn)定結(jié)果Fig.3 Control of position stabilizing with method of this paper
圖4 采用本文控制方法的關(guān)節(jié)軌跡跟蹤結(jié)果Fig.4 Control of trajectory tracking with method of this paper
圖5 采用文獻(xiàn)[14]的控制方法時(shí)關(guān)節(jié)位置鎮(zhèn)定結(jié)果Fig.5 Control of position stabilizing with control method of reference [14]
為了解決三關(guān)節(jié)機(jī)器人不確定動(dòng)力學(xué)模型的關(guān)節(jié)位置鎮(zhèn)定或軌跡跟蹤控制器設(shè)計(jì)較困難的問題,通過設(shè)計(jì)三個(gè)RBF神經(jīng)網(wǎng)絡(luò),分別對(duì)機(jī)器人不確定模型中的三個(gè)不確定項(xiàng)進(jìn)行分塊逼近,得到機(jī)器人估計(jì)模型。針對(duì)機(jī)器人的估計(jì)模型設(shè)計(jì)了魯棒滑??刂坡桑ㄟ^本文的研究得出了以下主要結(jié)論:
1) 通過定義Lyapunov函數(shù),證明了控制系統(tǒng)是全局漸近穩(wěn)定的;
2) 仿真實(shí)驗(yàn)表明,三關(guān)節(jié)機(jī)器人的各關(guān)節(jié)均約在1 s時(shí)達(dá)到期望位置或跟蹤期望軌跡,其位置鎮(zhèn)定誤差或軌跡跟蹤誤差也約在1 s時(shí)漸近地趨于零。
[1] 季曄, 劉宏昭, 原大寧, 等. 并聯(lián)機(jī)構(gòu)位置正解方法研究 [J]. 西安理工大學(xué)學(xué)報(bào), 2010, 26(3): 277-282. JI Ye, LIU Hongzhao, YUAN Daning. Research on approach of forward positional analysis of parallel manipulator [J]. Journal of Xi’an University of Technology, 2010, 26(3): 277-282.
[2] HARMON F G, FRANK A A, JOSHI S S. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network [J]. Neural Networks, 2012, 18(5): 772 -780.
[3] ODA M. Space robot experiments on NASDA’S ETSVII satellite: preliminary overview of the experiment results [C]∥IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2011: 1390-1395.
[4] 趙濤, 劉明雍, 周良榮. 基于Lyapunov方法的輪式移動(dòng)機(jī)器人全局軌跡跟蹤控制 [J]. 火力與指揮控制, 2010, 35(7): 87-89. ZHAO Tao, LIU Mingyong, ZHOU Liangrong. Lyapunov based global trajectory tracking control for wheeled mobile robot [J]. Fire Contorl & Command Control, 2010, 35(7): 87-89.
[5] 趙濤, 劉明雍, 周良榮. 移動(dòng)機(jī)器人的軌跡跟蹤控制新方法 [J]. 火力與指揮控制, 2010, 35(11): 33-34, 46. ZHAO Tao, LIU Mingyong, ZHOU Liangrong. Novel method for trajectory tracking control of mobile robot [J]. Fire Contorl & Command Control, 2010, 35(11): 33-34, 46.
[6] LI Z J, ZHANG Y N, YANG Y P. Support vector machine optimal control for mobile wheeled inverted pendulums with unmodeled dynamics [J]. Neurocomputing, 2011, 13(73): 2773-2782.
[7] BANERJEE A, BHATTACHARYA B, MALLIK A K. Large deformation of cantilever beams with geometric non-linearity: analytical and numerical approaches [J]. International Journal of Non-linear Mechanics, 2010, 43(5): 366-376.
[8] 田慧慧, 蘇玉鑫. 機(jī)器人系統(tǒng)輸出反饋重復(fù)學(xué)習(xí)軌跡跟蹤控制 [J]. 控制與決策, 2012, 27(11): 1756 -1760. TIAN Huihui, SU Yuxin. Global asymptotic stable repetitive output feedback tracking control of robot manipulators [J]. Control and Decision, 2012, 27(11): 1756-1760.
[9] UTKIN V I. Sliding mode control design principles and applications to electric drives [J]. IEEE Trans and Electron, 2010, 40(1): 23-26.
[10] LI T, HSENG S, HUANG Y C. MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators [J]. Information Sciences, 2010, 180(6): 4641-4660.
[11] DELAVARI H, GHADERI R, RANJBAR A, et al. Fuzzy fractional order sliding mode controller for nonlinear systems [J]. Commun in Nonlinear Sci Numer and Simulat, 2010, 15(4): 963-978.
[12] 胡盛斌, 陸敏恂. 多個(gè)關(guān)節(jié)機(jī)器人反饋線性化雙模糊滑??刂?[J]. 機(jī)械科學(xué)與技術(shù), 2013, 32(1): 105-110. HU Shengbin, LU Minxun. Feedback linearization double fuzzy sliding mode control for multi-links robot [J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(1): 105-110, 115.
[13] ISLAM S, LIU P X. Robust adaptive fuzzy output feedback control system for robot manipulators [J]. IEEE/ASME Trans on Mechatronics, 2011, 16(2): 288-296.
[14] 邵克勇, 馬千惠, 鄒運(yùn), 等. 基于徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的多關(guān)節(jié)機(jī)器人滑??刂破?[J]. 計(jì)算機(jī)測(cè)量與控制, 2014, 22(5): 1385-1387. SHAO Keyong, MA Qianhui, ZOU Yun, et al. Sliding mode control for multi-joint robot based on RBF neural network [J]. Computer Measurement & Control, 2014, 22(5): 1385-1387.
(責(zé)任編輯 周 蓓)
Research on three-joint robot’s robust sliding mode control based on model’s partitional approximating
MA Lili, ZHONG Bin
(College of Equipment Engineering, Engineering University of Chinese Armed Police Force, Xi’an 710086, China)
Generally, the dynamic model of robot with three-joint is undetermined due to three-joint robot’s uncertain structure parameters, working environment’s external interfere and structural vibration. Accordingly, it is difficult to control the robot’s joints’ position stabilizing and trajectory tracking and controller’s design due to the dynamic model’s uncertainty. Therefore, three designed RBF(Radical Basis Function) neural networks are used to respectively model the three undetermined terms of the undetermined robot dynamic model, with partition approximating the three-joint robot. Three undetermined terms’ estimation information is respectively obtained, with the robot’s estimation model obtained. The neural networks’ weights are obtained through the adaptive algorithm. The robust sliding mode control law is designed based on the robot’s estimation model. The control law’s robust term is used to overcome the neural networks’ modeling error. The control system’s stability is proved by defining Lyapunov function. The simulation experiments test verifies that three joints can trace ideal trajectory and reach an ideal position in 1s, and stabilization error and tracking error can fast and stably approximate to zero.
robot with three-joint; model’s partitional approximating; joints’ control; RBF neural network
10.19322/j.cnki.issn.1006-4710.2016.04.011
2015-09-06
國家自然科學(xué)基金資助項(xiàng)目(51005246);中國人民武裝警察部隊(duì)工程大學(xué)基礎(chǔ)研究基金資助項(xiàng)目(WJY201509)
馬莉麗,女,博士,講師,研究方向?yàn)闄C(jī)電系統(tǒng)智能控制及其自動(dòng)化、機(jī)器人控制、軍事裝備理論及其應(yīng)用等。E-mail:malilichina@163.com
TP242.2
A
1006-4710(2016)04-0437-06