亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        超聲波平板冷凍提高胡蘿卜凍干速率

        2017-01-17 15:15:10周新麗
        農(nóng)業(yè)工程學(xué)報 2017年1期
        關(guān)鍵詞:冰晶凍干當(dāng)量

        周新麗,滕 蕓,戴 澄

        (上海理工大學(xué)醫(yī)療器械與食品學(xué)院,上海 200093)

        ·農(nóng)產(chǎn)品加工工程·

        超聲波平板冷凍提高胡蘿卜凍干速率

        周新麗,滕 蕓,戴 澄

        (上海理工大學(xué)醫(yī)療器械與食品學(xué)院,上海 200093)

        為了探究接觸式超聲波輔助平板冷凍法對固體果蔬凍干過程的影響,該文研究了接觸式超聲波輔助胡蘿卜的平板冷凍過程。首先,利用低溫顯微鏡證實(shí)了接觸式超聲波能夠有效促進(jìn)平板冷凍固體果蔬樣品成核,并且冰晶的形態(tài)與成核溫度呈顯著相關(guān)性(相關(guān)系數(shù)0.99),即成核溫度越高,冰晶尺寸越大。其次,研究了超聲波作用參數(shù)(功率,作用時間)對胡蘿卜冰晶尺寸以及凍干速率的影響。結(jié)果表明,在胡蘿卜樣品厚度為5 mm,樣品冷凍溫度為-1℃時施加178.7 W功率的超聲波10 s能顯著提高(P<0.05)樣品的成核溫度,使凍干胡蘿卜的孔隙當(dāng)量直徑從無超聲波輔助條件下對照組樣品的(66.29±3.58) μm提高到了(80.81±3.03) μm,同時干燥至實(shí)際含水率為10 %時,升華干燥速率提升了29.1%。該研究為接觸式超聲波輔助平板冷凍用于果蔬樣品的凍干過程提供了有益參考。

        超聲波;成核;干燥;凍干速率;胡蘿卜

        0 引 言

        凍干果蔬作為一種可以最大程度地保存食品原有營養(yǎng)價值與感官品質(zhì)的干制果蔬產(chǎn)品越來越受到消費(fèi)者的歡迎。但冷凍干燥工藝由于其干燥時間長、能源成本高等因素,極大限制了其在食品消費(fèi)領(lǐng)域的普及。在冷凍干燥工藝中,冷凍是指在一定的過冷度下水轉(zhuǎn)變?yōu)楸У倪^程,這個過程是決定冰晶形態(tài)、尺寸與分布的關(guān)鍵階段,影響著凍干工藝與凍干食品的最終質(zhì)量[1-3]。近年來許多新興技術(shù),例如高壓冷凍[4-6]、成核劑[7-9]、電場[10-12]、微波輔助冷凍[13-16]等都被應(yīng)用于控制冷凍過程。功率超聲波作為一個低溫非接觸式的加工技術(shù)也被認(rèn)為是促進(jìn)成核的有效方法,它通過提升樣品成核溫度產(chǎn)生較大的冰晶,大冰晶在升華過程中形成較大的通道,從而達(dá)到提升升華干燥效率的目的。Chalmers[17]發(fā)表了第一篇超聲波能促使冰晶在一個較高的溫度下成核的研究。隨后,許多相關(guān)研究開始證實(shí)超聲波可以對過冷水和水溶液冷凍過程產(chǎn)生影響[18-21]。Nakagawa等[22]在其研究中發(fā)現(xiàn)成核溫度與一次干燥速率間有很強(qiáng)的相關(guān)性,即干燥速率隨成核溫度的升高而增大,后進(jìn)一步證實(shí)成核溫度是決定一次干燥速率的主要因素[23]。

        目前在超聲波輔助冷凍的研究中,超聲波的作用方式大致分為兩種:一種是通過超聲波水浴向樣品傳遞超聲波,即浸漬冷凍;另一種是樣品本身即為液體。這是由于液體與聲波間的聲阻抗很低十分利于超聲波的傳播。而聲能在食品組織中的傳播效率并不高,這就解釋了為什么輔助成核的試驗(yàn)對象很少為固體樣品。但在冷凍干燥工業(yè)中,冷凍是通過冷板來實(shí)現(xiàn)的,因此用液體作為超聲波的傳播環(huán)境顯然是不現(xiàn)實(shí)的。另一方面,一些科學(xué)家也進(jìn)行了直接接觸超聲波促進(jìn)對流干燥過程的研究。Gallego-Juárez等[24]利用超聲波與果蔬直接接觸的方法,也就是“直接接觸超聲波”向?qū)α鞲稍镏械墓咦饔贸暡?。試?yàn)發(fā)現(xiàn)超聲波的施加不僅能夠加快果蔬的脫水速度,同時可以實(shí)現(xiàn)降低干燥溫度,減小能源消耗。Sch?ssler等[25]在凍干果蔬升華干燥的過程中將樣品置于超聲波震動網(wǎng)格,間歇性地向樣品施加“直接接觸超聲波”,研究發(fā)現(xiàn)在超聲波的輔助下果蔬的干燥速率有顯著提升(P<0.05)。

        結(jié)合以上兩方面的研究,本研究運(yùn)用“直接接觸超聲波”來輔助胡蘿卜片的冷凍過程,驗(yàn)證直接接觸超聲波對輔助固體樣品成核的有效性以及對提升冷凍干燥速率的影響。首先利用低溫顯微鏡,從微觀上觀察直接接觸超聲波對促進(jìn)胡蘿卜成核的有效性;隨后在胡蘿卜的冷凍干燥過程中,利用超聲波平板實(shí)現(xiàn)超聲波輔助胡蘿卜平板冷凍,研究超聲波作用參數(shù)(超聲功率、作用時間)對胡蘿卜冰晶尺寸以及凍干速率的影響,以期為接觸式超聲波輔助平板冷凍用于果蔬樣品的凍干過程提供有益參考。

        1 材料與方法

        1.1 超聲波促進(jìn)結(jié)晶的顯微觀察

        低溫顯微實(shí)驗(yàn)臺由制冷系統(tǒng)和成像系統(tǒng)兩大部分組成,系統(tǒng)中各組件如圖1所示。制冷系統(tǒng)(BCS196,Linkam Scientific,英國)的部件包括冷熱臺,溫度控制器,泵、液氮罐及溫度控制軟件(Linksys32,Linkam Scientific,英國);其中冷熱臺的冷卻通過泵將液氮罐中的液氮輸送至冷熱臺中的銀臺內(nèi)部而實(shí)現(xiàn),具體冷卻溫度由溫度控制器和溫度控制軟件所控制,溫度范圍在-196~125 ℃可調(diào)。成像系統(tǒng)的部件包括光學(xué)顯微鏡(BX51,Olympus,日本)、攝影設(shè)備、及溫度控制軟件(Linksys32,Linkam Scientific,英國)。

        將新鮮胡蘿卜切成0.1 mm薄片,平整放置于銀臺。選用10倍目鏡觀察樣品并調(diào)整視野和焦距。啟動溫度控制器使銀臺溫度冷卻至試驗(yàn)溫度(-3、-4、-5、-6℃)且保持不變。等待60 s保證樣品完全冷卻至目標(biāo)溫度。打開工作頻率為40 kHz的超聲波發(fā)生器,利用超聲波換能片觸發(fā)樣品成核,拍攝胡蘿卜結(jié)晶圖像并儲存于電腦中。為了比較胡蘿卜在不同成核溫度下的冰晶尺寸,通過圖像分析軟件(Digimizer)定義并計(jì)算邊界清晰的冰晶面積,利用公式(1)計(jì)算出各冰晶的面積當(dāng)量直徑(are equivalent diameter,AED)。

        式中S為冰晶的面積,mm2。

        圖1 用于觀察冰晶形態(tài)的低溫顯微鏡試驗(yàn)臺Fig.1 Cryo-microscope system for ice morphology observation

        1.2 超聲波輔助凍干

        超聲波輔助成核由自制超聲波平板實(shí)現(xiàn),如圖2所示。設(shè)備由一個功率可調(diào)式超聲波發(fā)生器(THD-2010A,深圳太和達(dá)科技有限公司,中國)、4個超聲波振子以及一個不銹鋼平板(長×寬20 mm×20 mm,厚度2 mm)組成。超聲振子均勻地固定在不銹鋼平板上。通過發(fā)生器可在0~240 W范圍內(nèi)調(diào)節(jié)超聲波平板的輸出功率。

        將胡蘿卜切成5 mm厚度的薄片,并用直徑為33 mm的模具將胡蘿卜切片壓成大小均一的圓柱體,放入冰箱待用。將超聲波平板放置于冷凍干燥機(jī)內(nèi)的冷板上提前預(yù)凍2 h,預(yù)冷溫度為-40 ℃。預(yù)冷結(jié)束后,從冰箱取出三片胡蘿卜樣品置于冷凍干燥機(jī)內(nèi)的超聲波平板上。任取其中一片于樣品底部插入兩根T型熱電偶(SCPSS-040U-6,Omage,美國,精度:±0.5 ℃),用于溫度監(jiān)測。當(dāng)樣品溫度降至-1 ℃時,開始向樣品施加指定參數(shù)的超聲波。施加完超聲波后,關(guān)閉發(fā)生器使胡蘿卜樣品繼續(xù)冷凍直至-30 ℃,隨后移至溫度為-40 ℃的低溫冰箱,完成一組超聲波作用的凍結(jié)過程。

        圖2 超聲波平板設(shè)備圖Fig.2 Experimental equipment for ultrasound-assisted freezing.

        為了研究超聲波作用的最佳工藝參數(shù),試驗(yàn)選取了不同超聲波功率以及不同超聲波作用時間。具體試驗(yàn)參數(shù)如下:1)超聲波功率:0、122.6、178.7、229.8 W,超聲波作用時間固定為10 s;2)超聲波作用時間:0、5、10、15 s,超聲波功率固定為178.7 W。

        所有的超聲波作用組的凍結(jié)過程全部完成后,移去凍干機(jī)內(nèi)的超聲波平板,并將低溫冰箱中的所有樣品移回凍干機(jī)同時進(jìn)行冷凍干燥。冷凍干燥的參數(shù)為:一次干燥溫度-20 ℃,干燥時間31.5 h;二次干燥溫度20 ℃,干燥時間2 h;真空度設(shè)置為40 Pa。干燥過程完成后,進(jìn)行孔隙尺寸的測量。

        1.3 凍干胡蘿卜孔隙尺寸的測定

        通過測量凍干胡蘿卜的孔隙尺寸來間接表示胡蘿卜樣品中的冰晶大小。測定過程如下:將凍干胡蘿卜放入工業(yè)CT機(jī)(XT H 320 LC X-ray System,尼康,日本)進(jìn)行掃描,每個角度掃描一張,即掃描結(jié)束后每片凍干胡蘿卜有360張2D掃描圖。利用3D合成軟件(CT Pro 3D)將所有的2D掃描圖重構(gòu)成3D模型,利用像素分析軟件(VGStudio MAX 2.2)打開3D模型并對其進(jìn)行分析。在模型中挖取出一個圓柱體,將其定義為感興趣區(qū)域(region of interest,ROI),放大ROI直至可以看清孔隙(圖3b~e),計(jì)算出孔隙的總體積和總表面積,代入公式(2)計(jì)算出孔隙的Sauter當(dāng)量直徑。由于整片凍干胡蘿卜的孔隙數(shù)量太過龐大,軟件無法一次性計(jì)算得出整片凍干樣品的孔隙數(shù)據(jù)。因此,在凍干胡蘿卜3D模型上均勻選擇3個ROI進(jìn)行計(jì)算,并取其平均值作為整片凍干樣品的孔隙尺寸。

        式中Stotal為孔隙度總表面積,mm2;Vtotal為孔隙的總體積,mm3。

        1.4 含水率的測定

        為了驗(yàn)證超聲波輔助成核對升華干燥速率的作用,進(jìn)行了如下試驗(yàn):超聲波樣品組在優(yōu)化的超聲參數(shù)作用下凍結(jié),空白樣品組在無超聲作用下凍結(jié),兩組樣品各取25片,隨后的干燥參數(shù)同1.2。干燥期間定時手動停止升華干燥過程,即釋放凍干機(jī)中的真空,從兩組樣品中各取出 3 片進(jìn)行含水率的測量,完成取樣后開啟真空泵將凍干機(jī)中恢復(fù)至40 Pa繼續(xù)對剩余樣品進(jìn)行干燥,重復(fù)上述干燥過程直至干燥過程完成。繪制兩組樣品在干燥過程中的含水率變化曲線。樣品的含水率用稱量法進(jìn)行測量,將取出的樣品置于洗凈干燥的稱量瓶中進(jìn)行稱量,記為 W1(g),將裝有樣品的稱量瓶放入 6 5 ℃烘箱中進(jìn)行烘干處理4 h后,再置于105 ℃溫度下烘干1 h,取出冷卻至室溫稱量,再烘0.5 h后取出冷卻并稱量,反復(fù)至恒質(zhì)量后(兩次重量差不超過0.002 g即為恒質(zhì)量),記為W2(g)。代入公式(3)計(jì)算含水率。

        圖3 凍干胡蘿卜片的CT掃描圖像Fig.3 CT scanning picture of freeze-dried carrot sample

        式中W0為稱量瓶質(zhì)量,g;W1為濕質(zhì)量加稱量瓶質(zhì)量,g;W2為烘干處理后樣品加稱量瓶質(zhì)量,g。

        2 結(jié)果與分析

        2.1 低溫顯微鏡下觀察超聲波輔助胡蘿卜成核

        圖4顯示了在不同成核溫度(-3、-4、-5、-6 ℃)下胡蘿卜冰晶的形態(tài)。從圖 5 中可以清楚地發(fā)現(xiàn),冰晶的形態(tài)與成核溫度有顯著相關(guān)性(相關(guān)系數(shù)0.99),成核溫度越高,冰晶尺寸就越大。各成核溫度下冰晶面積的當(dāng)量直徑如圖5所示,在-6 ℃的成核溫度下,胡蘿卜冰晶的平均面積當(dāng)量直徑為20.20 μm;而當(dāng)成核溫度升高至-3 ℃時,平均當(dāng)量直徑為33.16 μm,冰晶尺寸有很大的提升。另外試驗(yàn)過程中發(fā)現(xiàn),在施加超聲波與胡蘿卜成核這兩個時間點(diǎn)存在一定時間的延遲,也就是說當(dāng)施加了超聲波后,成核現(xiàn)象并沒有馬上發(fā)生。

        Hickling[26]證明了由于空化氣泡的崩潰產(chǎn)生一個瞬時的高壓,造成平衡水凍結(jié)溫度的升高,從而提高了成核溫度。Geidobler等[27]分別在-5和-15 ℃的成核溫度下觀察冰晶的生長狀況,發(fā)現(xiàn)在-5 ℃的成核溫度下,冰晶數(shù)量少,尺寸大,凍結(jié)速率較慢;在-10 ℃的成核溫度下,冰晶數(shù)量多,尺寸小,凍結(jié)速率快,且大部分冰晶是在一瞬間生成的。Nakagawa等[22]通過試驗(yàn)證明了成核溫度與冰晶尺寸之間存在著相關(guān)性,即成核溫度越高,冰晶尺寸越大;在-7.39 ℃下得到的冰晶平均當(dāng)量直徑為54.1 μm,而在-2.04 ℃的溫度下的冰晶平均當(dāng)量直徑為122 μm,幾乎是前者的兩倍。但是關(guān)于冰晶大小與成核溫度、超聲功率之間的直接定量關(guān)系還未有報道,仍需要進(jìn)一步的研究探討[28]。

        圖4 在不同成核溫度下的胡蘿卜冰晶形態(tài)圖Fig.4 Microscopy images of ice formed in carrot slice under different nucleation temperature

        圖5 在不同成核溫度下胡蘿卜冰晶的面積當(dāng)量直徑Fig.5 Area equivalent diameter of ice formed in carrot slice under different nucleation temperature.

        2.2 超聲波功率對冰晶尺寸的影響

        圖6顯示了胡蘿卜樣品在-1 ℃時,施加了10 s不同功率(0、122.6、178.7、229.8 W)超聲波后冰晶當(dāng)量直徑的變化。在沒有超聲波的輔助下,對照組樣品的孔隙當(dāng)量直徑為(67.34±5.06)μm。在作用了122.6 W的超聲波后,樣品的孔隙直徑有所上升,為(69.88±3.63)μm(P<0.05)。而當(dāng)將178.7 W和229.8 W超聲作用于樣品時,孔隙的尺寸有了顯著提高(P<0.05),分別為(80.81±3.03)μm和(75.98±4.10)μm(P<0.05),說明此時樣品在冷凍階段形成了較大尺寸的冰晶。但在229.8 W超聲波作用下的冰晶尺寸卻小于178.7 W組的樣品,說明超聲波的作用功率并非越高越好。高功率的超聲波能在食品中產(chǎn)生熱效應(yīng),且過多的熱量不能馬上從樣品中被排除,就會影響樣品達(dá)到足夠的過冷度從而阻礙成核過程[29-30]。

        2.3 超聲波作用時間對冰晶尺寸的影響

        圖7顯示了胡蘿卜樣品在-1 ℃作用了不同時間(0、5、10、15 s)178.7 W功率的超聲波后冰晶當(dāng)量直徑的變化。如圖所示,空白樣品孔隙的平均當(dāng)量直徑為(66.29± 3.58)μm。在施加了5 s超聲波后,孔隙當(dāng)量直徑提升至(71.22±3.43)μm(P<0.05)。當(dāng)進(jìn)一步增加作用時間至10 s時,凍干胡蘿卜的孔隙尺寸又有了進(jìn)一步提升為(80.64±3.02)μm。然而在大于10 s的超聲波作用時間下,樣品的孔隙當(dāng)量直徑開始減小,15 s降至(72.94± 2.91)μm。在輔助成核的過程中,需要根據(jù)試驗(yàn)對象與環(huán)境選擇合適的超聲波參數(shù),以防產(chǎn)生反效果。在本試驗(yàn)中,超聲波輔助胡蘿卜成核的較佳作用參數(shù)為功率178.7 W,作用時間10 s,此條件下的樣品孔隙當(dāng)量直徑為(80.64±3.02)μm。

        圖6 在不同功率超聲波作用下凍干胡蘿卜內(nèi)的孔隙當(dāng)量直徑Fig.6 Equivalent diameter of voids in freeze-dried carrot under different ultrasound power levels

        圖7 不同超聲波作用時間下凍干胡蘿卜內(nèi)的孔隙當(dāng)量直徑Fig.7 Equivalent diameter of voids in freeze-dried carrot under different ultrasonic time

        2.4 超聲波輔助成核對升華干燥速率的影響

        圖8可看出,當(dāng)在升華干燥的最初3 h內(nèi),兩組樣品的干燥曲線幾乎重合,說明此時間段兩組樣品的干燥速率相差不大。但超過3 h后,超聲組的干燥曲線的下降速率明顯高于空白組(P<0.05)。當(dāng)?shù)谝淮胃稍镞M(jìn)行至20.34 h,空白樣品的含水率為25.69%,而超聲波組的含水率已低至14.95%。根據(jù)兩組樣品的擬合干燥曲線,當(dāng)實(shí)際含水率為10%時,超聲組和空白組的干燥時間分別為22.59 h和31.85 h。相比于空白組,超聲組的升華干燥速率提升了29.1%。這說明直接接觸超聲波能很好地與冷凍干燥過程結(jié)合,顯著提升干燥效率。這與Rambhatla等[31]的理論相一致,他們得出冰晶的尺寸和干燥速率之間存在著一定的相關(guān)性,如公式(4)所示。

        式中Rp為凍干層阻力,N;R為氣體常數(shù);T為絕對溫度,℃;M為水的分子量;ε為孔隙率;r為孔隙半徑,μm;τ為干燥層的曲折度(與通道長度及多孔介質(zhì)厚度有關(guān),約等于1.5 cm),1為凍干層厚度為1 cm。從這個公式可以看出,當(dāng)r越大時,Rp越小,升華速率越大,則能有效縮短一次干燥速率的時間。

        圖8 超聲波樣品與空白樣品的含水率Fig.8 Moisture content of carrot samples with and without ultrasound wave

        2.5 樣品厚度對超聲波輔助成核影響的討論

        在本試驗(yàn)中胡蘿卜片樣品厚度為5 mm的情況下,根據(jù)對樣品的孔隙分析發(fā)現(xiàn),樣品圓柱體上下兩部分的孔隙大小并沒有顯著性差異(P<0.05)。但如果增加樣品的厚度,將厚度提升至某一程度,會在樣品內(nèi)部產(chǎn)生溫度梯度,樣品內(nèi)的冰晶大小則會產(chǎn)生軸向差異[32]。另外,由于超聲波會在傳輸過程中產(chǎn)生聲能衰減,且聲能的強(qiáng)度隨傳輸距離的增長呈指數(shù)衰減[33](公式5),因此隨著樣品厚度的增加,樣品中遠(yuǎn)離聲源的區(qū)域可能輻射不到足夠強(qiáng)度的超聲波,從而無法達(dá)到控制成核所需要的超聲強(qiáng)度;在這種情況下需要一定程度地提高超聲的輻射強(qiáng)度,但前提是不能在樣品中產(chǎn)生過多的熱量,影響成核的進(jìn)程。在同時考慮到控制成核的有效性和冷凍干燥的生產(chǎn)效率,樣品的厚度不宜過厚。

        式中Ix為距離聲源x處的聲強(qiáng),dB;I0為聲源處的初始強(qiáng)度,dB;α為衰減系數(shù),mm-1;x為距離聲源的距離,mm。

        3 結(jié) 論

        本文通過接觸式超聲波輔助胡蘿卜的平板冷凍過程,證實(shí)了直接接觸超聲波能夠有效促進(jìn)固體樣品成核,提高成核溫度,從而提升一次干燥效率。

        1)通過低溫顯微鏡觀察發(fā)現(xiàn),胡蘿卜冰晶的形態(tài)與成核溫度呈顯著相關(guān)性(相關(guān)系數(shù)0.99),即成核溫度越高,冰晶尺寸越大。

        2)研究了超聲波功率以及作用時間對胡蘿卜樣品平板凍結(jié)過程的影響,結(jié)果表明,在胡蘿卜樣品厚度為5 mm,樣品冷凍溫度為-1℃時施加178.7 W功率的超聲波10 s能顯著提高(P<0.05)樣品的成核溫度,使凍干胡蘿卜的孔隙當(dāng)量直徑從無超聲波輔助的對照組樣品的(66.29±3.58) μm提高到(80.81±3.03)μm,當(dāng)實(shí)際含水率為10%時,升華干燥速率提升29.1%。

        3)超聲波功率過低或作用時間過短對促進(jìn)成核的作用都不夠理想,而超聲波功率過高或作用時間過長會由于熱效應(yīng)的產(chǎn)生而阻礙胡蘿卜的成核過程。該研究為接觸式超聲波輔助成核用于果蔬樣品的凍干過程提供了有益參考。

        [1] Messina V,Pieniazek F,Sancho A. Effect of different freeze drying cycle in Semimembranous and Gluteus Medius bovine muscles:changes on microstructure,colour,texture and physicochemical parameters[J]. International Journal of Food Science &Technology,2016,51(5):1268-1275.

        [2] Kiani H,Sun D W. Water crystallization and its importance to freezing of foods[J]. Trends in Food Science &Technology,2011,22(8):407-426.

        [3] Parniakov O,Bals O,Lebovka N,et al. Pulsed electric field assisted vacuum freeze-drying of apple tissue[J]. Innovative Food Science &Emerging Technologies,2016,35:52-57.

        [4] Savadkoohi S,Kasapis S. High pressure effects on the structural functionality of condensed globular-protein matrices[J]. International Journal of Biological Macromolecules,2016,88:433-442.

        [5] Huang R,Ye M,Li X,et al. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries,blueberries,raspberries and in their purees[J]. International Journal of Food Microbiology,2016,223:17-24.

        [6] Petzold G,Aguilera J M. Ice Morphology:Fundamentals and Technological Applications in Foods[J]. Food Biophysics,2009,4(4):378-396.

        [7] James C,Purnell G,James S J. A Review of Novel and Innovative Food Freezing Technologies[J]. Food &Bioprocess Technology,2015,8(8):1616-1634.

        [8] Ribeiro A P B,Masuchi M H,Miyasaki E K,et al. Crystallization modifiers in lipid systems[J]. Journal of Food Science and Technology,2015,52(7):3925-3946.

        [9] Li B,Sun D W. Novel methods for rapid freezing and thawing of foods:A review[J]. Journal of Food Engineering,2002,54(3):175-182.

        [10] Parniakov O,Bals O,Lebovka N,et al. Effects of pulsed electric fields assisted osmotic dehydration on freezingthawing and texture of apple tissue[J]. Journal of Food Engineering,2016,183:32-38.

        [11] Ammar J B,Lanoisellé J L,Lebovka N I,et al. Effect of a pulsed electric field and osmotic treatment on freezing of potato tissue[J]. Food Biophysics,2010,5(3):247-254.

        [12] Petersen A,Rau G,Glasmacher B. Reduction of primary freeze-drying time by electric field induced ice nucleus formation[J]. Heat and Mass Transfer,2006,42(10):929-938.

        [13] Woo M W,Mujumdar A S. Effects of electric and magnetic field on freezing and possible relevance in freeze drying[J]. Drying Technology An International Journal,2010,28(4):433-443.

        [14] Ardestani S B,Sahari M A,Barzegar M. Effect of extraction and processing conditions on organic acids of barberry fruits[J]. Journal of Food Biochemistry,2015,39(5):554-565.

        [15] Jermann C,Koutchma T,Margas E,et al. Mapping trends in novel and emerging food processing technologies around the world[J]. Innovative Food Science &Emerging Technologies,2015,31:14-27.

        [16] Xanthakis E,Le-Bail A,Ramaswamy H. Development of an innovative microwave assisted food freezing process[J]. Innovative Food Science &Emerging Technologies,2014,26:176-181.

        [17] Chalmers B. Principles of Solidification[M]. New York:John Wiley &Sons,1964.

        [18] Kiani H,Zhang Z,Delgado A,et al. Ultrasound assisted nucleation of some liquid and solid model foods during freezing[J]. Food Research International,2011,44(9):2915-2921.

        [19] Comandini P,Blanda G,Soto-Caballero M.C et al. Effects of power ultrasound on immersion freezing parameters of potatoes[J]. Innovative Food Science &Emerging Technologies,2013,18:120-125.

        [20] Cheng X F,Zhang M,Adhikari B. Effect of ultrasonically induced nucleation on the drying kinetics and physical properties of freeze-dried strawberry[J]. Drying Technology,2014,32(15):1857-1864.

        [21] Xu H,Zhang M,Duan X. et al. Effect of power ultrasound pretreatment on edamame prior to freeze drying[J]. Drying Technology,2009,27(2):186-193.

        [22] Nakagawa K,Hottot A,Vessot S,et al. Influence of controlled nucleation by ultrasounds on ice morphology of frozen formulations for pharmaceutical proteins freezedrying[J]. Chemical Engineering and Processing:Process Intensification,2006,45(9):783-791.

        [23] Nakagawa K,Hottot A,Vessot S,et al. Modeling of freezing step during vial freeze-drying of pharmaceuticals:Influence of nucleation temperature on primary drying rate[J]. Asia-Pacific Journal of Chemical Engineering,2011,6(2):288-293.

        [24] Gallego-Juárez J A,Riera E,de la Fuente Blanco S. et al. Application of high-power ultrasound for dehydration of vegetables:processes and devices[J]. Drying Technology,2007,25(11):1893-1901.

        [25] Sch?ssler K,J?ger H,Knorr D. Novel contact ultrasound system for the accelerated freeze-drying of vegetables[J]. Innovative Food Science &Emerging Technologies,2012,16(39):113-120.

        [26] Hickling R. Nucleation of freezing by cavity collapse and its relation to cavitation damage[J]. Nature,1965,206(4987):915-917.

        [27] Geidobler R,Winter G. Controlled ice nucleation in the field of freeze-drying:Fundamentals and technology review[J]. European Journal of Pharmaceutics &Biopharmaceutics,2013,85(2):214-222.

        [28] Saclier M,Peczalski R,Andrieu J. Effect of ultrasonicallyinduced nucleation on ice crystals’ size and shape during freezing in vials[J]. Chemical Engineering Science,2010,65(10):3064-3071.

        [29] Kowalski S J,Paw?owski A,Szadzińska J,et al. High power airborne ultrasound assist in combined drying of raspberries[J]. Innovative Food Science &Emerging Technologies,2016,34:225-233.

        [30] Cheng X,Zhang M,Adhikari B. Effects of ultrasoundassisted thawing on the quality of edamames frozen using different freezing methods[J]. Food Science and Biotechnology,2014,23(4):1095-1102.

        [31] Rambhatla S,Ramot R,Bhugra C,et al. Heat and mass transfer scale-up issues during freeze drying:II. Control and characterization of the degree of supercooling[J]. Aaps Pharmscitech,2004,5(4):54-62.

        [32] Rees Jones D W,Wells A J. Solidification of a disk-shaped crystal from a weakly supercooled binary melt[J]. Physical Review E,2015,92(2):022406.

        [33] 王衛(wèi)東,解維偉,張成聯(lián). 基于超聲波衰減法煤泥水濃度檢測的研究[J]. 選煤技術(shù),2011(1):47-49. Wang Weidong,Xie Weiwei,Zhang Chenglian. The study of concentration measurement of coal slurry based on ultrasonic attenuation method[J]. Coal Preparation Technology,2011(1):47-49.

        Contact ultrasound freezing improving freeze drying rate of carrot

        Zhou Xinli ,Teng Yun,Dai Cheng
        (School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

        Ultrasound can promote nucleation at higher temperatures,resulting in larger ice crystals. Thereby the sublimation time is significantly reduced. From all the researches,either ultrasound is applied in ultrasonic water bath or sample itself is liquid form since the low acoustic impedance between liquid and acoustic waves favors ultrasound transfer. However solid samples have barely been taken into account due to the poor transfer efficiency of ultrasound in food matrix. During the freeze drying process,the freezing is usually realized by shelf cooling in freeze-drier. Thus,using liquid as ultrasound applying media is not applicable. The technology currently is for liquid samples or adopts the immersion freezing process,but the plate freezing process for solid samples(fruits/vegetables) was barely taken into account. In this study,contact ultrasound-assisted plate freezing process was achieved. Firstly,the effect of direct contact ultrasound on inducing nucleation of solid samples was observed in the micro environment. Then a microscopic observation was carried out to examine the effectiveness of direct contact ultrasound on inducing nucleation for solid samples at different supercooling degree. The results showed that crystal morphology and nucleation temperature had significant correlation,namely the ice crystal size increased with the nucleation temperature. For example,under the nucleation temperature of -6 ℃,the average ice diameter was 20.20 μm,while the mean diameter increased up to 33.16 μm when the nucleation temperature was raised to -3 ℃. In addition,a phenomenon was found that there existed a postponement of nucleation after the onset of ultrasound application,in other words,nucleation did not follow the ultrasound triggering immediately. Secondly,the influences of ultrasonic parameters(power,exposure time) on the ice crystal size and freeze drying rate of carrot were investigated. The samples thickness was 5 mm. The results showed that applying 178.7 W power ultrasonic for 10 s at -1 ℃ could significantly increase the nucleation temperature,and make the void size of freeze-dried carrot increase from (66.29±3.58) to(80.81±3.03) μm,and the sublimation time was significantly reduced by 29.1% when the residual moisture was 10%. But it used the appropriate ultrasound irradiation condition to avoid the heat accumulation inside the food matrix. In addition,it was further verified that the primary drying rate was significantly reduced since the bigger crystals were formed in the presence of ultrasound. Therefore,the direct contact ultrasound is a promising technology in solid sample freeze-drying process. Finally,the influence of sample thickness on inducing nucleation was investigated. Under the sample thickness of 5 mm in this experiment,there was no significant difference between the void size of upper and lower part of the freeze-dried cake. But if larger thickness was considered,the freezing rate gradient within the sample may result in crystal size difference in axial direction. Smaller ice crystals may form at the region closer to the cooling plate since it was cooled faster than the interior. Furthermore,with the increase of thickness,the region far away from the vibrating plate may not be subjected to enough ultrasound radiation due to the acoustic attenuation within the sample and thus inducing nucleation would not be effective. Considering both inducing nucleation effectiveness and freeze drying efficacy,a maximum product thickness should not be too thick. These studies can provide a reference for the freeze drying process of samples(fruits/vegetables) by contact ultrasonic vibrating plate freezing.

        ultrasound wave;nucleation;drying;freeze drying rate;carrot

        10.11975/j.issn.1002-6819.2017.01.035

        TS201.1

        A

        1002-6819(2017)-01-0256-06

        周新麗,滕 蕓,戴 澄. 超聲波平板冷凍提高胡蘿卜凍干速率[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(1):256-261.

        10.11975/j.issn.1002-6819.2017.01.035 http://www.tcsae.org

        Zhou Xinli,Teng Yun,Dai Cheng. Contact ultrasound freezing improving freeze drying rate of carrot[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(1):256-261.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.01.035 http://www.tcsae.org

        2016-07-25

        2016-08-15

        國家自然科學(xué)基金(51376132)

        周新麗,副教授,博士,主要研究方向?yàn)槭称防鋬隼洳嘏c冷凍干燥。Email:zjulily@163.com

        猜你喜歡
        冰晶凍干當(dāng)量
        冰晶世界,凝凍微觀的美麗
        雪為什么只在冬天下
        小泥人冰晶畫 蘊(yùn)藏大商機(jī)
        HPLC法測定注射用清開靈(凍干)中6種成分
        中成藥(2018年4期)2018-04-26 07:12:47
        《豬瘟高免血清凍干粉的初步研究》圖版
        冰晶奇域
        琴童(2016年5期)2016-05-14 15:43:58
        黃河之聲(2016年24期)2016-02-03 09:01:52
        超壓測試方法對炸藥TNT當(dāng)量計(jì)算結(jié)果的影響
        嗜酸乳桿菌NX2-6凍干發(fā)酵劑的研究
        環(huán)空附加當(dāng)量循環(huán)密度的計(jì)算方法
        斷塊油氣田(2014年5期)2014-03-11 15:33:50
        亚洲精品国偷自产在线99正片| 国产女同va一区二区三区| 人成午夜大片免费视频77777| 激情偷乱人成视频在线观看| 999精品全免费观看视频| 日韩在线中文字幕一区二区三区| 那有一级内射黄片可以免费看| 国产精品免费av片在线观看| 人妻激情偷乱视频一区二区三区 | 国内精品久久久久久久亚洲| 日韩三级一区二区三区四区| av天堂手机免费在线| 一区二区三区内射美女毛片 | 亚洲国产精品久久久久久网站| 色se在线中文字幕视频| 包皮上有一点一点白色的| 欧美交换配乱吟粗大25p| 欧美色色视频| 国产精品老女人亚洲av无| 免费不卡无码av在线观看| 69久久夜色精品国产69| 中文字幕无码免费久久9| 亚洲精品国产一区二区免费视频| 亚洲欧洲国产成人综合在线| 国产一区二区三区美女| 蜜桃网站在线免费观看视频| 国产av综合网站不卡| 亚洲欧美aⅴ在线资源| 午夜AV地址发布| 人妻中文字幕不卡精品| 男女激情视频网站在线| 一二三四日本中文在线| 91av国产视频| 狠狠久久av一区二区三区| 亚洲av色欲色欲www| 无码人妻品一区二区三区精99| 精品视频在线观看一区二区有 | 日本大片在线一区二区三区| 亚洲国产精品日本无码网站| 亚洲欧洲中文日韩久久av乱码| 亚洲日产国无码|