陳 會(huì),劉宣會(huì),張 琳
(西安工程大學(xué) 理學(xué)院,陜西 西安 710048)
一類混合未定權(quán)益的套期保值問(wèn)題
陳 會(huì),劉宣會(huì),張 琳
(西安工程大學(xué) 理學(xué)院,陜西 西安 710048)
在股票價(jià)格服從Levy過(guò)程時(shí),研究多個(gè)混合型未定權(quán)益的最優(yōu)套期保值問(wèn)題, 通過(guò)構(gòu)造倒向隨機(jī)微分方程和隨機(jī)LQ最優(yōu)控制的方法, 得到了多個(gè)混合型未定權(quán)益最優(yōu)套期保值策略的顯式表示, 同時(shí)討論了多個(gè)混合未定權(quán)益與單個(gè)未定權(quán)益最優(yōu)套期保值策略之間的關(guān)系,即其間具有凸性的關(guān)系.
混合未定權(quán)益; 均值-方差準(zhǔn)則; Levy過(guò)程; 倒向隨機(jī)微分方程
Markowitz提出均值-方差模型為現(xiàn)代套期保值理論奠定了基礎(chǔ),并吸引了大量的學(xué)者對(duì)此進(jìn)行推廣和研究.文獻(xiàn)[1]研究了資產(chǎn)價(jià)格為特殊半鞅時(shí)在隨機(jī)利率下運(yùn)用均值-方差通過(guò)適當(dāng)?shù)母怕蕼y(cè)度變換, 將具有隨機(jī)利率的情形簡(jiǎn)化為非隨機(jī)利率情形, 再利用Galtchouk-Kunita-Watanabe分解, 獲得了資產(chǎn)價(jià)格為一般的特殊半鞅具有隨機(jī)利率的均值-方差套期保值策略. 文獻(xiàn)[2]在標(biāo)的資產(chǎn)價(jià)格服從具有隨機(jī)方差的幾何布朗運(yùn)動(dòng),且隨機(jī)方差服從一個(gè)具有最大波動(dòng)幅度的幾何布朗運(yùn)動(dòng)時(shí), 在均值-方差準(zhǔn)則下,運(yùn)用隨機(jī)微分對(duì)策的方法給出了期權(quán)的最優(yōu)套期保值策略.文獻(xiàn)[3]通過(guò)概率測(cè)度變化和K-W投影技術(shù)得到均值-方差準(zhǔn)則下的最優(yōu)套期保值策略.文獻(xiàn)[4]研究了股價(jià)服從受控的馬氏過(guò)程時(shí),在隨機(jī)市場(chǎng)系數(shù)的金融市場(chǎng)中, 先引入倒向隨機(jī)里卡提方程, 然后運(yùn)用隨機(jī)LQ控制得到均值-方差準(zhǔn)則下的最優(yōu)套期保值策略.文獻(xiàn)[5]研究了當(dāng)股價(jià)服從受控的馬氏過(guò)程時(shí), 在隨機(jī)市場(chǎng)參數(shù)的不完備金融市場(chǎng)下, 運(yùn)用隨機(jī)LQ控制與倒向隨機(jī)微分方程的方法在均值-方差準(zhǔn)則下給出了最優(yōu)套期保值策略的顯式表示.文獻(xiàn)[6]運(yùn)用動(dòng)態(tài)規(guī)劃原理,在標(biāo)的資產(chǎn)服從由布朗運(yùn)動(dòng)和違約過(guò)程共同作用下, 把均值-方差準(zhǔn)則下的套期保值策略的存在性問(wèn)題轉(zhuǎn)化為一列耦合倒向隨機(jī)微分方程解的存在性問(wèn)題,得到了最優(yōu)套期保值策略.文獻(xiàn)[7] 在保險(xiǎn)債務(wù)服從重隨機(jī)Poisson過(guò)程時(shí), 采用HJB方法得到了時(shí)間一致性均值-方差準(zhǔn)則下的壽命風(fēng)險(xiǎn)的最優(yōu)套期保值策略.文獻(xiàn)[8]在股票價(jià)格服從跳-擴(kuò)散過(guò)程時(shí), 運(yùn)用倒向隨機(jī)微分方程及隨機(jī)控制理論得到了均值-方差準(zhǔn)則下的最優(yōu)套期保值策略.文獻(xiàn)[9-11]在股票價(jià)格服從帶有Markov調(diào)制參數(shù)的跳躍-擴(kuò)散過(guò)程時(shí), 通過(guò)構(gòu)造倒向微分方程和隨機(jī)LQ最優(yōu)控制方法,得到了在兩個(gè)混合未定權(quán)益下的最優(yōu)套期保值策略的顯式表示.文獻(xiàn)[12-16]研究得到了基于均值方差準(zhǔn)則下的最優(yōu)套期保值策略.以上研究均為單個(gè)或兩個(gè)未定權(quán)益在不同準(zhǔn)則下的最優(yōu)套期保值策略,本文研究了在股票價(jià)格服從Levy過(guò)程時(shí)多個(gè)混合未定權(quán)益的最優(yōu)套期保值策略, 并討論了多個(gè)混合未定權(quán)益最優(yōu)套期保值策略與單個(gè)未定權(quán)益最優(yōu)套期保值策略的關(guān)系.
假設(shè)金融市場(chǎng)上僅有2種證券, 一種是無(wú)風(fēng)險(xiǎn)資產(chǎn), 稱為債券P0, 另一種是風(fēng)險(xiǎn)資產(chǎn), 稱為股票P, 當(dāng)股票價(jià)格受到多種沖擊時(shí),可認(rèn)為股票價(jià)格服從Levy過(guò)程.設(shè)無(wú)風(fēng)險(xiǎn)資產(chǎn)P0(t)服從微分方程
dP0(t)=rP0(t)dt,po(0)=1,t∈[0,T].
(1)
風(fēng)險(xiǎn)資產(chǎn)P(t)服從微分方程
P(0)=P,t∈[0,T].
(2)
Wt與N(dt,dz)獨(dú)立.
pij(t)=p{s(t)=j|s(0)=i},t>0,i,j=1,2,…,m.
Ft=σ{W(s),N(s),s(s):0≤s≤t}.
假設(shè)投資者擁有的初始財(cái)富為x,風(fēng)險(xiǎn)資產(chǎn)在t時(shí)刻的投資量為π(t),財(cái)富為x(t),那么x(t)滿足下列隨機(jī)微分方程
(3)
dx(t)= [rx(t)+b(t,s(t))π(t)]dt+π(t)σ(t,s(t))dW(t)+
(4)
定義1 π(t)是可容許策略,即π(t)為使得方程(4)存在唯一解且π(t)∈L2(T:R).記所有可容許策略集合為Uπ={π(t)∈L2(T:R)|方程(4)存在唯一解}.
定義2 稱ξ為一未定權(quán)益,若ξ為Ft可測(cè)的,而且ξ∈L2(Ω:R).
定義3 稱ξ為一個(gè)混合型未定權(quán)益,若ξ1,ξ2,…,ξn為n個(gè)不同的未定權(quán)益而且?a1,a2,…,an∈R,a1,a2,…,an>0,a1+a2+…+an=1,ξ=a1ξ1+a2ξ2+…+anξn.
考慮均值-方差準(zhǔn)則下的套期保值問(wèn)題(P):
假設(shè)1
假設(shè)2 EP2(t)dt<∞.
假設(shè)3 E[π(t)φ(t,s(t))-1]2<∞.
定理1 在假設(shè)1, 2, 3條件下,問(wèn)題(P)的最優(yōu)解為
證明 引入倒向隨機(jī)微分方程
…
運(yùn)用Ito公式得
對(duì)式(6)從0到T積分并求數(shù)學(xué)期望可得
在式(7)中取
當(dāng)β1(t,s(t)),β2(t,s(t)),…,βn(t,s(t))分別滿足式(8)和(9)時(shí), H(t,s(t))就為π(t)的完全平方式. 這時(shí)π(t)滿足式(10),H(t,s(t))=0, 顯然最小.
在式(10)中,當(dāng)a1=1,a2=0,…,an=0時(shí),可得πa1(t);當(dāng) a1=0,a2=1,…,an=0時(shí),可得πa2(t);…;當(dāng)a1=0,a2=0,…,an=1時(shí),可得πan(t)而且有
a1πa1(t)+a2πa2(t)+…+anπan(t)=π(t), ?a1,a2,…,an>0, a1+a2+…+an=1.
當(dāng)a1=1,a2=0,…,an=0時(shí)
當(dāng)a1=0,a2=1,…,an=0時(shí),
…
當(dāng)a1=0,a2=0,…,an=1時(shí),
a1πa1(t)+a2πa2(t)+…+anπan(t)=π(t).
即多個(gè)未定權(quán)益的最優(yōu)均值-方差套期保值策略相對(duì)于單個(gè)未定權(quán)益具有可加性.
在股票價(jià)格服從Levy過(guò)程時(shí),運(yùn)用隨機(jī)LQ控制,并引入倒向隨機(jī)微分方程得到了均值方差準(zhǔn)則下具有多個(gè)混合型未定權(quán)益的最優(yōu)套期保值策略, 同時(shí)討論了多個(gè)混合未定權(quán)益與單個(gè)未定權(quán)益最優(yōu)套期保值策略的關(guān)系,即多個(gè)混合型未定權(quán)益的最優(yōu)套期保值策略相對(duì)于單個(gè)未定權(quán)益具有可加性,即具有凸性.
[1] 張海沨.隨機(jī)利率下的均值-方差最小套期保值[J].工程數(shù)學(xué)學(xué)報(bào),2007,24(6):726-729.
ZHANG Haifeng.Mean-variance heding under stochastic interests[J].Chinese Journal of Engineering Mathematics,2007,24(6):726-729.
[2] 劉海龍,吳沖鋒.基于魯棒控制的期權(quán)套期保值策略[J].控制與決策.2001,16(6):974-976.
LIU Hailong,WU Chongfeng.Option hedging strategy based on robust control[J].Control and Decision,2001,16(6):974-976.
[3] GOURIEROUX C,LAURENT J P,PHAM H.Mean-variance hedging and numeraire[J].Mathematical Finance,1998,8(3):179-200.
[4] KOHLMANN M,TANG S.Global adopted solution of one-dimensional backward stochastic Riccati equations,with application to the mean-variance hedging[J].Stochastic Processes and their Applications,2002,97(2):255-288.
[5] LIM ANDREW E B.Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market[J].Mathematics of Operations Research,2004,29(1):132-161.
[6] GOUTTE S,NGOUPEYOU A.The use of BSDEs to characterize the mean-variance hedging problem and the variance optimal martingale measure for defaultable claims[J].Stochastic Processes and their Applications,2015,125(4):1323-1351.
[7] TAT Wong Wing,MEI CHIU Choi,HOI WONG Ying.Time-consistent mean-variance hedging of longevity risk:Effect of cointegration[J].Insurance:Mathematics and Econimics,2014,56(1):56-67.
[8] 劉峰,劉宣會(huì).基于均值-方差準(zhǔn)則下的套期保值問(wèn)題研究[J].哈爾濱商業(yè)大學(xué)學(xué)報(bào),2014,30(1):110-113.
LIU Feng,LIU Xuanhui.Mean-variance hedging problem as stock price follows jump-diffusion process[J].Journal of Harbin University of Commerce,2014,30(1):110-113.
[9] 劉宣會(huì),韓有攀,張夏潔,等.一類混合型未定權(quán)益均值-方差準(zhǔn)則下套期保值問(wèn)題研[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2015,38(6):1116-1125.
LIU Xuanhui,HAN Youpan,ZHANG Xiajie,et al.The problem research on the hedging strategy of a mix contingent claim under mean-variance criterion[J].Acta Mathematicae Applicatae Sinica,2015,38(6):1116-1125.
[10] 劉宣會(huì),胡奇英.不完全市場(chǎng)上一種未定權(quán)益的套期保值策略[J].系統(tǒng)工程學(xué)報(bào),2004,19(3):285-289.
LIU Xuanhui,HU Qiying.Hedging strategy of a contingent claim in incomplete market[J].Journal of Systems Engineering,2004,19(3):285-289.
[11] 張柯妮,劉宣會(huì),張金燕.基于隨機(jī)LQ控制的一類投資組合優(yōu)化策略[J].紡織高?;A(chǔ)科學(xué)學(xué)報(bào),2012,25(3):346-350.
ZHANG Keni,LIU Xuanhui,ZHANG Jinyan.A king of optimal portfolio selection problem based on stochastic LQ control[J].Basic Sciences Journal of Textile Universities,2012,25(3):346-350.
[12] FOLLMER H,LEUKERT P.Efficient hedging cost versus shortfall risk[J].Finance and Stochastic,2000,4(2):117-146.
[13] ARAI T.An extension of mean-variance hedging to the discontinuous case[J].Finance and Stochastic,2005,9(1):129-139.
[14] XIE Shuxiang.Continuous-times mean-variance portfolio selection with liability an regime[J].Mathematics and Economics,2009,45:148-155.
[15] CZICHOWSKY C.Time-consistent mean-variance portfolio selection in discrete and continuous time[J].Finance and Stochastic,2013,17(2):227-271.
[16] CHEN Zhiping,LI Gang,GUO Ju′e.Optimal investment policy in the time consistent mean-variance formulation[J].Insurance:Mathematics and Economics,2013,52(2):145-156.
編輯、校對(duì):師 瑯
The problem about the hedging strategy of a mix contingent claim
CHENHui,LIUXuanhui,ZHANGLin
(School of Science, Xi′an Polytechnic University, Xi′an 710048, China)
When the stock price follows the Levy process,the optimal hedging problem of the multiple mixed contingent is studied.By constructing backward stochastic differential equation and linear-quadratic(LQ) optimal control, the optimal hedging strategy is obtained, and the relationship is discussed between the mixed contingent claims and individual contingent claim under the optimal hedging strategy, that is to say the relationship is convexity.
mixed contingent claims; mean-variance criterion; Levy process; backward stochastic differential equation
1006-8341(2016)04-0465-06
10.13338/j.issn.1006-8341.2016.04.009
2016-04-04
陜西省教育廳科研計(jì)劃項(xiàng)目(2013JK0594)
劉宣會(huì)(1964—),男,陜西省乾縣人,西安工程大學(xué)教授,研究方向?yàn)閿?shù)理金融學(xué),風(fēng)險(xiǎn)管理及隨機(jī)控制等.
E-mail:lxhlll2011@163.com
陳會(huì),劉宣會(huì),張琳.一類混合未定權(quán)益的套期保值問(wèn)題[J].紡織高校基礎(chǔ)科學(xué)學(xué)報(bào),2016,29(4):465-470.
CHEN Hui,LIU Xuanhui,ZHANG Lin.The problem about the hedging strategy of a mix contingent claim[J].Basic Sciences Journal of Textile Universities,2016,29(4):465-470.
O 211;F 830
A