張文豪,李建軍,楊德剛,楊明亮,杜良杰,高峰,劉長彬,李大鵬,胡安明,蔡暢
雙光子顯微鏡在小動物活體光學成像中的研究進展①
張文豪1,2a,3,4,李建軍1,2a,3,4,楊德剛1,2a,3,4,楊明亮1,2a,3,4,杜良杰1,2a,3,4,高峰1,2a,3,4,劉長彬1,2a,3,4,李大鵬1,2a,3,4,胡安明1,2b,蔡暢1,2a,3,4
雙光子顯微鏡結(jié)合了激光掃描共聚焦顯微鏡和雙光子激發(fā)技術(shù)。雙光子熒光顯微鏡具有光損傷小、漂白區(qū)域小、穿透能力強、高分辨率、熒光收集率高、圖像對比度高、可實現(xiàn)暗場成像、適合多標記復合測量等多種特點,可應用于小動物活體光學成像,在腫瘤免疫治療、基因治療、干細胞研究、藥物篩選與評價、活體脊髓損傷成像等領(lǐng)域研究中有廣泛應用。
雙光子顯微鏡;活體光學成像;小動物;綜述
[本文著錄格式] 張文豪,李建軍,楊德剛,等.雙光子顯微鏡在小動物活體光學成像中的研究進展[J].中國康復理論與實踐, 2017,23(1):37-41.
CITED AS:Zhang WH,Li JJ,Yang DG,et al.Research progress of two-photon microscopy in small animals in vivo imaging(review)[J].Zhongguo Kangfu Lilun Yu Shijian,2017,23(1):37-41.
1931年,Maria G?ppert-Mayer在博士論文中第一次提出原子或分子雙光子激發(fā)的理論假設。20世紀60年代初,Kaiser、Garret以及Abella等利用當時剛發(fā)明的激光技術(shù),在晶體中觀察到雙光子吸收現(xiàn)象。1976年,Berns第一次報道活細胞中的雙光子效應。1990年Denk等將雙光子激發(fā)現(xiàn)象應用到激光共聚焦掃描顯微鏡中,制造出雙光子激光共聚焦顯微鏡[1]。相對于其他成像技術(shù),如超聲(ultrasound)、計算機斷層(computed tomography,CT)、磁共振成像(magnetic resonance imaging,MRI)、正電子衍射斷層(positron-emission tomography, PET)、單光子衍射計算機斷層(single-photon-emission computed tomography,SPECT)等技術(shù),活體光學成像具有許多獨特的優(yōu)點:操作簡便、結(jié)果直觀、測量快速、靈敏度高以及費用低廉等[2],尤其是可在活體內(nèi)實現(xiàn)對分子事件的動態(tài)、實時、連續(xù)監(jiān)測,并且能夠揭示生物分子相互作用過程的時間、空間關(guān)系[3-11]。
活體動物光學成像(in vivo optical imaging)主要采用生物發(fā)光(bioluminescence)與熒光(fluorescence)兩種技術(shù)[12-15]。生物發(fā)光主要用熒光素酶(luciferase)基因標記細胞或DNA,而熒光技術(shù)則采用熒光報告基團(GFP、RFP、Cyt及dyes等)進行標記[16-18]。相對于傳統(tǒng)的單光子成像,雙光子成像在生物厚組織,如活體腦組織成像中具有較高的空間分辨率、信噪比以及較低的組織損傷性等優(yōu)勢。近年來,雙光子熒光顯微鏡(two-photon fluorescence microscopy,TPM)在醫(yī)學領(lǐng)域得到廣泛應用[19-21]。TPM使用紅外波段的超快激光作為光源,利用光學非線性效應實現(xiàn)對樣品的三維、四維甚至實時監(jiān)測[22-23]。由于紅外光對生物組織的殺傷作用相對較小,因此可利用此技術(shù)對生物樣品進行活體動態(tài)觀察;同時由于長波長激光在組織中具有很高的穿透深度,雙光子熒光成像具有成像深度大的特點[24]。TPM對生物樣品成像具備光漂白性小、光毒性小、穿透性強等優(yōu)點,一經(jīng)問世即很快應用于活體動物醫(yī)學領(lǐng)域的研究中,尤其適用于對小動物模型(如斑馬魚、果蠅、小鼠、大鼠)進行長時間內(nèi)反復多次動態(tài)活體成像[25-30]。TPM已成為現(xiàn)代生命科學研究的重要工具,并帶來革命性的變化。本文重點綜述TPM在小動物活體光學成像中的研究應用。
傳統(tǒng)激光共聚焦顯微鏡有兩大局限。①光漂白現(xiàn)象:因為共聚焦的針孔必須足夠小,以獲得高分辨率的圖像,而孔徑小又會擋掉很大部分從樣品發(fā)出的熒光,包括從焦平面發(fā)出的熒光,相應的,激發(fā)光必須足夠強,以獲得足夠的信噪比;而高強度的激光會使熒光染料在連續(xù)掃描過程中迅速褪色,熒光信號會隨著掃描進程變得越來越弱。②光毒性作用:在激光照射下,許多熒光染料分子會產(chǎn)生諸如單態(tài)氧或自由基等細胞毒素,所以實驗中要限制掃描時間和激發(fā)光的光功率密度,以保持樣品活性。光漂白和光毒現(xiàn)象很大程度限制了活性樣品的研究,尤其是動態(tài)觀察活性樣品生長、發(fā)育過程的各個階段[31-32]。
熒光顯微技術(shù)的發(fā)展經(jīng)歷了從定性到定量、從二維到三維成像的過程,即從傳統(tǒng)熒光顯微鏡(fluorescence microscope, FM)到以單光子激光共焦掃描顯微鏡(single-photon laser con-focal scanning microscope,SPLCSM)為代表的空間分辨熒光顯微技術(shù)的發(fā)展。FM收集的是樣品的整體熒光,無法獲得準確的定位和定量信息。該技術(shù)采用場光源,難以區(qū)分樣品內(nèi)不同部位的熒光信號,也難以再現(xiàn)樣品內(nèi)熒光物質(zhì)的原有存在狀態(tài)。由于FM是二維成像,較厚樣品切片后無法觀察活體樣品內(nèi)熒光物質(zhì)的動態(tài)變化過程。
雙光子激發(fā)的基本原理是[33-34],在高光子密度下,熒光分子可以同時吸收2個長波長的光子,在經(jīng)過很短時間,即所謂激發(fā)態(tài)壽命后,發(fā)射出一個波長較短的光子。其效果和使用一個波長為長波長一半的光子去激發(fā)熒光分子相同。由于雙光子激發(fā)需要很高的光子密度,為了不損傷細胞,TPM使用高能量鎖模脈沖激光器。這種激光器發(fā)出的激光具有很高的峰值能量和很低的平均能量,其脈沖寬度只有100 fs,而頻率可達80~100 MHz。
TPM結(jié)合了SPLCSM和雙光子激發(fā)技術(shù)。在使用高數(shù)值孔徑的物鏡將脈沖激光的光子聚焦時,物鏡的焦點處光子密度最高,雙光子激發(fā)只發(fā)生在物鏡焦點上;觀察標本時,只在焦平面上才有光漂白和光毒性。雙光子的吸收現(xiàn)象也是非線性效應,激發(fā)只發(fā)生在物鏡焦點上,所以TPM不需要共聚焦針孔,提高了成像亮度和信噪比[35]。
雙光子吸收率依賴于兩個入射光子在空間和時間上的重合程度。雙光子吸收截面很小,只有在具有很大光子流量的區(qū)域,熒光團才會被激發(fā)。因此所用激光器多為鈦激光器,可以達到ps或fs級的掃描速度,且具有非常高的峰值功率和較低的平均功率,從而可以減小或消除光漂白和光毒作用帶來的不利影響。而在一個很小的范圍提供高密度光子,保證了雙光子的同時激發(fā)。
雙光子激發(fā)過程如下。在激光照射下,基態(tài)熒光原子或分子同時吸收兩個光子而成激發(fā)態(tài)。如還原型煙酰胺腺嘌嶺二核苷酸(nicotinamide adenine dinucleotide H,NADH)酶,在單光子激發(fā)時,在350 nm光的激發(fā)下產(chǎn)生450 nm熒光;而在雙光子激發(fā)時,可采用溫和的紅外或近紅外光,如750 nm激光下得到450 nm熒光。這既避免了紫外光對樣品的傷害和使用紫外光學元件的許多限制,又可延長對活體生物樣品的觀察時間,為研究氨基酸、蛋白質(zhì)和神經(jīng)遞質(zhì)等提供了獨特而重要的方法[33-34]。
SPLCSM在FM技術(shù)基礎(chǔ)上加裝激光掃描,可在連續(xù)、固定范圍內(nèi)進行小功率掃描,記錄動態(tài)變化,共軛聚焦裝置可獲得清晰圖像[36]。光路中兩個共焦小孔的設置消除了焦平面以外雜散光的干擾,提高了分辨率和成像質(zhì)量。該技術(shù)實現(xiàn)了熒光物質(zhì)在亞細胞水平的定位,可無損傷地對較厚樣品逐層連續(xù)掃描,并重構(gòu)其組織或細胞的三維立體結(jié)構(gòu)。雖然SPLCSM克服了FM技術(shù)的部分不足,但仍有一定的不足:①激光能光漂白熒光物質(zhì),共焦小孔在阻擋焦平面外雜散光的同時亦阻擋了部分本應該接收到的來自焦平面的光;為了獲得足夠的信噪比,需要很強的激發(fā)光,熒光信號也會隨著掃描進程而變得越來越弱;②許多熒光染料分子在激光照射下會產(chǎn)生細胞毒素,限制了掃描時間和激光光源的強度;③由于細胞成分散射,短波長的激發(fā)光不易穿透標本。
將雙光子技術(shù)與各種顯微鏡技術(shù)相結(jié)合,在生物醫(yī)學領(lǐng)域的應用中更能發(fā)揮其潛力。與SPLCSM相比,TPM具有以下優(yōu)點:①具有高空間局域性和高分辨率;②雙光子熒光遠離激發(fā)波長,避免了激發(fā)光對熒光探測的影響,能實現(xiàn)暗場成像,散射產(chǎn)生的背景噪聲小,圖像對比度高;③焦點以外不發(fā)生漂白現(xiàn)象;④可用紅外或近紅外激光作為光源,紅外光在生物組織中穿透力強,能對生物組織的深層成像觀察。
近年來,隨著活體光學成像設備的進展以及轉(zhuǎn)基因動物研究的興起,國內(nèi)外科研機構(gòu)已經(jīng)將小動物活體光學成像技術(shù)廣泛應用于腫瘤免疫治療、基因治療、干細胞研究、藥物篩選與評價、活體脊髓損傷成像等領(lǐng)域,并取得許多成果[37-39]。
3.1 活體監(jiān)測腫瘤的生長與轉(zhuǎn)移
傳統(tǒng)腫瘤研究方法主要局限于肉眼觀察、處死動物后進行大體解剖或組織學觀察等,無法動態(tài)觀察整個腫瘤事件。利用TPM研究腫瘤細胞凋亡具有獨特優(yōu)點,可避免由于處死動物而造成的組間差異,節(jié)省動物成本,并能動態(tài)監(jiān)測腫瘤在體內(nèi)的生長和轉(zhuǎn)移,使分子水平的研究能在更接近活體的環(huán)境中進行,可以作為細胞分析的完整應用工具[40-41]。
實時進行高清晰度熒光成像,TPM低光漂白和光毒性掃描和檢測技術(shù)最大限度地減少光對活細胞的傷害;能直接快速地測量各種癌癥模型中腫瘤的生長和轉(zhuǎn)移,并可對癌癥治療中癌細胞的變化進行實時觀測和評估;活體生物發(fā)光成像能夠無創(chuàng)傷地定量檢測小鼠整體原位瘤、轉(zhuǎn)移瘤及自發(fā)瘤。
3.2 監(jiān)測基因治療中基因的表達
基因治療包括在體內(nèi)將一個或多個感興趣基因及其產(chǎn)物安全而有效的傳遞到靶細胞??蓱脽晒馑孛富蜃鳛閳蟾婊蛴糜谳d體的構(gòu)建,觀察目的基因是否能夠在試驗動物體內(nèi)持續(xù)高效和組織特異性表達[42]。這種非侵入方式具有容易準備、低毒性及輕微免疫反應的優(yōu)點。熒光素酶基因也可以插入脂質(zhì)體包裹的DNA分子中,用來觀察以脂質(zhì)體為載體的DNA運輸和基因治療情況。
基因表達研究目的基因何時、何種刺激下表達。將熒光素酶基因插入目的基因啟動子下游,并穩(wěn)定整合于實驗動物染色體中,形成轉(zhuǎn)基因動物模型[43]。利用其表達的熒光素酶與底物作用,產(chǎn)生生物發(fā)光,反應目的基因的表達情況,從而實現(xiàn)對目的基因的研究。
3.3 干細胞應用研究
干細胞光學標記的常用方法有:①利用螢火蟲熒光素酶(Firefly Luciferase)作為報告基因,通過轉(zhuǎn)基因技術(shù)體外轉(zhuǎn)染干細胞;②通過親脂性熒光染料直接標記干細胞;③從已構(gòu)建好的生物發(fā)光轉(zhuǎn)基因動物中提取干細胞,所提取干細胞即具備生物發(fā)光特性。
總體來說,應用TPM成像技術(shù)進行干細胞研究主要集中于以下幾個方面:①監(jiān)測干細胞的移植、存活和增殖;②示蹤干細胞在體內(nèi)的分布和遷移;③多能誘導干細胞、腫瘤干細胞等新興研究[44-50]。
3.4 藥物的篩選與評價
藥物先導化合物的篩選與評價通常處于藥物發(fā)現(xiàn)和開發(fā)的瓶頸位置,基于現(xiàn)代分子生物學、細胞生物學技術(shù)以及現(xiàn)代儀器自動化技術(shù)產(chǎn)生的高通量篩選(high throughput screening, HTS)的快速發(fā)展,代表了現(xiàn)代發(fā)現(xiàn)藥物先導化合物的主要趨勢。HTS是指運用自動化篩選系統(tǒng),在短時間內(nèi)、在特定的篩選模型上,完成數(shù)以千計甚至萬計的樣品活性測試。TPM可提供靶基因在體內(nèi)的實時表達和對候選藥物的準確反應,還可以用來評估候選藥物和其他化合物的毒性,為藥物在疾病中的作用機制及效用提供研究方法[50-51]。
3.5 小動物活體脊髓成像
TPM能夠?qū)D(zhuǎn)基因熒光小鼠脊髓軸突、小膠質(zhì)細胞、鈣離子活性進行活體成像;能在長時間內(nèi)觀察脊髓損傷后軸突退變與再生、小膠質(zhì)細胞聚集、鈣離子的動態(tài)變化等脊髓損傷后細胞水平的活體成像,為理解和追蹤脊髓損傷的病理生理過程奠定重要的理論基礎(chǔ)[22,27,52-55]。Zhang等[56-57]應用TPM進行甲波尼龍對小鼠脊髓損傷效應的活體成像研究,并且進行了甲波尼龍治療脊髓損傷時間窗的探討性研究。
在過去二十多年里,TPM成像技術(shù)的應用范圍迅速增加,使我們對活細胞生理、病理和藥理領(lǐng)域的認識得到前所未有的進步[58]。
盡管TPM的應用越來越廣泛,但仍有一些問題需要解決:①只能對熒光成像;②由于使用紅外和近紅外光源,樣品可能會受到熱損傷;③受昂貴的超快激光器限制,TPM的價格和維護成本還比較高。
該技術(shù)下一步發(fā)展可能涉及紅外染料,因為其激發(fā)光波長更長,并能減少組織對光的吸收和折射,從而實現(xiàn)更深層組織的成像。隨著激光成像技術(shù)、計算機成像技術(shù)、分子探針、熒光標記技術(shù)、高靈敏度探測技術(shù)、計算機圖像處理等技術(shù)系統(tǒng)裝備,以及醫(yī)學應用等方面的飛速發(fā)展,TPM技術(shù)會得到更大提升和更廣泛的應用。TPM將不僅用于基礎(chǔ)研究和藥物研發(fā),也將可能會作為新技術(shù)擴展到臨床檢驗及藥物治療領(lǐng)域。
[1]Ellis-Davies GC.Two-photon microscopy for chemical neuroscience[J].ACS Chem Neurosci,2011,2(4):185-197.
[2]Iyer M,Berenji M,Templeton NS,et al.Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice[J].Mol Ther,2002,6(4):555-562.
[3]Danthi SN,Pandit SD,Li KC.A primer on molecular biology for imagers:VII.Molecular imaging probes[J].Acad Radiol, 2004,11(9):1047-1054.
[4]Franc BL,Acton PD,Mari C,et al.Small-animal SPECT and SPECT/CT:important tools for preclinical investigation[J].J Nucl Med,2008,49(10):1651-1663.
[5]Kamiya M.Novel bio-imaging tools based on the precise design of functional fluorescence probes[J].Yakugaku Zasshi, 2016,136(10):1355-1365.
[6]Ntziachristos V,Ripoll J,Wang LV,et al.Looking and listening to light:the evolution of whole-body photonic imaging[J].Nat Biotechnol,2005,23(3):313-320.
[7]Maggi A,Ciana P.Reporter mice and drug discovery and development[J].Nat Rev Drug Discov,2005,4(3):249-255.
[8]Zhou J,Yu Z,Zhao S,et al.Lentivirus-based DsRed-2-trans-fected pancreatic cancer cells for deep in vivo imaging of metastatic disease[J].J Surg Res,2009,157(1):63-70.
[9]Yang M,Baranov E,Moossa AR,et al.Visualizing gene expression by whole-body fluorescence imaging[J].Proc Natl Acad Sci U SA,2000,97(22):12278-12282.
[10]Chen X.Visualizing the location and the dynamics of gene expression in living animals through bioluminescence imaging[J].Methods Cell Biol,2013,113:39-49.
[11]Weissleder R.Scaling down imaging:molecular mapping of cancer in mice[J].Nat Rev Cancer,2002,2(1):11-18.
[12]Choy G,Choyke P,Libutti SK.Current advances in molecular imaging:noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research[J].Mol Imaging,2003,2 (4):303-312.
[13]Schaub FX,Reza MS,Flaveny CA,et al.Fluorophore-Nano-Luc BRET Reporters enable sensitive in vivo optical imaging and flow cytometry for monitoring tumorigenesis[J].Cancer Res,2015,75(23):5023-5033.
[14]Ray P.Multimodality molecular imaging of disease progression in living subjects[J].J Biosci,2011.36(3):499-504.
[15]Lee HW,Gangadaran P,Kalimuthu S,et al.Advances in molecular imaging strategies for in vivo tracking of immune cells[J].Biomed Res Int,2016,2016:1946585.
[16]Song G,Wu QP,Xu T,et al.Quick preparation of nanoluciferase-based tracers for novel bioluminescent receptor-binding assays of protein hormones:Using erythropoietin as a model[J]. J Photochem Photobiol B,2015,153:311-316.
[17]Awais M,Voronina SG,Sutton R.An efficient method is required to transfect non-dividing cells with genetically encoded optical probes for molecular imaging[J].Anal Sci,2015,31 (4):293-298.
[18]Lee H,Kim YP.Fluorescent and bioluminescent nanoprobes for in vitro and in vivo detection of matrix metalloproteinase activity[J].BMB Rep,2015,48(6):313-318.
[19]Saytashev I,Glenn R,Murashova GA,et al.Multiphoton excited hemoglobin fluorescence and third harmonic generation for non-invasive microscopy of stored blood[J].Biomed Opt Express,2016,7(9):3449-3460.
[20]Ma Y,Shaik MA,Kim SH,et al.Wide-field optical mapping of neural activity and brain haemodynamics:considerations and novel approaches[J].Philos Trans R Soc Lond B Biol Sci, 2016,371(1705):20150360.
[21]Lepeltier M,Appaix F,Liao YY,et al.Carbazole-substituted iridium complex as a solid state emitter for two-photon intravital imaging[J].Inorg Chem,2016,55(19):9586-9595.
[22]Grutzendler J,Gan WB.Two-photon imaging of synaptic plasticity and pathology in the living mouse brain[J].NeuroRx, 2006,3(4):489-496.
[23]Sorbara CD,Wagner NE,Ladwig A,et al.Pervasive axonal transport deficits in multiple sclerosis models[J].Neuron, 2014,84(6):1183-1190.
[24]Theer P,Hasan MT,Denk W.Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier[J].Opt Lett,2003,28(12):1022-1024.
[25]Zhang P,Jiang XF,Nie X,et al.A two-photon fluorescent sensor revealing drug-induced liver injury via tracking gamma-glutamyltranspeptidase(GGT)level in vivo[J].Biomaterials, 2016,80:46-56.
[26]Sinha S,Liang L,Ho ET,et al.High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity[J].Proc NatlAcad Sci U SA,2013,110(46):18374-18379.
[27]Greenberg ML,Weinger JG,Matheu MP,et al.Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis[J]. Proc NatlAcad Sci U SA,2014,111(22):E2349-E2355.
[28]Jiang LW,Wang XF,Wu ZY,et al.Label-free detection of fibrillar collagen deposition associated with vascular elements in glioblastoma multiforme by using multiphoton microscopy[J]. J Microsc,2017,265(2):207-213.
[29]Weinger JG,Greenberg ML,Matheu MP,et al.Two-photon imaging of cellular dynamics in the mouse spinal cord[J].J Vis Exp,2015(96):10.3791/52580.
[30]Alexander NS,Palczewska G,Stremplewski P,et al.Image registration and averaging of low laser power two-photon fluorescence images of mouse retina[J].Biomed Opt Express, 2016,7(7):2671-2691.
[31]Kaspler P,Lazic S,Forward S,et al.A ruthenium(ii)based photosensitizer and transferrin complexes enhance photo-physical properties,cell uptake,and photodynamic therapy safety and efficacy[J].Photochem Photobiol Sci,2016,15(4): 481-495.
[32]Turnbull L,Strauss MP,Liew AT,et al.Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy(f3D-SIM)[J].J Vis Exp,2014 (91):51469.
[33]Oheim M,Michael DJ,Geisbauer M,et al.Principles of two-photon excitation fluorescence microscopy and other nonlinear imaging approaches[J].Adv Drug Deliv Rev,2006,58 (7):788-808.
[34]Niesner R,Andresen V,Neumann J,et al.The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging[J].Biophys J, 2007,93(7):2519-2529.
[35]Schapper F,Gon?alves JT,Oheim M.Fluorescence imagingwith two-photon evanescent wave excitation[J].Eur Biophys J,2003,32(7):635-643.
[36]Paddock SW.Confocal laser scanning microscopy[J].Biotechniques,1999,27(5):992-996,998-1002,1004.
[37]Alencar H,Funovics MA,Figueiredo J,et al.Colonic adenocarcinomas:near-infrared microcatheter imaging of smart probes for early detection-study in mice[J].Radiology,2007, 244(1):232-238.
[38]Upadhyay R,Sheth RA,Weissleder R,et al.Quantitative real-time catheter-based fluorescence molecular imaging in mice[J].Radiology,2007,245(2):523-531.
[39]Gee MS,Upadhyay R,Bergquist H,et al.Human breast cancer tumor models:molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy[J].Radiology, 2008,248(3):925-935.
[40]Wu X,Chen G,Lu J,et al.Label-free detection of breast masses using multiphoton microscopy[J].PLoS One,2013,8 (6):e65933.
[41]Wu X,Chen G,Qiu J,et al.Visualization of basement membranes in normal breast and breast cancer tissues using multiphoton microscopy[J].Oncol Lett,2016,11(6):3785-3789.
[42]Guse K,Dias JD,Bauerschmitz GJ,et al.Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo[J]. Gene Ther,2007,14(11):902-911.
[43]Hinckley CA,Pfaff SL.Imaging spinal neuron ensembles active during locomotion with genetically encoded calcium indicators[J].Ann N YAcad Sci,2013,1279:71-79.
[44]Barbier V,Winkler IG,Wadley R,et al.Flow cytometry measurement of bone marrow perfusion in the mouse and sorting of progenitors and stems cells according to position relative to blood flow in vivo[J].Methods Mol Biol,2012,844:45-63.
[45]Tao W,Soonpaa MH,Field LJ,et al.Functional screening of intracardiac cell transplants using two-photon fluorescence microscopy[J].Pediatr Cardiol,2012,33(6):929-937.
[46]Scott MK,Akinduro O,Lo Celso C.In vivo 4-dimensional tracking of hematopoietic stem and progenitor cells in adult mouse calvarial bone marrow[J].J Vis Exp,2014(91):e51683.
[47]Koroleva A,Deiwick A,Nguyen A,et al.Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique[J].PLoS One,2015,10(2):e0118164.
[48]Kandoth N,Kirejev V,Monti S,et al.Two-photon fluorescence imaging and bimodal phototherapy of epidermal cancer cells with biocompatible self-assembled polymer nanoparticles[J].Biomacromolecules,2014,15(5):1768-1776.
[49]Shimura T,Tanaka K,Toiyama Y,et al.In vivo optical pathology of paclitaxel efficacy on the peritoneal metastatic xenograft model of gastric cancer using two-photon laser scanning microscopy[J].Gastric Cancer,2015,18(1):109-118.
[50]Zhang Q,Tian X,Hu G,et al.Dual-functional analogous cis-platinum complex with high antitumor activities and two-photon bioimaging [J].Biochemistry,2015,54(13): 2177-2180.
[51]Ma X,Hui H,Shang W,et al.Recent advances in optical molecular imaging and its applications in targeted drug delivery[J].Curr Drug Targets,2015,16(6):542-548.
[52]Yang G,Pan F,Chang PC,et al.Transcranial two-photon imaging of synaptic structures in the cortex of awake head-restrained mice[J].Methods Mol Biol,2013,1010:35-43.
[53]Kerschensteiner M,Schwab ME,Lichtman JW,et al.In vivo imaging of axonal degeneration and regeneration in the injured spinal cord[J].Nat Med,2005,11(5):572-577.
[54]Di Maio A,Skuba A,Himes BT,et al.In vivo imaging of dorsal root regeneration:rapid immobilization and presynaptic differentiation at the CNS/PNS border[J].J Neurosci,2011,31 (12):4569-4582.
[55]Skuba A,Manire MA,Kim H,et al.Time-lapse in vivo imaging of dorsal root nerve regeneration in mice[J].Methods Mol Biol,2014,1162:219-232.
[56]Zhang Y,Zhang L,Shen J,et al.Two-photon-excited fluorescence microscopy as a tool to investigate the efficacy of methylprednisolone in a mouse spinal cord injury model[J].Spine (Phila Pa 1976),2014,39(8):E493-E499.
[57]Zhang Y,Zhang L,Ji X,et al.Two-photon microscopy as a tool to investigate the therapeutic time window of methylprednisolone in a mouse spinal cord injury model[J].Restor Neurol Neurosci,2015,33(3):291-300.
[58]Liston C,Gan WB.Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo[J].Proc NatlAcad Sci U SA,2011,108(38):16074-16079.
Research Progress of Two-photon Microscopy in SmallAnimals in Vivo Imaging(review)
ZHANG Wen-hao1,2a,3,4,LI Jian-jun1,2a,3,4,YANG De-gang1,2a,3,4,YANG Ming-liang1,2a,3,4,DU Liang-jie1,2a,3,4,GAO Feng1,2a,3,4,LIU Chang-bin1,2a,3,4,LI Da-peng1,2a,3,4,HU An-ming1,2b,CAI Chang1,2a,3,4
1.Capital Medical University School of Rehabilitation Medicine,Beijing 100068,China;2.a.Department of Spinal and Neural Function Reconstruction;b.Department of Neurosurgery,China Rehabilitation Research Center,Beijing Bo'ai Hospital,Beijing 100068,China;3.Center of Neural Injury and Repair,Beijing Institute for Brain Disorders,Beijing 100068,China;4.Beijing Key Laboratory of Neural Injury and Rehabilitation,Beijing 100068,China
LI Jian-jun.E-mail:crrc100@163.com
Two-photon microscopy is a new technique which combines laser scanning con-focal microscopy and two-photon excitation technique.Two-photon fluorescence microscopy has the advantages of little light damage,small bleaching area,strong penetrability,high resolution,high fluorescence collection efficiency,and high image contrast.It is suitable for dark field imaging and multi-labeled compound measurement,and has been widely used in small animals in vivo optical imaging,such as research for tumour,gene therapy,stem cells,drug development,spinal cord injury,etc.
two-photon microscopy;in vivo optical imaging;small animals;review
10.3969/j.issn.1006-9771.2017.01.09
R446.8
A
1006-9771(2017)01-0037-05
2016-10-19
2016-10-26)
1.國家自然科學基金項目(No.81272164);2.中央級公益性科研院所基本科研業(yè)務費專項資金(No.2015CZ-6);3.中國康復研究中心課題(No.2012-1;No.2013-7)。
1.首都醫(yī)科大學康復醫(yī)學院,北京市100068;2.中國康復研究中心北京博愛醫(yī)院,a.脊柱脊髓神經(jīng)功能重建科;b.神經(jīng)外科,北京市100068;3.北京腦重大疾病研究院神經(jīng)損傷與修復研究所,北京市100068;4.北京市神經(jīng)損傷與康復重點實驗室,北京市100068。作者簡介:張文豪(1991-),男,漢族,河南柘城縣人,碩士研究生,主要研究方向:脊柱脊髓損傷的康復與治療。通訊作者:李建軍(1962-),男,漢族,教授,主任醫(yī)師,博士研究生導師,主要研究方向:骨科及脊柱脊髓損傷的康復與治療。E-mail:crrc100@163.com。