亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于功能性試驗(yàn)預(yù)測(cè)抗腫瘤藥物敏感性研究進(jìn)展

        2017-01-13 16:27:16劉東巖葉開(kāi)琴王宏志戴海明
        關(guān)鍵詞:敏感性通路化療

        劉東巖,葉開(kāi)琴,王宏志,戴海明

        (1中國(guó)科學(xué)院合肥物質(zhì)科學(xué)研究院醫(yī)學(xué)物理與技術(shù)中心,2中國(guó)科學(xué)院合肥腫瘤醫(yī)院,安徽合肥230031)

        ·專(zhuān)家述評(píng)·

        基于功能性試驗(yàn)預(yù)測(cè)抗腫瘤藥物敏感性研究進(jìn)展

        劉東巖1,2,葉開(kāi)琴1,2,王宏志1,2,戴海明1,2

        (1中國(guó)科學(xué)院合肥物質(zhì)科學(xué)研究院醫(yī)學(xué)物理與技術(shù)中心,2中國(guó)科學(xué)院合肥腫瘤醫(yī)院,安徽合肥230031)

        隨著腫瘤發(fā)病率的逐年升高,其治療手段包括手術(shù)、放療、傳統(tǒng)化學(xué)治療及分子靶向治療等也逐步得到完善和發(fā)展.其中,抗腫瘤藥物在治療過(guò)程中發(fā)揮著重要作用.抗腫瘤藥物包括傳統(tǒng)的廣譜性的化療藥物及特異性的分子靶向藥物.然而,利用抗腫瘤藥物進(jìn)行治療并不一定能達(dá)到預(yù)期的治療效果,某些腫瘤化療手段的響應(yīng)率低于25%.因此,有必要對(duì)抗腫瘤藥物的敏感性進(jìn)行準(zhǔn)確地預(yù)測(cè),以提高抗腫瘤藥物的響應(yīng)率.腫瘤患者對(duì)藥物的敏感性差異主要是由基因表達(dá)水平、基因突變、表觀遺傳、機(jī)體微環(huán)境等眾多因素引起的.除了常用的腫瘤基因檢測(cè)方法外,目前針對(duì)腫瘤藥物的敏感性預(yù)測(cè)還包括利用功能性試驗(yàn)進(jìn)行預(yù)測(cè)的方法:包括體外的基于能量代謝和基于細(xì)胞增殖與生存等的傳統(tǒng)研究方法,基于動(dòng)物模型的人源腫瘤組織異種移植的方法,也有最新發(fā)展的BH3 profiling等方法.本文將對(duì)這些基于功能性試驗(yàn)進(jìn)行抗腫瘤藥物敏感性預(yù)測(cè)的方法進(jìn)行歸納,并總結(jié)這些檢測(cè)方法的優(yōu)勢(shì)和不足,探索未來(lái)的抗腫瘤藥物敏感性預(yù)測(cè)的研究趨勢(shì).

        抗腫瘤藥物;精準(zhǔn)醫(yī)療;功能性試驗(yàn);藥物敏感性

        0 引言

        精準(zhǔn)醫(yī)療是針對(duì)不同的患者,使用與疾病分子分型相對(duì)應(yīng)的藥物或其它治療方法.換言之,就是用最適合的治療方案對(duì)患者進(jìn)行治療[1].與傳統(tǒng)的腫瘤分型和治療相比,腫瘤的精準(zhǔn)醫(yī)療就是通過(guò)分子生物學(xué)技術(shù)和手段對(duì)腫瘤作進(jìn)一步的分子分型和細(xì)化,優(yōu)化傳統(tǒng)粗放的分型方法,制定適合不同患者的有針對(duì)性的臨床治療方案.實(shí)現(xiàn)腫瘤精準(zhǔn)醫(yī)療的關(guān)鍵點(diǎn)之一就是預(yù)測(cè)抗腫瘤藥物的敏感性.預(yù)測(cè)抗腫瘤藥物敏感性的手段不僅包括依賴于熒光原位雜交(FISH)等技術(shù)的染色體易位分析;依賴于二代測(cè)序技術(shù)和一代測(cè)序技術(shù)的腫瘤相關(guān)基因突變位點(diǎn)分析;依賴于熒光定量PCR、免疫組化等方法的腫瘤相關(guān)基因表達(dá)水平分析;也包括依賴于各種功能性試驗(yàn)來(lái)檢測(cè)腫瘤藥物敏感性的方法等[1].

        化療藥物是腫瘤治療的重要手段之一,但由于個(gè)體差異等問(wèn)題,同一化療藥物對(duì)不同患者療效差異較大[2-3].此外,近來(lái)腫瘤靶向治療領(lǐng)域研究進(jìn)展迅速,這種以特定信號(hào)通路蛋白質(zhì)和亞細(xì)胞結(jié)構(gòu)作為靶標(biāo)的腫瘤治療方法,因其具有安全有效的特點(diǎn),正得到越來(lái)越廣泛的應(yīng)用[4-5].患者在使用抗腫瘤藥物時(shí)經(jīng)常會(huì)產(chǎn)生療效不佳以及耐藥等問(wèn)題.因此,在臨床治療中,對(duì)患者進(jìn)行個(gè)體化藥物敏感性試驗(yàn)則是盡可能減少上述問(wèn)題發(fā)生的關(guān)鍵.各種功能性的腫瘤藥物敏感性試驗(yàn)不僅包括早期的ATP含量測(cè)定[6]、四甲基偶氮唑鹽比色法[7]、極限耐藥分析(extreme drug resistance assay,EDRA)、人源器官培養(yǎng)(patient-derived organoids)和器官型培養(yǎng)(organotypic cultures),人源腫瘤組織異種移植(patient-derived tumor xenograft model,PDX)的方法等,也包括近年來(lái)逐步發(fā)展的一些新方法,比如動(dòng)態(tài)BH3分析(dynamic BH3 profiling,DBP)等.這些方法,有些已進(jìn)入臨床試驗(yàn)階段.本研究將對(duì)腫瘤藥物敏感性實(shí)驗(yàn)方法進(jìn)行相關(guān)文獻(xiàn)綜述.

        1 傳統(tǒng)體外方法測(cè)定抗腫瘤藥物敏感性

        1.1 基于能量代謝的研究方法基于能量代謝分析抗腫瘤藥物敏感性的代表性方法是ATP含量分析方法(ATP assay).該方法是將腫瘤細(xì)胞經(jīng)化療藥物干預(yù)后,加入熒光色素-熒光色素酶復(fù)合物,利用ATP與復(fù)合物結(jié)合后產(chǎn)生熒光,ATP含量與熒光強(qiáng)度成正比的特性,從而鑒定腫瘤細(xì)胞對(duì)藥物敏感性的方法.Cree等[8]隨機(jī)分配147例患者,分別接受經(jīng)驗(yàn)式治療和ATP含量分析治療.干預(yù)后,經(jīng)驗(yàn)組31.5%的患者部分或完全響應(yīng)藥物,ATP含量分析組40.5%的患者部分或完全響應(yīng)藥物,但組間比較,差異無(wú)統(tǒng)計(jì)學(xué)意義.Ugurel等[9]通過(guò)ATP含量分析將腫瘤患者分為化療敏感組和化療抵抗組,其總生存率分別為36.4%和14.6%(P=0.114),其生存周期分別為14.6個(gè)月和7.4個(gè)月(P=0.041).因此,ATP含量分析法能夠?qū)熕幬锏倪x擇提供部分參考性,但該方法在臨床上的應(yīng)用仍有待于進(jìn)一步驗(yàn)證.

        1.2 基于細(xì)胞生存與增值的研究方法基于細(xì)胞生存與增值的研究方法常用的是四甲基偶氮唑鹽比色法,其原理是在活細(xì)胞線粒體內(nèi),琥珀酸在琥珀酸脫氫酶(Succinatedehydrogenase,SDH)作用下脫氫,將可溶性的黃色唑鹽還原為不可溶藍(lán)紫色結(jié)晶甲瓚,沉積于細(xì)胞內(nèi).甲瓚可溶于二甲基亞砜(DMSO),通過(guò)在490 nm或570 nm處波長(zhǎng)測(cè)定吸光值來(lái)間接反映活細(xì)胞數(shù)量.Xu等[7]將156例乳腺癌患者分為經(jīng)驗(yàn)治療組(n=73)和MTT預(yù)測(cè)組(n=83),隨后對(duì)MTT組進(jìn)行預(yù)測(cè),剔除MTT組中化療抵抗的患者(n= 10),保留預(yù)測(cè)敏感患者(n=73).結(jié)果顯示,MTT組敏感者與經(jīng)驗(yàn)治療組對(duì)化療藥物總響應(yīng)率分別為77%和44%(P<0.01),然而兩組3年內(nèi)總生存率為24.7%和19.1%,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05).目前該方法仍在進(jìn)行臨床測(cè)試.

        1.3 EDRAEDRA通過(guò)高濃度化療藥物(可達(dá)血藥濃度100倍)刺激腫瘤細(xì)胞,以氖-胸腺嘧啶(3HTdR)摻入腫瘤細(xì)胞DNA,通過(guò)DNA含量來(lái)反應(yīng)存活細(xì)胞數(shù),并由此判斷腫瘤對(duì)何種藥物耐受.Loizzi等[10]研究顯示,EDRA指導(dǎo)組和經(jīng)驗(yàn)治療組的總響應(yīng)率分別為65%和35%(P=0.02),預(yù)后1年生存率分別為68%和16%(P=0.0002).另一項(xiàng)研究[11]分析了EDRA檢測(cè)的173例卵巢癌患者,發(fā)現(xiàn)由EDRA得到的對(duì)紫杉和鉑類(lèi)藥物高耐藥者5年生存率顯著低于中低耐藥者(30.9%VS 41.1%,P=0.014).EDRA在一定程度上能夠?qū)颊吣退幮宰龀鲈u(píng)價(jià),但其局限于DNA和RNA合成旺盛的腫瘤,且由于使用放射性檢測(cè)方法,對(duì)實(shí)驗(yàn)室要求較高.

        1.4 人源類(lèi)器官培養(yǎng)和器官型培養(yǎng)類(lèi)器官培養(yǎng)是將患者來(lái)源的腫瘤細(xì)胞移植入含有大量生長(zhǎng)因子的半固體細(xì)胞培養(yǎng)基中[12-13].該方法可以使腫瘤細(xì)胞在3D環(huán)境中生長(zhǎng),并能在理論上重構(gòu)在組織中的三維生長(zhǎng)結(jié)構(gòu).類(lèi)器官法已經(jīng)在胰腺癌[14]、直腸癌[13]、前列腺癌[15]中得到廣泛研究.該方法優(yōu)勢(shì)在于腫瘤原代細(xì)胞的大多數(shù)突變得以保留[16].同時(shí),類(lèi)器官培養(yǎng)法能夠保留正常上皮細(xì)胞,增殖迅速,對(duì)特殊組織器官成模率較高.其劣勢(shì)在于多次培養(yǎng)后容易出現(xiàn)同質(zhì)性細(xì)胞,這將造成腫瘤細(xì)胞構(gòu)建主體3D環(huán)境以及基質(zhì)細(xì)胞的丟失.

        腫瘤細(xì)胞異質(zhì)性是腫瘤預(yù)測(cè)和預(yù)后的重要影響因素[17],腫瘤微環(huán)境能夠影響治療效果[18].器官型培養(yǎng)是將腫瘤組織切片[19]、組織塊等進(jìn)行微流體芯片培養(yǎng)[20](相較于2D培養(yǎng),這些腫瘤細(xì)胞能夠產(chǎn)生內(nèi)源性腫瘤微環(huán)境[21]),然后加入化療藥物進(jìn)行藥物敏感性測(cè)定[22].研究者在采用器官培養(yǎng)法時(shí),加入腫瘤內(nèi)蛋白或腫瘤患者血清可以構(gòu)建異質(zhì)性腫瘤微環(huán)境[23].這種方法能夠更好地模擬腫瘤在體內(nèi)的增殖、ATP利用率、通路活化等微環(huán)境,從而更好地預(yù)測(cè)抗腫瘤藥物的敏感性.Hirt等[24]的研究表明在進(jìn)行3D培養(yǎng)時(shí),加入免疫細(xì)胞能夠更精確地模擬腫瘤免疫系統(tǒng)互作的體內(nèi)環(huán)境,預(yù)測(cè)結(jié)果中,陽(yáng)性患者的臨床用藥反應(yīng)率高達(dá)87%.

        1.5 循環(huán)腫瘤細(xì)胞在過(guò)去的幾十年中,循環(huán)腫瘤細(xì)胞(circulating tumour cells,CTCs)得到了廣泛的研究[25-26].CTCs存在于患者的血液中,早期的研究通過(guò)將CTCs移植入小鼠體內(nèi),進(jìn)行繁殖[27-28],但該方法成功率較低[29].目前經(jīng)常采用的方法是利用微流體芯片對(duì)CTCs進(jìn)行富集[30].CTCs只能進(jìn)行懸浮培養(yǎng)而不能進(jìn)行貼壁培養(yǎng).這種懸浮培養(yǎng)特性,使得CTCs可以應(yīng)用于微流體芯片進(jìn)行不同藥物的連續(xù)給藥.對(duì)該方法進(jìn)行適當(dāng)比例的擴(kuò)大,可以持續(xù)的利用CTCs進(jìn)行藥物篩選[31].但這種方法的最大缺點(diǎn)是CTCs較難獲得,并且增殖較慢[32].鑒于腫瘤異質(zhì)性,游離于體內(nèi)的CTCs與原位腫瘤效果是否具有相同的藥物敏感性模式,尚無(wú)確切結(jié)論[33].

        2 人源化動(dòng)物模型預(yù)測(cè)抗腫瘤藥物敏感性

        在當(dāng)前的腫瘤研究中,腫瘤細(xì)胞系應(yīng)用廣泛.但隨著傳代次數(shù)的增加,不僅會(huì)導(dǎo)致腫瘤細(xì)胞的生物學(xué)屬性、基因等發(fā)生改變[34],而且單獨(dú)培養(yǎng)的腫瘤細(xì)胞與體內(nèi)復(fù)雜環(huán)境中的腫瘤細(xì)胞存在明顯差異.因此,僅僅依靠腫瘤細(xì)胞株來(lái)進(jìn)行抗腫瘤藥物敏感性試驗(yàn)是不可靠的.人源化腫瘤動(dòng)物模型(patient-derived xenograft model,PDX)是指將患者來(lái)源的腫瘤細(xì)胞移植到其它動(dòng)物(常用小鼠)體內(nèi)生長(zhǎng),并用于藥物敏感性試驗(yàn)或其它研究的一種方法.PDX模型未經(jīng)體外傳代培養(yǎng),保存了體內(nèi)腫瘤的表征與特性,其腫瘤間質(zhì)和干細(xì)胞成分構(gòu)建的微環(huán)境可以一定程度繼續(xù)存在,相對(duì)更接近于臨床用藥的實(shí)際情況[35].

        PDX模型常見(jiàn)的有皮下移植、腎包膜移植、原位移植[36].皮下移植是將病人源腫瘤移植到鼠一側(cè)肩胛背部皮下,其操作簡(jiǎn)單,便于腫瘤觀察,但由于皮下移植環(huán)境與腫瘤生長(zhǎng)微環(huán)境(諸如腫瘤相關(guān)基質(zhì),血液供應(yīng)等)差異較大,且成瘤率相對(duì)較低,因此,該模型無(wú)法更為準(zhǔn)確地表現(xiàn)腫瘤的真實(shí)病理情況[37].在腫瘤細(xì)胞移植到腎包膜后,可以利用腎包膜下基質(zhì)進(jìn)行增殖,浸潤(rùn)和侵襲.PDX腎包膜移植模型成瘤率較高.但腎包膜內(nèi)微環(huán)境與腫瘤微環(huán)境仍有不同,且腎包膜較為脆弱,對(duì)手術(shù)操作要求高,免疫缺陷鼠容易感染,無(wú)法直觀地對(duì)腫瘤大小進(jìn)行觀察,這些問(wèn)題都制約了腎包膜模型的應(yīng)用[38].原位移植是將腫瘤移植到免疫缺陷鼠的相應(yīng)靶器官.原位移植部位血液供應(yīng)相對(duì)豐富,所提供的腫瘤微環(huán)境較上述兩種環(huán)境更為接近真實(shí)病理狀態(tài),可以良好的展示腫瘤的近端浸潤(rùn)和遠(yuǎn)處轉(zhuǎn)移的特性.但其部位特殊,操作要求高,只適用于部分腫瘤[39].個(gè)性化移植模型是在移植腫瘤細(xì)胞的過(guò)程中將其同一部位的其他細(xì)胞共同移植,亦或?qū)肴梭w相應(yīng)疾病基因或相關(guān)基質(zhì)成分,從而更為接近真實(shí)腫瘤的發(fā)生和轉(zhuǎn)移情況[40-42].

        然而,PDX模型在臨床上大規(guī)模使用仍有一定的局限性.第一,PDX模型中,影響成瘤率因素很多,包括原發(fā)腫瘤的組織類(lèi)型、病理分期、取材部位、移植部位、移植方法、取材方法及宿主的選擇等[36,43-44],使得某些腫瘤PDX的成瘤率不到10%;第二,建立PDX模型的成本相對(duì)較高;第三,PDX的時(shí)間滯后性.在臨床個(gè)性化治療中,PDX的實(shí)驗(yàn)周期較長(zhǎng),其間患者的病情發(fā)展情況與模型是否一致,無(wú)法確定[45];第四,PDX模型因?yàn)榻V芷陂L(zhǎng),也存在人源性腫瘤間質(zhì)的丟失或基因排序改變等問(wèn)題[46].

        當(dāng)前,生物標(biāo)志物和活體成像技術(shù)[47-49]與PDX的聯(lián)合運(yùn)用在臨床前研究中嶄露頭角.而鑒于原位移植和腎包膜移植的不易觀察性,活體成像則能夠良好展示腫瘤發(fā)展情況.PDX以其更為接近真實(shí)病理狀態(tài)的優(yōu)勢(shì),為腫瘤的個(gè)性化治療、臨床前研究和藥物篩選提供了良好的思路.盡管存在建模成本高等問(wèn)題,但隨著技術(shù)的不斷完善,相信PDX模型擁有良好的應(yīng)用前景.

        3 新型功能性試驗(yàn)方法預(yù)測(cè)腫瘤藥物敏感性

        除了上述常用的預(yù)測(cè)腫瘤藥物敏感性的方法外,近年來(lái),隨著腫瘤分子生物學(xué)研究的不斷深入,利用各種新型的功能性試驗(yàn)來(lái)預(yù)測(cè)腫瘤藥物敏感性的方法也在實(shí)驗(yàn)室和臨床前期得到了廣泛的驗(yàn)證.

        3.1 單通路或多通路活化分析單通路活化分析主要是分析特定通路分子參與程度,其能夠在分子水平上將患者分類(lèi).研究者開(kāi)發(fā)了能夠測(cè)定患者活細(xì)胞或活細(xì)胞裂解物中靶標(biāo)參與情況的分析方法.相較于靜態(tài)測(cè)量藥物對(duì)通路的影響,該方法能夠直接預(yù)測(cè)患者對(duì)藥物的響應(yīng).比如,在BRAF突變的黑色素瘤患者中,MAPK通路大量激活,使用針對(duì)該通路的特異性抑制劑包括BRAF突變的抑制劑或MEK的抑制劑來(lái)檢測(cè)腫瘤細(xì)胞信號(hào)通路的改變,可以將腫瘤細(xì)胞的通路進(jìn)行歸屬,從而預(yù)測(cè)抗腫瘤藥物的敏感性[50].研究者還采用激酶底物反應(yīng)方法分析患者組織裂解物中通路活化情況.該方法可區(qū)分黑色素瘤的多數(shù)基因型(TP53、NRAS、CDKN2A、BRAF突變)[51],但只有在裂解物暴露于BRAF抑制劑進(jìn)行分析時(shí),才能區(qū)分上述基因型[52].

        多通路分析較單通路分析能夠更好地預(yù)測(cè)腫瘤藥物敏感性.早期采用多參數(shù)熒光細(xì)胞分選研究急性粒細(xì)胞白血?。╝cute myelocytic leukemia,AML)患者信號(hào)通路的變化,由此對(duì)患者樣品中的亞群和患者進(jìn)行分類(lèi)[53].該方法已經(jīng)在進(jìn)行臨床試驗(yàn),用來(lái)識(shí)別成人和兒童AML患者對(duì)生長(zhǎng)因子或化療調(diào)節(jié)通路的響應(yīng)情況[54-55].

        單通路或多通路分析法旨在通過(guò)不同亞群患者在腫瘤發(fā)生或給藥干預(yù)的情況下,體內(nèi)響應(yīng)通路不同,進(jìn)行分類(lèi),以此達(dá)到個(gè)性化給藥的目的.

        3.2 DBP分析大多數(shù)化療藥物可以引起腫瘤細(xì)胞凋亡,其中很大一部分是通過(guò)線粒體細(xì)胞凋亡途徑來(lái)實(shí)現(xiàn)的[56].細(xì)胞凋亡有死亡受體途徑和線粒體途徑[57-58].其中,線粒體途徑是由Bcl-2蛋白質(zhì)家族調(diào)控的[58-59].Bcl-2家族分為三類(lèi):促凋亡多結(jié)構(gòu)域蛋白質(zhì)Bak、Bax和Bok,這類(lèi)蛋白質(zhì)活化后可以直接引起線粒體外膜的通透[60];抗凋亡蛋白質(zhì)包括Bcl-2、Bcl-xL、Mcl-1等;以及僅含BH3結(jié)構(gòu)域(BH3-only)蛋白質(zhì)包括Bim、Bid、Bad和Puma等[61-64].其中,BH3-only蛋白質(zhì)不僅可以直接激活Bak,Bax,引發(fā)細(xì)胞凋亡[65-66];也可以與Bcl-2等抗凋亡蛋白質(zhì)結(jié)合,從而抑制Bcl-2等抗凋亡蛋白質(zhì)與Bak、Bax結(jié)合,間接激活線粒體凋亡通路.

        Bcl-2、Bcl-xL和Mcl-1等抗凋亡蛋白質(zhì)是抗腫瘤藥物的重要靶點(diǎn).目前,BCL-2抑制劑Venetoclax[67]已經(jīng)通過(guò)FDA批準(zhǔn)用于治療含染色體17p缺失的慢性淋巴細(xì)胞性白血病,其它的BH3類(lèi)似物也正在進(jìn)行臨床試驗(yàn).Letai等在研究細(xì)胞凋亡機(jī)制的基礎(chǔ)上,創(chuàng)建了用于預(yù)測(cè)抗腫瘤藥物敏感性的BH3分析方法[68-69].該方法在臨床前的多項(xiàng)試驗(yàn)中顯示了良好的結(jié)果,包括針對(duì)卵巢癌、多發(fā)性骨髓瘤、白血病等的多種化療藥物的敏感性預(yù)測(cè)[70-72].基于該方法的研究說(shuō)明了該方法在臨床上的潛在應(yīng)用前景:對(duì)伊馬替尼敏感的慢性粒細(xì)胞白血病腫瘤細(xì)胞,臨床中與之相對(duì)應(yīng)的患者同樣對(duì)伊馬替尼敏感;類(lèi)似地,對(duì)順鉑類(lèi)敏感的卵巢癌患者在應(yīng)用順鉑化療時(shí),其生存率也相對(duì)于不敏感的患者有所提高[70].

        研究人員還在此基礎(chǔ)上研發(fā)出一種在體外快速檢測(cè)藥物響應(yīng)的DBP分析方法[73-74].這種方法縮短了檢測(cè)時(shí)間,并且能夠在一定程度上彌補(bǔ)第一代體外檢測(cè)的不足.該方法通過(guò)不同藥物與腫瘤細(xì)胞共孵育使線粒體發(fā)生凋亡前的響應(yīng),隨后加入不同BH3小肽誘發(fā)線粒體去極化.通過(guò)檢測(cè)線粒體去極化過(guò)程,來(lái)預(yù)測(cè)藥物誘導(dǎo)細(xì)胞凋亡效果.因?yàn)锽ad BH3和Hrk BH3與不同的抗凋亡蛋白質(zhì)的結(jié)合能力不同,其中Bad可以與Bcl-2及Bcl-xL有強(qiáng)結(jié)合力,而Hrk只與Bcl-xL有強(qiáng)結(jié)合力.利用這個(gè)特點(diǎn),基于Bad BH3小肽和Hrk BH3小肽所引起的細(xì)胞色素C釋放的差可以用于預(yù)測(cè)Venetoclax的敏感性[75].該方法在一項(xiàng)臨床前的急性白血病藥物敏感性研究中可以預(yù)測(cè)Venetoclax的敏感性[76].然而,在后來(lái)的一項(xiàng)Venetoclax單藥治療急性髓細(xì)胞性白血病的II期臨床試驗(yàn)中,該方法所得到的BH3分析的結(jié)果與患者生存時(shí)間的相關(guān)性并不十分顯著[77].因此,臨床上抗腫瘤藥物的敏感性預(yù)測(cè)的復(fù)雜程度遠(yuǎn)比預(yù)想的要復(fù)雜,該方法在臨床上的推廣還有待進(jìn)一步考察.

        3.3 Bak細(xì)胞內(nèi)狀態(tài)分析因?yàn)榫€粒體細(xì)胞凋亡在抗腫瘤藥物引起細(xì)胞死亡過(guò)程中發(fā)揮著重要作用,而B(niǎo)ak又是線粒體凋亡途徑中關(guān)鍵的凋亡效應(yīng)分子,Bak在細(xì)胞內(nèi)的活化狀態(tài)也與BH3類(lèi)似物的敏感性密切相關(guān).研究[78]發(fā)現(xiàn),當(dāng)細(xì)胞內(nèi)Bak處于與Bcl-2或者Bcl-xL的結(jié)合狀態(tài)時(shí),腫瘤細(xì)胞對(duì)Bcl-2/Bcl-xL抑制劑Navitoclax敏感,當(dāng)細(xì)胞內(nèi)Bak處于與Mcl-1的結(jié)合狀態(tài)時(shí),腫瘤細(xì)胞對(duì)Mcl-1抑制劑A-1210477敏感.該方法也為BH3分析方法提供了一種新的可能的機(jī)制,即BH3小肽除了可以通過(guò)直接置換直接激活分子來(lái)起作用,也可以通過(guò)替換已經(jīng)在細(xì)胞內(nèi)自活化的Bak來(lái)引起腫瘤細(xì)胞的凋亡[78].由于A-1210477對(duì)Mcl-1較弱的抑制能力及對(duì)Mcl-1的半衰期的影響[79],A-1210477并不足以在臨床上推廣.然而,隨著新一代Mcl-1抑制劑S63845的發(fā)現(xiàn)[80],其大大增強(qiáng)了對(duì)Mcl-1的抑制效率,該方法是否能預(yù)測(cè)新型Mcl-1抑制劑的敏感性還有待進(jìn)一步考察.更重要的是,該方法能否推廣到更多的抗腫瘤藥物敏感性預(yù)測(cè)中還有待進(jìn)一步研究.

        4 結(jié)論與展望

        隨著腫瘤分子生物學(xué)的深入研究,腫瘤的精準(zhǔn)醫(yī)療也是勢(shì)在必行.需要指出的是,目前的腫瘤精準(zhǔn)醫(yī)療研究過(guò)分側(cè)重測(cè)序在腫瘤精準(zhǔn)醫(yī)學(xué)中的地位,而忽視了利用功能性試驗(yàn)來(lái)預(yù)測(cè)抗腫瘤藥物的敏感性.一方面,目前多種預(yù)測(cè)抗腫瘤藥物敏感性的功能性方法正在進(jìn)行臨床測(cè)試,有些已經(jīng)取得了非常好的效果,所以在今后的臨床應(yīng)用上將有十分廣闊的前景;另一方面,因?yàn)橛绊懩[瘤藥物敏感性的因素較多,腫瘤藥物敏感性研究方法眾多,若能將多種方式結(jié)合,針對(duì)不同類(lèi)型的腫瘤或者抗腫瘤藥物選擇更適合的預(yù)測(cè)方法,相信會(huì)找到最佳的腫瘤治療方案.同時(shí)需要指出的是,作為后期將服務(wù)于臨床的檢測(cè)方法,不應(yīng)該追求檢測(cè)了多少個(gè)項(xiàng)目,而應(yīng)該考慮如何能用最少的檢測(cè)成本獲取最佳的治療方案.

        [1]Friedman AA,Letai A,F(xiàn)isher DE,et al.Precision medicine for cancer with next-generation functional diagnostics[J].Nat Rev Cancer,2015,15(12):747-756.

        [2]Burstein HJ,Mangu PB,Somerfield MR,et al.American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays[J].J Clin Oncol,2011,29(24):3328-3330.

        [3]Samson DJ,Seidenfeld J,Ziegler K,et al.Chemotherapy sensitivity and resistance assays:a systematic review[J].J Clin Oncol,2004,22(17):3618-3630.

        [4]Kreiter S,Vormehr M,van de Roemer N,et al.Mutant MHC class II epitopes drive therapeutic immune responses to cancer[J].Nature,2015,520(7549):692-696.

        [5]Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation[J].Cell,2011,144(5):646-674.

        [6]Kurbacher CM,Cree IA,Bruckner HW,et al.Use of an ex vivo ATP luminescence assay to direct chemotherapy for recurrent ovarian cancer[J].Anticancer Drugs,1998,9(1):51-57.

        [7]Xu JM,Song ST,Tang ZM,et al.Predictive chemotherapy of advanced breast cancer directed by MTT assay in vitro[J].Breast Cancer Res Treat,1999,53(1):77-85.

        [8]Cree IA,Kurbacher CM,Lamont A,et al.A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapyversus physician's choice in patients with recurrent platinum-resistant ovarian cancer[J].Anticancer Drugs,2007,18(9):1093-1101.

        [9]Ugurel S,Schadendorf D,Pf?hler C,et al.In vitro drug sensitivity predicts response and survival after individualized sensitivity-directed chemotherapy in metastatic melanoma:a multicenter phase II trial of the Dermatologic Cooperative Oncology Group[J].Clin Cancer Res,2006,12(18):5454-5463.

        [10]Loizzi V,Chan JK,Osann K,et al.Survival outcomes in patients with recurrent ovarian cancer who were treated with chemoresistance assay-guided chemotherapy[J].Am J Obstet Gynecol,2003,189(5): 1301-1307.

        [11]Matsuo K,Bond VK,Eno ML,et al.Low drug resistance to both platinum and taxane chemotherapy on an in vitro drug resistance assay predicts improved survival in patients with advanced epithelial ovarian,fallopian and peritoneal cancer[J].Int J Cancer,2009,125(11):2721-2727.

        [12]Sato T,Vries RG,Snippert HJ,et al.Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J].Nature,2009,459(7244):262-265.

        [13]Sato T,Stange DE,F(xiàn)errante M,et al.Long-term expansion of epithelial organoids from human colon,adenoma,adenocarcinoma,and Barrett's epithelium[J].Gastroenterology,2011,141(5):1762-1772.

        [14]Boj SF,Hwang CI,Baker LA,et al.Organoid models of human and mouse ductal pancreatic cancer[J].Cell,2015,160(1-2):324-338.

        [15]Gao D,Vela I,Sboner A,et al.Organoid cultures derived from patients with advanced prostate cancer[J].Cell,2014,159(1):176-187.

        [16]van de Wetering M,F(xiàn)rancies HE,F(xiàn)rancis JM,et al.Prospective derivation of a living organoid biobank of colorectal cancer patients[J].Cell,2015,161(4):933-945.

        [17]Mengelbier LH,Karlsson J,Lindgren D,et al.Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer[J].Nat Commun,2015,6:6125.

        [18]Junttila MR,de Sauvage FJ.Influence of tumour micro-environment heterogeneity on therapeutic response[J].Nature,2013,501(7467): 346-354.

        [19]Kenny HA,Lal-Nag M,White EA,et al.Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy[J].Nat Commun,2015,6:6220.

        [20]Vaira V,F(xiàn)edele G,Pyne S,et al.Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors[J].Proc Natl Acad Sci U S A,2010,107(18):8352-8356.

        [21]Ridky TW,Chow JM,Wong DJ,et al.Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia[J].Nat Med,2010,16(12):1450-1455.

        [22]Nagourney RA,Blitzer JB,Shuman RL,et al.Functional profiling to select chemotherapy in untreated,advanced or metastatic non-small cell lung cancer[J].Anticancer Res,2012,32(10):4453-4460.

        [23]Majumder B,Baraneedharan U,Thiyagarajan S,et al.Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity[J].Nat Commun,2015,6:6169.

        [24]Hirt C,Papadimitropoulos A,Mele V,et al.“In vitro”3D models of tumor-immune system interaction[J].Adv Drug Deliv Rev,2014,79-80:145-154.

        [25]Smerage JB,Barlow WE,Hortobagyi GN,et al.Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500[J].J Clin Oncol,2014,32(31):3483-3489.

        [26]Cristofanilli M,Budd GT,Ellis MJ,et al.Circulating tumor cells, disease progression,and survival in metastatic breast cancer[J].N Engl J Med,2004,351(8):781-791.

        [27]Baccelli I,Schneeweiss A,Riethdorf S,et al.Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay[J].Nat Biotechnol,2013,31(6):539-544.

        [28]Hodgkinson CL,Morrow CJ,Li Y,et al.Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer[J].Nat Med,2014,20(8):897-903.

        [29]Zhang L,Ridgway LD,Wetzel MD,et al.The identification and characterization of breast cancer CTCs competent for brain metastasis[J].Sci Transl Med,2013,5(180):180ra48.

        [30]Yu M,Bardia A,Aceto N,et al.Cancer therapy.Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility[J].Science,2014,345(6193):216-220.

        [31]Brouzes E,Medkova M,Savenelli N,et al.Droplet microfluidic technology for single-cell high-throughput screening[J].Proc Natl Acad Sci U S A,2009,106(34):14195-14200.

        [32]Yu M,Stott S,Toner M,et al.Circulating tumor cells:approaches to isolation and characterization[J].J Cell Biol,2011,192(3): 373-382.

        [33]Tannock IF,Hickman JA.Limits to Personalized Cancer Medicine[J].N Engl J Med,2016,375(13):1289-1294.

        [34]Daniel VC,Marchionni L,Hierman JS,et al.A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro[J].Cancer Res,2009,69(8):3364-3373.

        [35]Tentler JJ,Tan AC,Weekes CD,et al.Patient-derived tumour xenografts as models for oncology drug development[J].Nat Rev Clin Oncol,2012,9(6):338-350.

        [36]Hidalgo M,Amant F,Biankin AV,et al.Patient-derived xenograft models:an emerging platform for translational cancer research[J].Cancer Discov,2014,4(9):998-1013.

        [37]Morton CL,Houghton PJ.Establishment of human tumor xenografts in immunodeficient mice[J].Nat Protoc,2007,2(2):247-250.

        [38]Mohseni MJ,Amanpour S,Muhammadnejad S,et al.Establishment of a patient-derived Wilms'tumor xenograft model:a promising tool for individualized cancer therapy[J].J Pediatr Urol,2014,10(1): 123-129.

        [39]Hoffman RM.Patient-derived orthotopic xenografts:better mimic of metastasis than subcutaneous xenografts[J].Nat Rev Cancer,2015,15(8):451-452.

        [40]Thibaudeau L,Taubenberger AV,Holzapfel BM,et al.A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone[J].Dis Model Mech,2014,7(2):299-309.

        [41]Wu M,Jung L,Cooper AB,et al.Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice[J].Proc Natl Acad Sci U S A,2009,106(17): 7022-7027.

        [42]Melkus MW,Estes JD,Padgett-Thomas A,et al.Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1[J].Nat Med,2006,12(11):1316-1322.

        [43]Weroha SJ,Becker MA,Enderica-Gonzalez S,et al.Tumorgrafts as in vivo surrogates for women with ovarian cancer[J].Clin Cancer Res,2014,20(5):1288-1297.

        [44]Siolas D,Hannon GJ.Patient-derived tumor xenografts:transforming clinical samples into mouse models[J].Cancer Res,2013,73(17):5315-5319.

        [45]Orsulic S,Li Y,Soslow RA,et al.Induction of ovarian cancer by defined multiple genetic changes in a mouse model system[J].Cancer Cell,2002,1(1):53-62.

        [46]Kresse SH,Meza-Zepeda LA,Machado I,et al.Preclinical xenograft models of human sarcoma show nonrandom loss of aberrations[J].Cancer,2012,118(2):558-570.

        [47]Wu JB,Shao C,Li X,et al.Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis[J].Biomaterials,2014,35(28):8175-8185.

        [48]Luo S,Zhang E,Su Y,et al.A review of NIR dyes in cancer targeting and imaging[J].Biomaterials,2011,32(29):7127-7138.

        [49]Yang X,Shi C,Tong R,et al.Near IR heptamethine cyanine dye-mediated cancer imaging[J].Clin Cancer Res,2010,16(10):2833-2844.

        [50]Hilhorst R,Houkes L,Mommersteeg M,et al.Peptide microarrays for profiling of serine/threonine kinase activity of recombinant kinases and lysates of cells and tissue samples[J].Methods Mol Biol,2013,977:259-271.

        [51]Tahiri A,R?e K,Ree AH,et al.Differential inhibition of ex-vivo tumor kinase activity by vemurafenib in BRAF(V600E)and BRAF wild-type metastatic malignant melanoma[J].PLoS One,2013,8(8):e72692.

        [52]Schayowitz A,Bertenshaw G,Jeffries E,et al.Functional profiling of live melanoma samples using a novel automated platform[J].PLoS One,2012,7(12):e52760.

        [53]Irish JM,Hovland R,Krutzik PO,et al.Single cell profiling of potentiated phospho-protein networks in cancer cells[J].Cell,2004,118(2):217-228.

        [54]Kornblau SM,Minden MD,Rosen DB,et al.Dynamic single-cell network profiles in acute myelogenous leukemia are associated with patient response to standard induction therapy[J].Clin Cancer Res,2010,16(14):3721-3733.

        [55]Lacayo NJ,Alonzo TA,Gayko U,et al.Development and validation of a single-cell network profiling assay-based classifier to predict response to induction therapy in paediatric patients with de novo acute myeloid leukaemia:a report from the Children's Oncology Group[J].Br J Haematol,2013,162(2):250-262.

        [56]Hata AN,Engelman JA,F(xiàn)aber AC.The BCL2 Family:Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics[J].Cancer Discov,2015,5(5):475-487.

        [57]van Delft MF,Huang DC.How the Bcl-2 family of proteins interact to regulate apoptosis[J].Cell Res,2006,16(2):203-213.

        [58]Dai H,Meng WX,Kaufmann SH.BCL2 Family,Mitochondrial Apoptosis,and Beyond[J].Cancer Transl Med,2016,2(1):7-20.

        [59]Wang C,Youle RJ.The role of mitochondria in apoptosis[J].Annu Rev Genet,2009,43:95-118.

        [60]Llambi F,Wang YM,Victor B,et al.BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation[J].Cell,2016,165(2):421-433.

        [61]Strasser A,Cory S,Adams JM.Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases[J].EMBO J,2011,30(18):3667-3683.

        [62]Czabotar PE,Lessene G,Strasser A,et al.Control of apoptosis by the BCL-2 protein family:implications for physiology and therapy[J].Nat Rev Mol Cell Biol,2014,15(1):49-63.

        [63]Moldoveanu T,F(xiàn)ollis AV,Kriwacki RW,et al.Many players in BCL-2 family affairs[J].Trends Biochem Sci,2014,39(3):101-111.

        [64]Renault T,Chipuk J.Death upon a kiss:mitochondrial outer membrane composition and organelle communication govern sensitivity to BAK/BAX-dependent apoptosis[J].Chem Biol,2014,21(1):114-123.

        [65]Dai H,Smith A,Meng XW,et al.Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization[J].J Cell Biol,2011,194(1):39-48.

        [66]Dai H,Pang YP,Ramirez-Alvarado M,et al.Evaluation of the BH3-only protein Puma as a direct Bak activator[J].J Biol Chem,2014,289(1):89-99.

        [67]Khaled S,Al Malki M,Marcucci G.Acute Myeloid Leukemia: Biologic,Prognostic,and Therapeutic Insights[J].Oncology(Williston Park),2016,30(4):318-329.

        [68]Letai A,Bassik MC,Walensky LD,et al.Distinct BH3 domains either sensitize or activate mitochondrial apoptosis,serving as prototype cancer therapeutics[J].Cancer Cell,2002,2(3):183-192.

        [69]Certo M,Del Gaizo Moore V,Nishino M,et al.Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members[J].Cancer Cell,2006,9(5):351-365.

        [70]Ni Chonghaile T,Sarosiek KA,Vo TT,et al.Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy[J].Science,2011,334(6059):1129-1133.

        [71]Vo TT,Ryan J,Carrasco R,et al.Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML[J].Cell,2012,151(2):344-355.

        [72]Touzeau C,Ryan J,Guerriero J,et al.BH3-profiling identifies heterogeneous dependency on Bcl-2 family members in Multiple myeloma and predicts sensitivity to BH3 mimetics[J].Leukemia,2016,30(3):761-764.

        [73]Del Gaizo Moore V,Letai A.BH3 profiling--measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions[J].Cancer Lett,2012,332(2):202-205.

        [74]Montero J,Sarosiek KA,DeAngelo JD,et al.Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy[J].Cell,2015,160(5):977-989.

        [75]Chonghaile TN,Roderick JE,Glenfield C,et al.Maturation stage of T-cell acutelymphoblasticleukemiadeterminesBCL-2versus BCL-XL dependence and sensitivity to ABT-199[J].Cancer Discov,2014,4(9):1074-1087.

        [76]Pan R,Hogdal LJ,Benito JM,et al.Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia[J].Cancer Discov,2014,4(3):362-375.

        [77]Konopleva M,Pollyea DA,Potluri J,et al.Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia[J].Cancer Discov,2016,6(10):1106-1117.

        [78]Dai H,Ding H,Meng XW,et al.Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells[J].Genes Dev,2015,29(20):2140-2152.

        [79]Leverson JD,Zhang H,Chen J,et al.Potent and selective smallmolecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263(navitoclax)[J].Cell Death Dis,2015,6:e1590.

        [80]Kotschy A,Szlavik Z,Murray J,et al.The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models[J].Nature,2016,538(7626):477-482.

        Research progress on the prediction of sensitivity of anti-cancer agents based on functional assays

        LIU Dong-Yan1,2,YE Kai-Qin1,2,WANG Hong-Zhi1,2,DAI Hai-Ming1,2
        1Center of Medical Physics and Technology,Hefei Institutes of Physical Science,Chinese Academy of Sciences,2Cancer Hospital,Chinese Academy of Sciences,Hefei 230031,China

        With increasing rate of tumor incidence,its treatments including surgery,radiotherapy,traditional chemotherapy and molecular targeted therapy also have been gradually improved and perfected,in which anti-cancer agents are playing a particularly important role.Anti-cancer agents include traditional chemotherapy agents and molecular-targeted drugs,etc.However,anti-cancer agents are not always effective,and the response rate of chemotherapeutic strategy of certain tumours is less than 25%.Therefore,it is necessary to predict the sensitivity of anti-cancer agents accurately.Whether a cancer cell is sensitive or not to a certain anti-cancer agent is mainly determined by many aspects,including gene expression levels,gene mutations,epigenetics,microenvironments of body,and so on.Besides usually adopted methods for detection of cancer genes,some functional tests are taken now for predicting sensitivities of anti-cancer agents,including ATP-assays,MTT assays,patient-derived tumor xenograft(PDX)mouse models,newly developed of BH3 profiling assays,and so on.In this paper,we will review recent advances in these functional assays,discuss the strengths and disadvantages of theses assays,and explore the trends of research on sensitivities of anti-cancer agents.

        anti-cancer agents;precision medicine;functional assays;drug sensitivity

        R96

        A

        2095-6894(2017)01-01-06

        2016-11-19;接受日期:2016-12-06

        中國(guó)科學(xué)院百人計(jì)劃項(xiàng)目及國(guó)家自然基金面上項(xiàng)目(81572948)

        劉東巖.碩士.研究方向:抗腫瘤藥物敏感性.

        E-mail:liudy209@163.com

        戴海明.博士,教授.研究方向:腫瘤細(xì)胞凋亡基礎(chǔ)及應(yīng)用.

        E-mail:daih@cmpt.ac.cn

        猜你喜歡
        敏感性通路化療
        骨肉瘤的放療和化療
        釔對(duì)Mg-Zn-Y-Zr合金熱裂敏感性影響
        跟蹤導(dǎo)練(二)(3)
        AH70DB鋼焊接熱影響區(qū)組織及其冷裂敏感性
        焊接(2016年1期)2016-02-27 12:55:37
        Kisspeptin/GPR54信號(hào)通路促使性早熟形成的作用觀察
        如何培養(yǎng)和提高新聞敏感性
        新聞傳播(2015年8期)2015-07-18 11:08:24
        proBDNF-p75NTR通路抑制C6細(xì)胞增殖
        化療相關(guān)不良反應(yīng)的處理
        通路快建林翰:對(duì)重模式應(yīng)有再認(rèn)識(shí)
        微小RNA與食管癌放射敏感性的相關(guān)研究
        中文字幕一区韩国三级| 久久久国产精品| 国产爆乳美女娇喘呻吟| 一区二区三区国产| 丰满五十六十老熟女hd| 国产免费无码9191精品| 国产午夜在线观看视频| 97超碰国产成人在线| 久久精品国产精品亚洲| 九九99久久精品国产| 天堂√在线中文官网在线| 久久老子午夜精品无码怎么打| 国产高清精品自在线看| 扒开非洲女人大荫蒂视频| 日本师生三片在线观看| 亚洲一区二区女搞男| 久久久久人妻精品一区蜜桃| 国产午夜亚洲精品不卡福利| 网红极品女神精品视频在线| 亚洲视频在线观看第一页| 亚洲精品无码专区在线在线播放| 乱人伦中文无码视频在线观看| JIZZJIZZ国产| 午夜一区二区在线视频| 在线观看日本一区二区三区四区| 浓毛老太交欧美老妇热爱乱| 97人人模人人爽人人少妇| av超碰在线免费观看| 国产黄色污一区二区三区| 不卡一本av天堂专区| 成人影院yy111111在线| 亚洲综合av在线在线播放| 一区二区三区不卡免费av| 亚洲丰满熟女乱一区二区三区 | 国产亚洲自拍日本亚洲| 欧美乱人伦人妻中文字幕| 国产乱子伦精品无码码专区| 日本免费一区精品推荐| 一区二区三区日韩亚洲中文视频 | 亚洲精品欧美精品日韩精品| 亚洲av无码不卡|