亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        種子激素引發(fā)

        2017-01-11 07:21:36韓云華王彥榮陶奇波
        草業(yè)科學(xué) 2016年12期
        關(guān)鍵詞:激素幼苗種子

        韓云華,王彥榮,陶奇波

        (草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室 蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020)

        植物生產(chǎn)層

        種子激素引發(fā)

        韓云華,王彥榮,陶奇波

        (草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室 蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州 730020)

        種子激素引發(fā)(Hormonal priming)是種子引發(fā)(Seed priming)的一種。通過(guò)激素引發(fā)可以有效改善種子萌發(fā)狀態(tài),促進(jìn)幼苗生長(zhǎng)和產(chǎn)量提高,并增強(qiáng)植物的抗逆性。本文針對(duì)近年來(lái)植物激素引發(fā)的研究情況,介紹了激素引發(fā)在促進(jìn)種子萌發(fā)和幼苗生長(zhǎng)中的應(yīng)用,論述了其對(duì)植物生長(zhǎng)發(fā)育的有利影響。并從植物生理生化與分子生物學(xué)兩個(gè)方面闡述了種子激素引發(fā)的機(jī)理。同時(shí),對(duì)影響引發(fā)效果的因素進(jìn)行了分析,指出種子引發(fā)的濃度與引發(fā)時(shí)間、種子引發(fā)后的回干條件是影響引發(fā)效果的最重要因素。未來(lái)的研究應(yīng)充分借助基因組學(xué)與蛋白質(zhì)組學(xué)等方法,深入探究種子激素引發(fā)的生理生化與分子生物學(xué)機(jī)理,并加強(qiáng)在草類(lèi)植物中的研究。

        種子引發(fā);激素;抗逆性;萌發(fā);產(chǎn)量

        種子引發(fā)(seed priming)是以水分為基礎(chǔ)的播前處理技術(shù),通過(guò)控制種子吸水,激活種子萌發(fā)早期的新陳代謝過(guò)程,然后及時(shí)脫水,阻止其進(jìn)入完全萌發(fā)狀態(tài)[1]。根據(jù)引發(fā)物質(zhì)不同,種子引發(fā)的方法包括水引發(fā)(hydroproming)[2]、滲透引發(fā)(osmopriming)[3]、生物引發(fā)(biopriming)[4]、營(yíng)養(yǎng)引發(fā)(nutrient priming)[5]、化學(xué)物質(zhì)引發(fā)(chemical priming)[6]和激素引發(fā)(hormonal priming)[7]等(表1)。

        國(guó)內(nèi)外有關(guān)引發(fā)的研究已經(jīng)有很多[8-16],但是針對(duì)種子引發(fā)中激素的應(yīng)用及其原理還未見(jiàn)系統(tǒng)評(píng)述。本文從種子引發(fā)中激素的應(yīng)用、激素引發(fā)的生理生化基礎(chǔ)和影響激素引發(fā)等方面論述了近年來(lái)的成果。

        激素作為一種參與種子萌發(fā)、植株生長(zhǎng)的信號(hào)小分子物質(zhì),即使在植物體內(nèi)濃度極小甚至趨近于0時(shí)仍有非常重要的作用[9]。種子激素引發(fā)是利用一定濃度的激素進(jìn)行浸種,并精確控制溫度和時(shí)間,達(dá)到促進(jìn)萌發(fā)且不引起傷害的技術(shù)。種子激素引發(fā)的主要作用包括以下幾點(diǎn):1)提高種子活力,即提高種子的發(fā)芽率、發(fā)芽速度以及整齊度;2)提高幼苗抗逆性;3)打破種子休眠;4)在一定程度上恢復(fù)種子活力。目前已有報(bào)道的激素種類(lèi)有赤霉素(GA)[7]、脫落酸(ABA)[17]、油菜素內(nèi)酯(BR)[18]、5-氨基乙酰丙酸(ALA)[19]、細(xì)胞分裂素(CTK)[20]等。通過(guò)播前激素引發(fā),可有效改善種子質(zhì)量,提高抗逆性,促進(jìn)產(chǎn)量增加[9,21-22],而且可以增加豆科植物種子維生素含量和營(yíng)養(yǎng)價(jià)值[23]。

        表1 幾種常見(jiàn)種子引發(fā)技術(shù)的比較Table 1 Comparison of several common seed priming technology

        1 種子激素引發(fā)的應(yīng)用

        激素引發(fā)是種子引發(fā)技術(shù)的一種,廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn)中,早在20世紀(jì)50年代,已有學(xué)者利用赤霉素引發(fā)豌豆(Pisumsativum)種子,以提高其出苗能力與幼苗長(zhǎng)勢(shì)[24];20世紀(jì)70年代亦有研究人員發(fā)現(xiàn)赤霉素引發(fā)可以提高洋蔥種子的萌發(fā)率[25]。經(jīng)過(guò)半個(gè)多世紀(jì)的發(fā)展,激素引發(fā)已經(jīng)廣泛應(yīng)用于農(nóng)林業(yè)生產(chǎn)。另外,由于激素參與調(diào)節(jié)植物生長(zhǎng)、發(fā)育和繁殖等生長(zhǎng)過(guò)程,激素引發(fā)還可以改善植物抗逆性,增加其產(chǎn)量。

        1.1 改善種子萌發(fā)狀態(tài)

        種子萌發(fā)過(guò)程伴隨著眾多生理生化過(guò)程,激素引發(fā)是在水引發(fā)的基礎(chǔ)上加入外源植物激素,達(dá)到打破休眠、促進(jìn)萌發(fā)和緩解老化活力喪失的作用。赤霉素類(lèi)激素(GAs)是目前引發(fā)中應(yīng)用最廣的一類(lèi)植物激素。近年來(lái),在小麥(Triticumaestivum)[26]、大麥(Hordeumvulgare)[27]、燕麥(Avenasativa)[28]、番茄(Lycopersiconesculentum)[29]、大白菜(Brassicarapa)[30]、向日葵(Helianthusannuus)[31]、苜蓿(Medicagosativa)[32-33]等植物中,科研人員通過(guò)控制赤霉素濃度、引發(fā)時(shí)間和引發(fā)溫度等因素,發(fā)現(xiàn)GAs引發(fā)可增加種子吸水量,提高種子活力、發(fā)芽率、發(fā)芽指數(shù)、發(fā)芽速率,并顯著降低電導(dǎo)率、起始發(fā)芽時(shí)間、50%發(fā)芽時(shí)間和平均發(fā)芽時(shí)間。表2展示了幾種常見(jiàn)植物在激素引發(fā)下的萌發(fā)狀況。

        除GAs外,其它一些植物激素也被證明具有促進(jìn)萌發(fā)的作用。雀麥(Bromusinermis)種子人工老化后,利用生長(zhǎng)素(NAA)引發(fā),可提高出苗率、幼苗活力、幼苗生長(zhǎng)速率、根長(zhǎng)、芽長(zhǎng)和幼苗高度[35]。利用24-表油菜素內(nèi)酯(24-epibrassinolide)滾筒引發(fā)后的鈴椒(Capsicumannuum)種子表現(xiàn)出明顯的發(fā)芽和生長(zhǎng)優(yōu)勢(shì)[36]。

        1.2 促進(jìn)幼苗生長(zhǎng)和提高產(chǎn)量

        除影響種子萌發(fā)以外,激素引發(fā)的影響效果會(huì)延續(xù)至幼苗生長(zhǎng)甚至到產(chǎn)量形成時(shí)期。眾多研究結(jié)果表明,GAs引發(fā)可提高出苗率、出苗整齊度、根系長(zhǎng)度、幼苗根系活力、幼苗干重、葉片中葉綠素含量和植株高度[27-28,33,37-39]。但是,也有研究表明GA3引發(fā)效果不如水引發(fā),利用GA3和水引發(fā)生菜(Iceberglettuce)種子,鹽脅迫處理15 d后,GA3處理的幼苗干重小于水引發(fā)處理[40]。

        表2 幾種植物在激素引發(fā)下的萌發(fā)率Table 2 Germination percentage of several plants as influenced by hormone priming

        其它植物激素也有類(lèi)似效果。如CTK可增加幼苗葉面積[30]。BR可降低種子電導(dǎo)率,增加幼苗葉綠素含量[41]。在200 mmol·L-1NaCl脅迫下,水楊酸引發(fā)后的甜高粱(Sorghumbicolor)種子可分別提高出苗率、出苗速率、葉綠素b和蛋白含量82%,130%、7.9%和1.9%。在37 ℃下,出苗率、出苗速率和根數(shù)增加了72.5%、108.5%和63.8%,同時(shí)丙二醛(MDA)含量降低了17.6%[42]。植物激素引發(fā)可提高種子產(chǎn)量。GA3可顯著提高小扁豆(Lensculinaris)產(chǎn)量因子和種子產(chǎn)量[35],CTK引發(fā)后兩個(gè)品種的小麥產(chǎn)量均得到了提高[43-44](表3)。

        表3 激素引發(fā)對(duì)幾種植物株高的影響Table 3 Effects of seed priming on plant height of several plants

        1.3 抗逆應(yīng)用

        激素引發(fā)可有效提高抗氧化酶系統(tǒng)活性,進(jìn)而提高幼苗抗逆特性[45,48]。GA3可以顯著提高干旱脅迫下油菜種子的發(fā)芽率,也可顯著提高幼苗抗旱性,引發(fā)后種苗鮮重和下胚軸長(zhǎng)度均有所增加[49]。研究發(fā)現(xiàn),GA3引發(fā)可顯著提高耐鹽油菜品種在鹽脅迫條件下的表現(xiàn),但是對(duì)不耐鹽品種油菜影響不顯著[50]。脫落酸(ABA)是GA的拮抗激素,可增加種子休眠。近些年研究發(fā)現(xiàn),ABA引發(fā)可在一定程度上緩解小麥水淹和干旱脅迫[51],也可提前出苗時(shí)間、提高出苗率、縮短出苗期[52]。

        除了GAS和ABA以外,其它植物激素引發(fā)也會(huì)增加幼苗一定程度的抗逆能力。細(xì)胞分裂素(CTK)引發(fā)后,植株內(nèi)ABA含量降低,提高了小麥抗鹽能力[43],在50%田間持水量下,BR引發(fā)后的植株有較高的葉水勢(shì)且積累更多的CO2,提高了水稻抗旱性[52]。ALA與KNO3配合引發(fā)紅辣椒,可顯著提高種子在低溫條件下(15 ℃)的表現(xiàn),發(fā)芽率、發(fā)芽速率均得到顯著提高。種子貯藏一個(gè)月后(4 ℃或25 ℃),引發(fā)效果依然很好[53]。

        2 種子激素引發(fā)的生理生化基礎(chǔ)

        2.1 細(xì)胞膜修復(fù)

        細(xì)胞膜是植物細(xì)胞的基本功能單位,對(duì)細(xì)胞具有保護(hù)作用。種子活力喪失往往伴隨著細(xì)胞膜的損傷,而引發(fā)可在一定程度上對(duì)損傷的細(xì)胞膜進(jìn)行修復(fù)。研究發(fā)現(xiàn),GA3引發(fā)后油菜種子電導(dǎo)率低于未被引發(fā)的,且植株細(xì)胞受到鹽脅迫損傷程度較低[54]。

        2.2 改變細(xì)胞膜離子通透性

        激素引發(fā)還可改變細(xì)胞膜對(duì)離子的選擇性,進(jìn)而增加植物抗逆特性。GA3引發(fā)可降低鹽脅迫下小麥芽部和根部的鈉離子含量,提高鈣離子和鉀離子含量,并提高水楊酸(SA)含量,降低ABA和聚胺類(lèi)物質(zhì)(腐胺Put和亞精胺Spd)含量,進(jìn)而提高其抗逆能力,促進(jìn)種子產(chǎn)量的提高[45]。水楊酸和抗壞血酸引發(fā)可降低小麥幼苗中鉀離子含量,增加可溶性糖含量[55]。生長(zhǎng)素(NAA)也有類(lèi)似的效果[56]。

        2.3 激活抗氧化系統(tǒng)

        激素引發(fā)可促進(jìn)植株內(nèi)抗氧化系統(tǒng)水平提升[32]。ABA引發(fā)的小麥種子受到干旱脅迫后,可顯著提高超氧化物歧化酶(SOD)和過(guò)氧化物酶(POD)活性,且細(xì)胞內(nèi)相對(duì)含水量顯著增加[57]。GA3引發(fā)后的油菜幼苗受到干旱脅迫后,中可溶性糖、可溶性蛋白和自由脯氨酸均顯著提高,而丙二醛(MDA)含量下降,抗氧化系統(tǒng)酶(如SOD,CAT,POD)水平升高[49]。

        3 種子激素引發(fā)的分子生物學(xué)基礎(chǔ)

        3.1 大分子物質(zhì)修復(fù)

        DNA修復(fù)是種子萌發(fā)前重要的階段,可以避免種子萌發(fā)所需蛋白的錯(cuò)配,促進(jìn)種子迅速而整齊的萌發(fā)。研究者利用qRT-PCR激素研究了7個(gè)與DNA修復(fù)有關(guān)的基因(GTFⅡH2,MMZ3/UVE1C,RAD3,RecA-like1,RAD54,UDNAglycosylase和KU80)在種子引發(fā)后的表達(dá)情況,發(fā)現(xiàn)這些基因表達(dá)量會(huì)上調(diào),但是受引發(fā)方法影響較大[58]。細(xì)胞學(xué)研究發(fā)現(xiàn),ABA引發(fā)可觸發(fā)DNA修復(fù)機(jī)制,降低細(xì)胞第1次有絲分裂過(guò)程中染色體畸變頻率[59-60]。

        3.2 促進(jìn)特定基因表達(dá)

        引發(fā)后種子在逆境條件下可促進(jìn)某些特定基因表達(dá),增強(qiáng)植物抗逆能力。外源ABA引發(fā)后,降低了cDNA克隆BnCAM1表達(dá)量,過(guò)量表達(dá)鈣調(diào)蛋白,促進(jìn)種子萌發(fā)早期新陳代謝酶類(lèi)合成,在非生物脅迫條件下(干旱、低溫和鹽脅迫),使發(fā)芽時(shí)間提前2~7 d,且提高了發(fā)芽率[34]。研究發(fā)現(xiàn),水孔蛋白基因BnPIP1編碼的蛋白與種子萌發(fā)早期營(yíng)養(yǎng)物質(zhì)酶代謝中水分專(zhuān)業(yè)有關(guān),ABA引發(fā)可促進(jìn)基因BnPIP1表達(dá)上調(diào),且基因表達(dá)時(shí)間提前,促進(jìn)種子萌發(fā)[61]。

        4 影響種子激素引發(fā)的因素

        種子引發(fā)涉及的生理生化、分子生物學(xué)過(guò)程很多。最直接影響激素引發(fā)的因素主要有引發(fā)時(shí)間、激素濃度、引發(fā)溫度和回干條件等。

        4.1 引發(fā)時(shí)間和溫度

        激素引發(fā)本質(zhì)上是液體引發(fā)的一種,且激素濃度都極低,溶液滲透勢(shì)高,種子易發(fā)生吸漲傷害。因此,要適當(dāng)控制引發(fā)時(shí)間和溫度,以便達(dá)到最佳的引發(fā)效果而不引起吸漲傷害。目前研究中引發(fā)時(shí)間普遍在6~24 h[26,28,32,36-37,40,55]。也有一些物種處理比較特殊,如用366 mg·kg-1GA3引發(fā)1 h顯著促進(jìn)白花蛇舌草(Hedyotisdiffusa)種子萌發(fā),提高干旱條件下種子的發(fā)芽率、發(fā)芽指數(shù)、活力指數(shù)并促進(jìn)幼苗的生長(zhǎng)[62]。Wagner等[63]在研究10種牧草種子引發(fā)試驗(yàn)中將種子在15 ℃下引發(fā)14 d。有報(bào)道稱(chēng),引發(fā)在低溫下效果較好,且最佳溫度在15~20 ℃[61]。但是,也有研究采用高于20 ℃作為激素引發(fā)的溫度[38,64-66]。

        4.2 激素濃度

        濃度是影響引發(fā)效果的一個(gè)重要因素,但是不同物種間以及不同引發(fā)劑間最佳濃度各異。GAs是一類(lèi)最常用的種子引發(fā)激素,其濃度在不同物種間差異較大。鹽脅迫條件下,20 mg·L-1GA3引發(fā)小麥種子后發(fā)芽率最高[67]。在干旱脅迫條件下,用0.5 mmol·L-1GA3引發(fā)48 h處理北青蘭(Dracocephalumargunense)效果最好[68]。利用300 mg·L-1GA3引發(fā)油菜種子可顯著提高其幼苗抗旱性,提高幼苗鮮重和下胚軸長(zhǎng)[48]。

        不同引發(fā)物的引發(fā)濃度也有較大差異。利用SA濃度50 mg·g-1引發(fā)春玉米,可顯著提高生物量、種子產(chǎn)量和收獲指數(shù)[40];ABA 濃度 10~6 mol·L-1處理小麥種子效果較好[56]。50 mg·L-1的NAA干旱條件下高冰草(Thinopyrumponticum)發(fā)芽率增加了18%[44],而NAA 150 mg·L-1引發(fā)對(duì)小麥生長(zhǎng)和種子產(chǎn)量增加最為有利[55]。

        4.3 種子回干

        實(shí)際應(yīng)用中,種子經(jīng)過(guò)激素引發(fā)后,一般需要經(jīng)過(guò)表面回干或者完全回干后儲(chǔ)藏,待田間條件合適后進(jìn)行播種。因此,引發(fā)后的回干參數(shù)相當(dāng)重要。對(duì)KNO3引發(fā)后的西瓜(Citrulluslanatus)種子設(shè)置了不同的回干處理,研究其對(duì)抗氧化酶活性和發(fā)芽率的影響,發(fā)現(xiàn)室內(nèi)緩慢回干效果最好[69]。研究發(fā)現(xiàn),回干時(shí)間和回干溫度對(duì)羊草(Leymuschinensis)和無(wú)芒雀麥(Bromusinermis)的發(fā)芽率和發(fā)芽指數(shù)都有影響,羊草種子能忍受長(zhǎng)時(shí)間的低溫回干(20 ℃,20 d),無(wú)芒雀麥種子能忍受短時(shí)間的高溫回干(30 ℃,1~10 d)[70]。

        5 展望

        種子的激素引發(fā)技術(shù)的研究已有數(shù)十年歷史,研究的內(nèi)容也從種子萌發(fā)、植株生長(zhǎng)和生產(chǎn)性能觀測(cè)深入到生理機(jī)制、信號(hào)通路和分子機(jī)理的研究。相對(duì)于蔬菜、花卉和農(nóng)作物而言,由于多年來(lái)對(duì)牧草種子的重視程度不夠,加之激素引發(fā)成本較高,牧草種子中激素引發(fā)的研究應(yīng)用還較少。牧草種子具有種類(lèi)繁多、特性各異、野生性狀強(qiáng)等特征,未來(lái)的研究應(yīng)集中在有應(yīng)用價(jià)值的栽培草種和野生草種中,在繼續(xù)篩選高效、廉價(jià)的植物激素的同時(shí),加強(qiáng)牧草種子引發(fā)的生理機(jī)制和分子機(jī)理研究。同時(shí),可借助蛋白組學(xué)和基因組學(xué)等研究方法,分析激素引發(fā)的種子和未引發(fā)種子在萌發(fā)、幼苗生長(zhǎng)、植株抗逆、產(chǎn)量形成和內(nèi)源激素信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中的基因表達(dá)差異、代謝差異、生化過(guò)程差異,進(jìn)而對(duì)引發(fā)的機(jī)理形成更加深入的理解[71-75]。

        雖然已經(jīng)出現(xiàn)了一些多種物質(zhì)配合引發(fā)種子的研究,如先利用PEG引發(fā),再用GA3引發(fā),效果要比二者同時(shí)使用和先GA3后PEG好[76]。但是大多數(shù)研究依然采用單一引發(fā)物質(zhì)或方法,采取多種引發(fā)物質(zhì)或者不同引發(fā)方法結(jié)合研究還較為少見(jiàn)。除此以外,當(dāng)前研究主要集中在引發(fā)后種子的萌發(fā)效果方面,有關(guān)引發(fā)后回干的相關(guān)研究較少。不同的回干方法對(duì)種子失水速率影響很大,進(jìn)而影響種子引發(fā)效果。因此,對(duì)引發(fā)后回干技術(shù)進(jìn)行研究對(duì)于提高引發(fā)效果有積極意義。

        References:

        [1] Paparella S,Araujo S S,Rossi G,Wijayasinghe M,Carbonera D,Balestrazzi A.Seed priming:State of the art and new perspectives.Plant Cell Reports,2015,34(8):1281-1293.

        [2] 閔丹丹,范燕,郭正剛,胡小文.紫花苜蓿種子水引發(fā)條件的優(yōu)化.草業(yè)科學(xué),2016,33(4):669-673. Min D D,Fan Y,Guo Z G,Hu X W.Optimization of seed hydropriming conditions forMedicagosativa.Pratacultural Science,2016,33(4):669-673.(in Chinese)

        [3] 孫園園,孫永健,王明田,李旭毅,郭翔,胡蓉,馬均.種子引發(fā)對(duì)水分脅迫下水稻發(fā)芽及幼苗生理性質(zhì)的影響.作物學(xué)報(bào),2010,36(11):1931-1940. Sun Y Y,Sun Y J,Wang M T,Li X Y,Guo X,Hu R,Ma J.Effects of seed priming on germination and seedling growth of rice under water stress.Acta Agronomica Sinica,2010,36(11):1931-1940.(in Chinese)

        [4] 侯紅利,李健強(qiáng),周向陽(yáng).黃瓜種子生防菌引發(fā)處理研究現(xiàn)狀.種子科技,2008,26(3)36-38.

        [5] 楊小環(huán),馬金虎,郭數(shù)進(jìn),李新基,李盛.種子引發(fā)對(duì)鹽脅迫下高粱種子萌發(fā)及幼苗生長(zhǎng)的影響.中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2011,19(1):103-109. Yang X H,Ma J H,Guo S J,Li X J,Li S.Effect of seed priming on sorghum(SorghumbicolorL.)seed germination and seedling growth under salt stress.Chinese Journal of Eco-Agriculture,2011,19(1):103-109.(in Chinese)

        [6] 張菊平,張艷敏,康業(yè)斌,張興志.硝酸鉀處理對(duì)不同貯藏年限辣椒種子發(fā)芽的影響.種子,2005,24(4):28-30. Zhang J P,Zhang Y M,Kang Y B,Zhang X Z.Effects of KNO3treatment on germination of pepper seeds of different storage time.Seed,2005,24(4):28-30.(in Chinese)

        [7] 溫福平,張?zhí)?張朝暉,潘映紅.赤霉素對(duì)鹽脅迫抑制水稻種子萌發(fā)的緩解作用的蛋白質(zhì)組分析.作物學(xué)報(bào),2009,35(3):483-489. Wen F P,Zhang T,Zhang Z H,Pan Y H.Proteome analysis of relieving effect of gibberellin on the inhibition of rice seed germination by salt stress.Acta Agronomica Sinica,2009,35(3):483-489.(in Chinese)

        [8] Jisha K C,Vijayakumari K,Puthur J T.Seed priming for abiotic stress tolerance:An overview.Acta Physiologiae Plantarum,2013,35(5):1381-1396.

        [9] 李振華,王建華.種子活力與萌發(fā)的生理與分子機(jī)制研究進(jìn)展.中國(guó)農(nóng)業(yè)科學(xué),2015,48(4):646-660. Li Z H,Wang J H.Advances in research of physiological and molecular mechanism in seed vigor and germination.Scientia Agricultura Sinica,2015,48(4):646-660.(in Chinese)

        [10] 李盈.種子引發(fā)技術(shù)的研究進(jìn)展.甘肅農(nóng)業(yè)科技,2014(8):57-60.

        [11] 李涵,王志偉,童龍,閔子揚(yáng),孫小武,成娟.無(wú)籽西瓜種子引發(fā)研究進(jìn)展.中國(guó)瓜菜,2014,27(4):1-5. Li H,Wang Z W,Tong L,Min Z Y,Sun X W,Cheng J.Progresses of triploid watermelon seed priming.China Cucurbits and Vegetables,2014,27(4):1-5.(in Chinese)

        [12] 馬多結(jié)吉,王永超.種子引發(fā)技術(shù)的研究進(jìn)展.種子,2013,32(12):43-46. Maduojieji,Wang Y C.Study progress of seed priming techniques.Seed,2013,32(12):43-46.(in Chinese)

        [13] 趙玥,辛霞,王宗禮,盧新雄.種子引發(fā)機(jī)理研究進(jìn)展及牧草種子引發(fā)研究展望.中國(guó)草地學(xué)報(bào),2012,34(3):102-108. Zhao Y,Xin X,Wang Z L,Lu X X.Study progress and prospects in the mechanism of seed priming.Chinese Journal of Grassland,2012,34(3):102-108.(in Chinese)

        [14] 李皓,李傳中,曾瑞珍,張志勝.種子引發(fā)技術(shù)研究進(jìn)展.熱帶農(nóng)業(yè)工程,2012,36(3):20-23. Li H,Li C Z,Zeng R Z,Zhang Z S.Research advances on seed priming technology.Tropical Agricultrual Engineering,2012,36(3):20-23.(in Chinese)

        [15] 黃淑賢.種子引發(fā)提高植物耐鹽性的研究進(jìn)展.河北農(nóng)業(yè)科學(xué),2010(7):54-55,67. Huang S X.Research progress on plant salt tolerance by seed priming.Journal of Heibei Agricultural Sciences,2010(7):54-55,67.(in Chinese)

        [16 馬瑞霞,王彥榮.種子水引發(fā)的研究進(jìn)展.草業(yè)學(xué)報(bào),2008,17(6):141-147. Ma R X,Wang Y R.Advances in seed hydro-priming research.Acta Pratacultruae Sinica,2008,17(6):141-147.(in Chinese)

        [17] 張翔,項(xiàng)超,劉金師,張奎,黃貫劉,康圣好.脫落酸對(duì)水稻種子萌發(fā)的影響.安徽農(nóng)業(yè)科學(xué),2015,43(35):73-74. Zhang X,Xiang C,Liu J S,Zhang K,Huang G L,Kang S H.Effect of the exogenous plant hormone ABA on the germination of rice seeds.Journal of Anhui Agricultural Sciences,2015,43(35):73-74.(in Chinese)

        [18] 張學(xué)明,李彩艷,郭秋香,丁海麥.水楊酸和油菜素內(nèi)酯對(duì)黃芪種子萌發(fā)的影響.黑龍江農(nóng)業(yè)科學(xué),2015(3):32-33. Zhang X M,Li C X,Guo Q X,Ding H M.Effects of salicylic acid and brassinolide on seed germination ofAstragalusmembranaceus.Heilongjiang Agricultural Sciences,2015(3):32-33.(in Chinese)

        [19] 蔣麗陽(yáng),曹騰,甕強(qiáng),許鋒,程水源.ALA與GA3對(duì)夏枯草種子發(fā)芽特性的影響.種子,2011,30(12):88-89. Jiang L Y,Cao T,Weng Q,Xu F,Cheng S Y.Effect of ALA and GA3on seed germination characteristic of selfheal.Seed,2011,30(12):88-89.(in Chinese)

        [20] 郭倫發(fā),何金祥,王新桂,周浩.不同處理方法對(duì)石栗種子發(fā)芽率及發(fā)芽勢(shì)的影響.廣東農(nóng)業(yè)科學(xué),2010(4)34-38. Guo L F,He J X,Wang X G,Zhou H.Effects of different treatments on germination percentage and germination energy ofAleuritesmoluccanaseeds.Guangdong Agricultural Sciences,2010(4):34-38.(in Chinese)

        [21] Soltani E,Soltani A.Meta-analysis of seed priming effects on seed germination,seedling emergence and crop yield:Iranian studies.International Journal of Plant Production,2015,9(3):413-432.

        [22] 郭慧琴,任衛(wèi)波,李平,武自念,萬(wàn)東莉.2,4-表油菜素內(nèi)酯和赤霉素互作對(duì)羊草種子萌發(fā)及幼苗生長(zhǎng)的影響.草業(yè)科學(xué),2014,31(6): 1097-1103. Guo H Q,Ren W B,Li P,Wu Z N,Wan D L.Effect of epi-brassinosteroid and gibberellin on seed germination and seedling growth ofLeymuschinensis.Pratacultural Science,2014,31(6):1097-1103.(in Chinese)

        [23] Janeczkol A,Dziurka M,Ostrowskal A,Biesaga-Koscielniale J,Koscielniak J.Improving vitamin content and nutritional value of legume yield through water and hormonal seed priming.Legume Research,2015,38(2):185-193.

        [24] Brian P W,Hemming H G.The effect of gibberellic acid on shoot growth of pea seedlings.Physiologia Plantarum,1955,8(3):669-681.

        [25] Sosa K.Studies on physiological and biochemical aspects of seed priming in onion (AlliumcepaL.).Annales De Linstitut Pasteur,1971,120(3):292-312.

        [26] Chauhan D S,Deswal D P.Effect of ageing and priming on vigour parameters of wheat (Triticumaestivum).Indian Journal of Agricultural Sciences,2013,83(11):1122-1127.

        [27] Atar B,Kara B.Efficiency of some seed priming in different soil moisture contents in wheat and barley.Tarim Bilimleri Dergisi-Journal of Agricultural Sciences,2015,21(1):93-99.

        [28] Verma R,Vijay D,Gupta C K,Malaviya D R.Seed quality enhancement of oat (AvenasativaL.) varieties through priming.Range Management and Agroforestry,2014,35(1):144-150.

        [29] Finchsavage W E,McQuistan C I.Abscisic acid:An agent to advance and synchronize germination for tomato (LycopersiconesculentumMill.) seeds.Seed Science and Technology,1991,19(3):537-544.

        [30] Jamil M,Ashraf M,Rha E S.Alleviation of salt stress using gibberellic acid in Chinese cabbage.Acta Agronomica Hungarica,2012,60(4):345-355.

        [31] Draganic I,Lekic S.Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions.Turkish Journal of Agriculture and Forestry,2012,36(4):421-428.

        [32] Zhang S,Hu J,Zhang Y,Xie X J,Knapp A.Seed priming with brassinolide improves lucerne (MedicagosativaL.) seed germination and seedling growth in relation to physiological changes under salinity stress.Australian Journal of Agricultural Research,2007,58(8):811-815.

        [33] 潘龍,谷文英.硝普鈉浸種對(duì)紫花苜蓿種子萌發(fā)及幼苗生長(zhǎng)的影響.草業(yè)科學(xué),2013,30(1):58-62. Pan L,Gu W Y.Effects of soaking seeds in SNP on seed germination and seedling growth of alfalfa.Pratacultural Science,2013,30(1): 58-62.(in Chinese)

        [34] Gao Y P,Bonham-Smith P C,Gusta L V.The role of peroxiredoxin antioxidant and calmodulin in ABA-primed seeds ofBrassicanapusexposed to abiotic stresses during germination.Journal of Plant Physiology,2002,159(9):951-958.

        [35] Eisvand H R,Alizadeh M A,Fekri A.How hormonal priming of aged and nonaged seeds of bromegrass affects seedling physiological characters.Journal of New Seeds,2010,11(1):52-64.

        [36] da Silva C B,Marcos-Filho J,Jourdan P,Bennett M A.Performance of bell pepper seeds in response to drum priming with addition of 4-pibrassinolide.Hortscience,2015,50(6):873-878.

        [37] Toklu F.Effects of different priming treatments on seed germination properties,yield components and grain yield of lentil (LensculinarisMedik.).Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2015,43(1):153-158.

        [38] Shah R A,Sharma A,Wali V K,Jasrotia A,Plathia M.Effect of seed priming on peach,plum and apricot germination and subsequent seedling growth.Indian Journal of Horticulture,2013,70(4):591-594.

        [39] Tzortzakis N G.Effect of pre-sowing treatment on seed germination and seedling vigour in endive and chicory.Horticultural Science,2009,36(3):117-125.

        [40] Mahmoudi H,Ben Massoud R,Baatour O,Tarchoune I,Ben Salah I,Nasri N,Abidi W,Kaddour R,Hannoufa A,Lachaal M,Ouerghi Z.Influence of different seed priming methods for improving salt stress tolerance in lettuce plants.Journal of Plant Nutrition,2012,35(12):1910-1922.

        [41] Rehman H,Iqbal H,Basra S M A,Afzal H,Farooq M,Wakeel A,Wang N.Seed priming improves early seedling vigor,growth and productivity of spring maize.Journal of Integrative Agriculture,2015,14(9):1745-1754.

        [42] Nimir N E A,Lu S,Zhou G,Guo W,Ma B,Wang Y.Comparative effects of gibberellic acid,kinetin and salicylic acid on emergence,seedling growth and the antioxidant defence system of sweet sorghum (Sorghumbicolor) under salinity and temperature stresses.Crop and Pasture Science,2015,66(2):145-157.

        [43] Iqbal M,Ashraf M,Jamil A.Seed enhancement with cytokinins:Changes in growth and grain yield in salt stressed wheat plants.Plant Growth Regulation,2006,50(1):29-39.

        [44] Iqbal M,Ashraf M.Gibberellic acid mediated induction of salt tolerance in wheat plants:Growth,ionic partitioning,photosynthesis,yield and hormonal homeostasis.Environmental and Experimental Botany,2013,86:76-85.

        [45] Zheng M,Tao Y,Hussain S,Jiang Q,Peng S,Huang J,Cui K, Nie L.Seed priming in dry direct-seeded rice:Consequences for emergence,seedling growth and associated metabolic events under drought stress.Plant Growth Regulation,2015:78(2):167-178.

        [46] Khaliq A,Aslam F,Matloob A,Hussain S,Geng M J,Wahid A,Rehmanur H.Seed priming with selenium:Consequences for emergence,seedling growth,and biochemical attributes of rice.Biological Trace Element Research,2015,166(2):1-9.

        [47] Gill R A,Ali B,Islam F,Farooq M A,Gill M B,Mwamba T M,Zhou W J.Physiological and molecular analyses of black and yellow seededBrassicanapusregulated by 5-aminolivulinic acid under chromium stress.Plant Physiology and Biochemistry,2015,94:130-143.

        [48] Eisvand H R,Tavakkol-Afshari R,Sharifzadeh F,Arefi H M,Hejazi S M H.Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass (AgropyronelongatumHost).Seed Science and Technology,2010,38(2):280-297.

        [49] Li Z,Lu G Y,Zhang X K,Zou C S,Cheng Y,Zheng P Y.Improving drought tolerance of germinating seeds by exogenous application of gibberellic acid (GA3) in rapeseed (BrassicanapusL.).Seed Science and Technology,2010,38(2):432-440.

        [50] Benincasa P,Pace R,Quinet M,Lutts S.Effect of salinity and priming on seedling growth in rapeseed (BrassicanapusvaroleiferaDel.).Acta Scientiarum Agronomy,2013,35(4):479-486.

        [51] Iqbal S,Bano A,Ilyas N.Abscisic acid (ABA) seed soaking induced changes in physiology of two wheat cultivars under water stress.Pakistan Journal of Botany,2012,44:51-56.

        [52] Farooq M,Wahid A,Basra S M A, Islamud D.Improving water relations and gas exchange with brassinosteroids in rice under drought stress.Journal of Agronomy and Crop Science,2009,195(4):262-269.

        [53] Korkmaz A,Korkmaz Y.Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress.Scientia Horticulturae,2009,119(2):98-102.

        [54] Jamil M,Ashraf M,Rehman S,Rha E S.Cell Membrane stability (CMS):Asimple technique to check salt stress alleviation through seed priming with GA3in canola.In:Ashraf M,Ozturk M,Athar H R.(eds).Salinity and Water Stress.Berlin:Springer Netherlands,2009:117-127.

        [55] Khan M B,Gurchani M A,Hussain M,Freed S,Mahmood K.Wheat seed enhancement by vitamin and hormonal priming.Pakistan Journal of Botany,2011,43(3):1495-1499.

        [56] Iqbal M,Ashraf M.Alleviation of salinity-induced perturbations in ionic and hormonal concentrations in spring wheat through seed preconditioning in synthetic auxins.Acta Physiologiae Plantarum,2013,35(4):1093-1112.

        [57] Bano A,Ullah F,Nosheen A.Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat.Plant Soil and Environment,2012,58(4):181-185.

        [58] Sharma S N,Maheshwari A.Expression patterns of DNA repair genes associated with priming small and large chickpea (Cicerarietinum) seeds.Seed Science and Technology,2015,43(2):250-261.

        [59] Sivritepe H O,Eris A.The effects of post-storage priming treatments on viability and repair of genetic damage in pea seeds.In:Herregods M (eds).Proceedings of the XXV International Horticultural Congress.Brussels:International Society of Horticultural Science,2000:143-149.

        [60] Sivritepe H O,Dourado A M.The effect of priming treatments on the viability and accumulation of chromosomal damage in aged pea-seeds.Annals of Botany,1995,75(2):165-171.

        [61] Gao Y P,Young L,Bonham-Smith P,Gusta L V.Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed ofBrassicanapusduring germination under stress conditions.Plant Molecular Biology,2000,40(4):635-644.

        [62] 朱再標(biāo),盧魏魏,郭巧生,曹亞悅,馮杉,寧梓君.引發(fā)條件對(duì)干旱脅迫下白花蛇舌草種子萌發(fā)及幼苗生長(zhǎng)的影響.中國(guó)中藥雜志,2014,39(8):1391-1395. Zhu Z B,Lu W W,Guo Q S,Cao Y Y,Feng S,Ning Z J.Impact of priming on seed germination and seedling growth ofOldenlandiadiffusaunder drought stress.Chinese Journal of Chinese Medica,2014,39(8):1391-1395.(in Chinese)

        [63] Wagner M,Pywell R F,Knopp T,Bullock J M,Heard M S.The germination niches of grassland species targeted for restoration:Effects of seed pre-treatments.Seed Science Research,2011,21(2):117-131.

        [64] 王彥榮.種子引發(fā)的研究現(xiàn)狀.草業(yè)學(xué)報(bào),2004,13(4):7-12. Wang Y R.Current status of seed priming research.Acta Prataculturae Sinica,2004,13(4):7-12.(in Chinese)

        [65] Srivastava A K,Lokhande V H,Patade V Y,Suprasanna P,Sjahril R,D’Souza S F.Comparative evaluation of hydro-,chemo-,and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (BrassicajunceaL.).Acta Physiologiae Plantarum,2010,32(6):1135-1144.

        [66] Bhargava B,Gupta Y C,Dhiman S R,Sharma P.Effect of seed priming on germination,growth and flowering of snapdragon (AntirrhinummajusL.).National Academy Science Letters-India,2015,38(1):81-85.

        [67] Rahmatullah,Murtaza G,Ghafoor A,Saifullah.Improving the performance of wheat (TriticumaestivumL.) by seed priming in salt-affected soils irrigated with saline-sodic water.Journal of Animal and Plant Sciences,2012,22(4):1055-1059.

        [68] Hee L C,Song J H,Wang J K,Chang Y.Several factors affecting on seed germination ofDracocephalumargunenseFischer ex Link.Korean Journal of Plant Reources,2009,22(3):236-241.

        [69] Sousa Lira J M,Lara T S,Rodrigues A C,Dousseau S,Magalhaes M M,deAlvarenga A A.Cross-tolerance mechanism induction in melon seeds by priming prior drying.Ciencia E Agrotecnologia,2015,39(2):131-137.

        [70] 劉桂霞,苗玉華.回干處理對(duì)2種野生禾草種子萌發(fā)的影響.安徽農(nóng)業(yè)科學(xué),2008,36(30):13087-13089. Liu G X,Miao Y H.Effect of dehydration treatment on seed germination of 2 kinds of wild gramineousforage.Journal of Anhui Agricultual Science,2008,36(30):13087-13089.(in Chinese)

        [71] Wang W Q,Liu S J,Song S Q,Moller I M.Proteomics of seed development,desiccation tolerance,germination and vigor.Plant Physiology and Biochemistry,2015,86:1-15.

        [72] Kubala S,Garnczarska M,Wojtyla L,Clippe A,Kosmala A,Zmienko A,Lutts S,Quinet M.Deciphering priming-induced improvement of rapeseed (BrassicanapusL.) germination through an integrated transcriptomic and proteomic approach.Plant Science,2015,231:94-113.

        [73] Galland M,Huguet R,Arc E,Cueff G,Job D,Rajjou L.Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during arabidopsis seed germination.Molecular and Cellular Proteomics,2014,13(1):252-268.

        [74] Fercha A,Capriotti A L,Caruso G,Cavaliere C,Gherroucha H,Samperi R,Stampachiacchiere S,Lagana A.Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat.Journal of Proteomics,2013,91:486-499.

        [75] Fercha A,Capriotti A L,Caruso G,Caualiere C,Samperi R,Stampachiacchiere S,Lagana A.Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress.Journal of Proteomics,2014,108:238-257.

        [76] Amooaghaie R,Valivand M.The combined effect of gibberellic acid and long timeosmopriming on seed germination and subsequent seedling growth of Klussia odoratissima Mozaff.African Journal of Biotechnology,2011,10(66):14873-14880.

        (責(zé)任編輯 茍燕妮)

        2016年11月國(guó)際市場(chǎng)主要畜產(chǎn)品與飼料價(jià)格分析

        11月國(guó)際飼料和畜產(chǎn)品價(jià)格均跌漲互現(xiàn)。

        一、大豆、豆粕、菜籽和豆粉市場(chǎng)價(jià)格上漲。玉米、高粱、苜蓿粉和棉籽餅市場(chǎng)價(jià)格下跌。

        11月份美國(guó)大豆、豆粕、菜籽和豆粉市場(chǎng)平均價(jià)格分別為373.86、313.82、472.35和299.37美元·t-1,環(huán)比分別上漲2.86%、2.60%、4.65% 和1.50%。玉米、高粱、苜蓿粉和棉籽餅市場(chǎng)平均價(jià)格分別為135.73、147.51、213.95和268.75美元·t-1,環(huán)比分別下降1.40%、1.08%、2.75%、8.90%。

        二、育肥牛、牛奶和羊肉市場(chǎng)價(jià)格上漲,瘦肉豬、羊羔肉、豬肉和牛肉市場(chǎng)價(jià)格下降,雞肉市場(chǎng)價(jià)格與10月持平。

        11月份美國(guó)育肥牛、牛奶、瘦肉豬和牛肉市場(chǎng)平均價(jià)格分別為2.77、0.28、1.05和5.41美元·kg-1,其中育肥牛和牛奶市場(chǎng)價(jià)格環(huán)比分別上漲1.77%和4.44%,瘦肉豬和牛肉市場(chǎng)價(jià)格環(huán)比分別下降1.91%和0.23%;美國(guó)雞肉市場(chǎng)平均價(jià)格為2.45美元·kg-1,與10月份持平;新西蘭羊羔肉和羊肉市場(chǎng)平均價(jià)格分別為3.54和1.91美元·kg-1,其中羊羔肉市場(chǎng)價(jià)格環(huán)比下降6.09%,羊肉市場(chǎng)價(jià)格環(huán)比上漲0.58%; 歐盟豬肉市場(chǎng)平均價(jià)格為2.00美元·kg-1, 環(huán)比下降6.01%。

        圖1 2016年11月國(guó)際市場(chǎng)主要飼料與畜產(chǎn)品價(jià)格

        數(shù)據(jù)來(lái)源:國(guó)際市場(chǎng)商品價(jià)格網(wǎng) http://price.mofcom.gov.cn/;中國(guó)農(nóng)業(yè)信息http://www.agri.gov.cn/;雞肉 http://www.indexmundi.com/;羊羔肉、羊肉 http://www.interest.co.nz/rural;牛肉http://www.thebeefsite.com/;豬肉 http://www.thepigsite.com/;貨幣匯率:http://qq.ip138.com/hl.asp。

        (蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院 王迎新 整理)

        Advances of seed hormonal priming

        Han Yun-hua, Wang Yan-rong, Tao Qi-bo

        (State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China)

        Hormonal priming is an important component of seed priming. It has great significance for seed germination, seedling growth, stress tolerance and yield increase. Based on the current research situation, we summarized the concept and application range of hormonal priming, illustrated the positive effects of hormonal priming on plant growth. Furthermore, biochemistry and molecular mechanism of seed hormonal priming were explained. In addition, we pointed out that hormonal concentration, priming time and drying conditions are the most important factors that constraint the priming effect. To improve the research in the future, priming mechanism should be intensively studied based on the genomics and proteome approach, and increase the use of hormonal priming in grass species.

        seed priming; hormonal; stress tolerance; germination; yield

        Han Yun-hua E-mail:hanyh@lzu.edu.cn

        2015-12-22接受日期:2016-06-13

        蘭州大學(xué)中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金(lzujbky-2015-40)

        韓云華(1985-),男,河北張家口人,講師,博士,主要從事牧草種子生產(chǎn)和種子生態(tài)研究。Email:hanyh@lzu.edu.cn

        10.11829/j.issn.1001-0629.2015-0726

        S330;Q945.34

        A

        1001-0629(2016)12-2494-09*

        韓云華,王彥榮,陶奇波.種子激素引發(fā).草業(yè)科學(xué),2016,33(12):2494-2502.

        Han Y H,Wang Y R,Tao Q B.Advances of seed hormonal priming.Pratacultural Science,2016,33(12):2494-2502.

        猜你喜歡
        激素幼苗種子
        直面激素,正視它的好與壞
        寧波第二激素廠
        種玉米要用“鋅” 幼苗不得花白病
        絕經(jīng)治療,該怎么選擇激素藥物
        桃種子
        備孕需要查激素六項(xiàng)嗎
        幸運(yùn)的小種子
        幼兒園(2018年15期)2018-10-15 19:40:36
        可憐的種子
        默默真愛(ài)暖幼苗
        “五老”傾注心血 呵護(hù)“幼苗”成長(zhǎng)
        极品少妇在线观看视频| 人妻夜夜爽天天爽| 亚洲午夜精品久久久久久人妖| 99精品电影一区二区免费看| 欧洲乱码伦视频免费| 国产影片免费一级内射| 国产精品一区二区三区免费视频| 色欲人妻综合aaaaa网| 亚洲国产精品嫩草影院久久| 亚洲欧美日韩精品高清| 日韩性感av一区二区三区| 久久精品国产亚洲av四叶草| 宅男66lu国产在线观看| 欧美日韩视频无码一区二区三| 亚洲无AV码一区二区三区| 国产av自拍在线观看| 亚洲天堂成人av在线观看| 国产aⅴ无码专区亚洲av麻豆| 国产麻无矿码直接观看| 中文字幕日韩人妻高清在线| 大尺度极品粉嫩嫩模免费| 美女扒开大腿让男人桶| 亚洲精品92内射| 北岛玲中文字幕人妻系列| 亚洲一区二区三区av无| 亚洲男人天堂一区二区| 日本入室强伦姧bd在线观看| 精品久久久久久国产| 国产天堂av手机在线| 中文字幕av永久免费在线| 欧美黑寡妇特a级做爰| 亚洲a∨无码一区二区| 国产日产久久福利精品一区| 一区二区在线观看日本视频| 中国美女a级毛片| 国产福利姬喷水福利在线观看| av大片在线无码永久免费网址| 亚洲国产av综合一区| 国产公开免费人成视频| 婷婷丁香五月中文字幕| 国产精品日韩中文字幕|