亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        AM真菌促進植物吸收利用磷元素的機制

        2017-01-11 07:21:26郭艷娥李應德段廷玉
        草業(yè)科學 2016年12期
        關鍵詞:叢枝菌根磷酸酶

        郭艷娥,李 芳,李應德,段廷玉

        (草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點實驗室 蘭州大學草地農(nóng)業(yè)科技學院,甘肅 蘭州 730020)

        前植物生產(chǎn)層

        AM真菌促進植物吸收利用磷元素的機制

        郭艷娥,李 芳,李應德,段廷玉

        (草地農(nóng)業(yè)生態(tài)系統(tǒng)國家重點實驗室 蘭州大學草地農(nóng)業(yè)科技學院,甘肅 蘭州 730020)

        磷是植物生長發(fā)育的必需營養(yǎng)元素之一,是植物代謝過程不可或缺的物質。我國耕地土壤中有1/3~1/2的土壤缺磷,極大地限制了作物的生長。由叢枝菌根(arbuscular mycorrhizal,AM)真菌與植物形成的菌根共生體廣泛存在于自然界中,可極大地促進寄主植物對磷元素的吸收。本文從形態(tài)特征、生理生化和分子生物學方面系統(tǒng)總結了叢枝菌根真菌促進磷元素吸收和利用的研究進展。AM真菌可與根際土壤和根皮層細胞形成密集的菌絲網(wǎng),擴大植物根系吸收面積,縮短養(yǎng)分運輸距離;分泌磷酸酶、有機酸和質子,改變根系周圍土壤理化性質,解離難溶性磷酸鹽,以及磷轉運蛋白基因的特異性表達等。

        菌根;形態(tài)特征;生理生化反應;磷酸轉運蛋白

        磷作為植物生長發(fā)育的三大必需營養(yǎng)元素之一,占植物細胞干重的0.2%[1],是植物生長代謝過程,如信號轉導、能量轉換、光合和呼吸以及生物大分子合成等必不可少的物質[2]。我國耕地土壤中有1/3~1/2的土壤缺磷,在許多土壤中,有效磷質量分數(shù)低于10 mg·kg-1[3],限制了植物的生長[4]。因此,改善磷的吸收對促進植物生長、保護生物多樣性和維持生態(tài)系統(tǒng)生產(chǎn)力有著重要的作用[5]。

        菌根(mycorrhizae)是土壤中球囊菌門真菌(Glomeromycota)與高等維管束植物根系形成的一種普遍存在于自然界中的互惠共生體[6]。菌根真菌的主要功能之一是改善植物的礦質營養(yǎng),尤其是叢枝菌根(arbuscular mycorrhizas,AM)真菌,其根外菌絲可以吸收根系以外土壤中的磷,并轉運到根皮層細胞內,從而有助于解決植物根系的磷缺乏狀況[7]。更為重要的是,AM真菌可以從土壤中吸收多聚磷酸鹽,并將其通過多聚磷酸酶轉化為植物可利用的正磷酸鹽[8],緩解根際的磷匱乏現(xiàn)象,被譽為“生物肥料”。菌根共生體在不同植物個體之間的養(yǎng)分交換、能量流動、信息傳遞,以及維持生態(tài)系統(tǒng)生產(chǎn)力、多樣性和系統(tǒng)穩(wěn)定性方面都具有重要潛能[5,9]。

        菌根真菌促進植物生長的效應與菌根侵染改善植物磷營養(yǎng)密切相關,菌根植物吸收與利用磷的能力顯著高于非菌根植物,尤其在供磷不足的土壤環(huán)境中,其作用更加明顯。如接種根內球囊霉(Glomusintraradices)可以提高玉米(Zeamays)植株全磷含量以及籽粒中磷的積累量[10]。在滅菌土壤中接種摩西球囊霉(Glomusmosseae)的大蒜(Alliumsativum)植株磷含量地上部增加82.7%,地下部增加71.2%[11];接種蘇格蘭球囊霉(G.caledonium)后,地上、地下磷含量分別增加74.2%和67.8%。AM真菌還可以顯著提高高粱(Sorghumbicolor)植株全磷含量以及單位長度根系的全磷含量[12];能夠明顯促進小麥(Triticumaestivum)幼苗對土壤磷的吸收,尤其是在速效磷含量偏低的土壤基質中,其作用更為顯著[13]。

        目前,關于AM真菌促進植物吸收利用磷的研究已取得了很大進步,但其機理方面仍處于起步階段,對機制方面的深入研究有助于更好地理解AM真菌本身,進而將其轉化為生產(chǎn)力,突顯菌根在整個生態(tài)系統(tǒng)中的重要作用。本文就近年來國內外有關AM真菌高效吸收利用磷元素的作用機制進行總結,以期為更好地利用菌根真菌改善植物根系磷吸收、促進植物生長、提高植物產(chǎn)量、促進和維持生態(tài)系統(tǒng)穩(wěn)定提供理論依據(jù)。

        1 AM真菌促進植物利用磷元素的形態(tài)學機理

        AM真菌與植物形成共生體后,可以改變根系形態(tài),擴大植物根系吸收養(yǎng)分的范圍,縮短養(yǎng)分的擴散距離,利用其廣譜特性形成菌絲橋,從而促進植物對磷的吸收和利用。AM真菌侵染寄主植物后,宿主根尖的表皮加厚、細胞層數(shù)增多,有利于根系的生長、分枝[14]以及形態(tài)結構的改變[15]。研究發(fā)現(xiàn),牧豆樹(Prosopisjuliflora)菌根化后,根長增加了44%~76%[16];在葡萄(Vitisvinifera)上接種聚生球囊霉(Glomusfasciculatum)可顯著提高其二級側根和三級側根的數(shù)量[17];菌根侵染后,滇柏(Cupressusduclouxiana)和楸樹(Catalpabungei)根系的細根直徑、長度和表面積都顯著增加,而細根形態(tài)特征的增加擴大了根系吸收養(yǎng)分的范圍[15-16,18-19](表1)。

        AM真菌的根外菌絲及菌索的生長,可比根系更遠地擴展到土壤之中,從而縮短養(yǎng)分的擴散距離,吸取更大范圍的養(yǎng)分[25-26]。不僅如此,這些菌絲還有大量分枝,在數(shù)量、長度、與土壤接觸表面積和吸收力和壽命等方面遠遠超過根毛[27]。同時根內菌絲、叢枝和泡囊都可以較大幅度地提高植物根系吸收面積,使得植物對磷元素的吸收更有利[28]。一定磷濃度下,菌根植物根系吸收磷速度的大小是影響植物吸收磷量多少的重要因素。研究表明,AM真菌的菌絲無橫隔,運輸阻力小,使根外菌絲吸收的土壤磷較迅速地轉移到根內叢枝中,因此菌絲體吸收磷速率可達到植物根系的6倍[27]。

        由于AM真菌的寄主具有廣譜性,單一寄主植物的菌絲如果在向周邊生長的過程中遇到另一植物的根系,可再度侵染,在兩個植株間形成菌絲橋[29]。Heap和Newman[30]于1980年首次發(fā)現(xiàn)在同種和不同種植物根系間均可以形成菌絲橋。之后,研究者們采用放射性自顯影技術[31]、通過直接觀察的方法[32]證明了菌絲橋的存在及其對養(yǎng)分的傳遞功能。菌絲橋把鄰近的植株聯(lián)系起來,使其之間具有養(yǎng)分的交換,并相互影響,養(yǎng)分的數(shù)量與菌絲橋及其供體、受體植株營養(yǎng)狀況等因素相關[33-34]。由于供體和受體植株所處磷營養(yǎng)狀況的差異,利用菌絲橋對磷元素進行的傳遞是可行的,而且形成的菌絲橋越多,受體植株獲得的養(yǎng)分越多[35],尤其是在土壤養(yǎng)分比較貧瘠的自然生態(tài)系統(tǒng)中,對磷的傳遞作用更為顯著。菌絲橋不僅在同種植物的不同植株間發(fā)揮作用,還可在不同種的植物養(yǎng)分交換中起到橋梁作用[36]。

        表1 AM真菌對植物根系生長及形態(tài)的影響Table 1 Effects of arbuscular mycorrhizal fungi on plant root growth and morohology

        2 AM真菌促進植物利用磷元素的生理生化機理

        AM真菌對磷元素的高效利用,除形態(tài)學機制外,亦有其特有的生理生化機制。AM真菌的根外菌絲和植物根系一樣,能夠分泌一些物質改變其周圍土壤的性質,進而以直接或間接的方式影響土壤磷的生物有效性和植物的吸磷效率[37-38]。根系分泌物種類眾多,主要包括磷酸酶、有機酸和質子等[39]。研究表明,根系分泌物是根際微生態(tài)系統(tǒng)中物質遷移和調控的重要組分,也是保持根際微生態(tài)系統(tǒng)活力的關鍵因素[40-43]。

        植物根際有機磷的利用與根系分泌或根際土壤中磷酸酶的活性具有密切的關系[44-46]。根內菌絲磷酸酶活性表示菌根內部活性菌絲占全部菌絲的比例,代表菌根共生體中參與磷代謝的菌絲比例[47]。磷酸酶既與土壤有機磷的含量呈正相關關系,也與土壤中植物有效磷含量呈正相關關系。根據(jù)磷酸酶發(fā)揮作用時的最適pH值不同,可將其分為堿性磷酸酶和酸性磷酸酶。堿性磷酸酶(alkaline phosphatase,ALP)是菌根共生系統(tǒng)中的一種特異性酶[48],酸性磷酸酶(acid phosphatase,ACP)是一種誘導酶,其活性受低磷條件特異誘導。接種AM真菌,能夠顯著增強植物根系分泌的酸性磷酸酶和堿性磷酸酶的活性,同時AM真菌菌絲也能分泌酸性磷酸酶和堿性磷酸酶,從而增加難溶性磷被利用的有效性,提高寄主對土壤有機磷的利用,改善菌根磷營養(yǎng)[49-52]。接種摩西球囊霉真菌對玉米根際土壤酸性磷酸酶和堿性磷酸酶活性均有增強作用[53];接種AM真菌顯著增強枳(Poncirustrifoliata)的土壤堿性磷酸酶活性[54];非轉Bt基因抗蟲棉(non-Bt) 根際土壤堿性磷酸酶活性接菌后與不接菌對照相比,顯著上升了33.76%[55],這些研究進一步驗證了以上結論。云杉(Piceaasperata)根際土壤的酸性磷酸酶活性是相同條件下非根際土壤酸性磷酸酶活性的2~2.5倍[56]。菌根根際土壤酸性磷酸酶活性較非根際土壤明顯增加[57],從而使AM真菌在根際土壤有機磷的分解轉化過程中起到重要作用,增強了植株對磷的吸收(表2)。

        有機酸是植物根系分泌物中一個重要的有機物。在有機酸的作用下,難溶性磷酸鹽向解離的方向移動,從而提高有效態(tài)磷的含量[58]。有機酸還以配體的形式與土壤中的金屬陽離子形成螯合物,降低其離子濃度,使難溶性磷酸鹽解離,從而促進磷的吸收利用[59]。接種叢枝菌根真菌顯著增加了枳根系分泌有機酸的含量和種類[60];外生菌根真菌能分泌大量的氫離子和多種有機酸,對溶解難溶性無機磷有重要作用[61]。此外,根際酸化pH的降低對土壤中磷素的生物有效性影響顯著,Hinsinger[39]的研究表明,植物分泌的質子可以降低根際土壤的pH值,從而提高土壤磷元素的生物有效性。另一方面,pH的變化也會導致磷酸酶活性的差異,最適的pH往往會使磷酸酶活性達到最大[62-63]。

        3 AM真菌促進植物吸收利用磷元素的分子機理

        3.1 磷在AM共生體中的吸收和轉運途徑

        細胞學、生理學以及分子生物學試驗證實,共生體之間磷的轉運發(fā)生在真菌叢枝結構和寄主皮層細胞之間[64]。無機態(tài)磷在共生體結構內的轉運包括根外菌絲從土壤中吸收含磷養(yǎng)分,隨后以多聚磷酸鹽的形式轉運到根內真菌組織,再由叢枝流入?yún)仓χ芮磺敖到鉃榱姿猁},并通過叢枝界面輸送到根皮層細胞內[65-66]。其中,叢枝界面所進行的養(yǎng)分交流過程以主動吸收為主體,雙方先將各自相應的營養(yǎng)物質共同釋放到非共質體空間叢枝周腔內,之后以主動吸收的方式獲取所需養(yǎng)分。

        AM真菌所介導磷吸收途徑的第1步是借助真菌細胞膜上的磷轉運蛋白進行跨膜運輸,將土壤中含有的無機態(tài)磷酸鹽轉運到菌根外延菌絲中,在植物與真菌的共生界面又依靠對AM真菌具有特異性的植物磷轉運蛋白,將質外體空間中呈游離態(tài)存在的磷酸鹽轉移到皮層細胞。菌根化植物對土壤中磷元素的攝取存在兩條途徑:直接吸收途徑(DUP)與菌根吸收途徑(MUP)[67]。DUP是通過根部表皮細胞直接實現(xiàn)的,包括根毛形成時,根系對土壤中磷元素的吸收。植物所編碼的高親和力磷轉運蛋白,其表達量在根毛和根尖處的細胞中最大,在根的成熟區(qū)有所下降[68]。MUP潛在作用位點發(fā)生在根尖后端。AM真菌在土壤中形成發(fā)達而又廣泛的菌絲網(wǎng),通過真菌的高親和力磷轉運蛋白吸收離根表面數(shù)厘米并能明顯延伸至匱乏區(qū)的磷(以多聚磷酸鹽的形式被迅速轉移到根部),克服了磷在土壤溶液中的緩慢擴散,相比于植物根系,真菌的菌絲直徑要小得多,因此能夠通過更狹窄的土壤空隙,使得土壤容積有所增加[69]。在一定程度上菌根途徑能夠替代根系吸收磷途徑對磷營養(yǎng)的貢獻[70],在特定的條件下甚至可以完全替代根系吸收磷的作用[71]。

        3.2 AM中的磷酸轉運蛋白

        土壤中的磷主要以正磷酸鹽(H2PO4-)的形式被植物根系所截獲,并借助于細胞膜上特定磷轉運蛋白將其運輸進入植物體內。根外菌絲對磷酸鹽的吸收是由一種轉運蛋白介導的,該蛋白對磷酸鹽具有較高親和性。如從馬鈴薯(Solanumtuberosum)菌根內分離出來的StPT3蛋白[72]和從蒺藜苜蓿(Medicagotruncatula)根中分離到的MtPT4蛋白[73],該類蛋白為菌根化根系所特有,并在含有叢枝結構的皮層細胞中大量表達。AM的形成可以特異性誘導很多基因的表達,尤以磷酸轉運蛋白基因與之功能關系最為密切。植物的 PHS(phosphate:H+sympoter)轉運蛋白,尤其是其中的Pht1類轉運蛋白是目前人們研究最多的一類。一般認為有3種類型的Pht1轉運體參與AM中磷的吸收及轉運調節(jié),分別是AM特異性誘導的磷酸轉運蛋白,植物磷酸轉運蛋白以及AM 真菌中的磷酸轉運蛋白[8]。

        已發(fā)現(xiàn)AM特異性的植物磷酸轉運蛋白幾乎都屬于Pht1轉運體家族。這些基因被認為參與AM共生膜界面上AM真菌釋放出來的磷的獲取,因而通常被作為AM共生磷代謝途徑的標識性基因[74]。功能分析試驗表明,Phtl家族的大多數(shù)磷轉運蛋白屬于高親和力轉運蛋白,該蛋白以及與它們相關的真菌轉運蛋白均是定位于質膜上,利用H+梯度進行H+/Pi同向轉運的磷轉運蛋白[75]。到目前為止,AM特異性磷酸轉運蛋白中研究最全面的是Pht1家族中第Ⅰ亞族的MtPT4蛋白,該蛋白是從豆科模式植物蒺藜苜蓿(Medicagotruncatula)中分離得到的。通過RNA干擾技術發(fā)現(xiàn),MtPT4蛋白與叢枝的形成密切相關,當敲除編碼該蛋白的基因時,叢枝敗育[68];同時當消解野生型蒺藜苜蓿的叢枝細胞時,編碼MtPT4蛋白的基因也不再表達[73]。MtPT4蛋白發(fā)揮類似于信號物質的作用,通過向植物細胞內轉運磷,維持叢枝的發(fā)育和AM真菌在根系內的生長代謝[8]。這些研究均表明,磷轉運蛋白功能的缺失是AM共生減弱的原因而不是結果[76]。相應地,Maeda等[77]在另一種豆科模式植物日本百脈根(Lotusjaponicus)中研究發(fā)現(xiàn),AM特異性磷酸轉運蛋白LjPT3可以影響AM的發(fā)育,當編碼LjPT3蛋白的基因沉默后,叢枝數(shù)量明顯下降,然而LjPT3對于叢枝的發(fā)育并不是不可或缺的。此外,在有些植物[如蒺藜苜蓿,番茄(Lycopersiconesculentum)和玉米]中,AM特異性的磷酸轉運蛋白基因的表達存在AM真菌的菌種特異性,即不同的AM真菌可以不同程度去調節(jié)這些基因的表達[78-79],這可能與AM真菌在促進植物生長以及磷吸收方面的功能多樣性密切相關[80]。

        除AM 特異性的磷酸轉運蛋白外,植物體本身還存在其它的磷酸轉運蛋白。最早發(fā)現(xiàn)的植物磷轉運基因Phtl是從擬南芥(Arabidopsisthaliana)和馬鈴薯(Solanumtuberosum)中分離得到的[81]。大部分己經(jīng)鑒定克隆的植物磷轉運子基因屬于Phtl家族,在根部,尤其在根部的外皮層和中柱細胞中強烈表達[82-84],其序列以及結構有著極高的相似性[85]。這些轉運體基因是磷缺乏響應基因,但并不隨AM共生體的建立而被誘導,相反有的甚至出現(xiàn)表達量下降。例如,玉米中的ZEAma;Pht1;3基因[79],蒺藜苜蓿中的MtPT2基因[80]。其調控機理目前尚不清楚,Smith等[86]認為低磷條件下,在非菌根化植物中表達量上調的基因可能與植物的“脅迫應答”有關。

        不同于植物的磷酸轉運蛋白,AM真菌中磷酸轉運蛋白的組成及功能方面的研究比較滯后。在AM共生體中,AM真菌的根外菌絲從土壤中吸收磷并通過叢枝細胞的質膜流向植物細胞。近年來,一些與磷吸收相關的磷酸轉運蛋白陸續(xù)被發(fā)現(xiàn),然而這些轉運體是否與磷素從AM 真菌轉運到植物細胞的跨膜運輸相關尚且未知。目前已鑒定的 AM 真菌中的磷酸轉運蛋白有3種:GvPT,GintPT和GmosPT(表3),它們分別來自于Glomusveriforme,根內球囊霉菌(Rhizophagusirregularis)和摩西球囊霉坳(Glomusmosseae)[87-88]。這些磷酸轉運蛋白大多在根外菌絲中表達,因而被認為與菌絲中磷的吸收有關[89]。Fiorilli等[90]運用激光解剖結合熒光實時定量PCR發(fā)現(xiàn),GintPT蛋白在真菌叢枝結構中表達,其表達量受基質中磷濃度的影響,高磷條件誘導該基因表達,低磷條件則抑制該基因表達。GmosPT蛋白被檢測到在根內菌絲中表達,但尚沒有直接證據(jù)表明該磷酸轉運蛋白參與磷元素從AM真菌到植物細胞的跨膜運輸[91]。

        高親和性磷轉運子基因資源的表達為有效進行植物磷吸收效率的遺傳改良提供了思路,后續(xù)研究有望通過基因工程的手段來增強高親和性磷轉運子基因在植物根系細胞膜上的強烈表達,以此來提高其吸收表面上磷轉運子的數(shù)量和離子親和力,進而改善作物對磷的吸收性能。

        4 問題與展望

        磷元素是植物生長代謝所必需的大量元素之一,據(jù)估計,地球上可被植物直接利用的有效磷最多還能維持200年[7]。此外,磷在土壤中的擴散系數(shù)低,易被固定和沉淀,如磷酸根易與Fe、Na、Al等金屬離子結合而被固定,或與土壤中的膠體結合變成難溶性磷,不能被植物直接吸收[92]。農(nóng)業(yè)生產(chǎn)中磷元素的匱乏往往成為限制草地生產(chǎn)力的重要因素,然而AM作為解決植物磷營養(yǎng)缺乏的生物手段對于農(nóng)業(yè)的可持續(xù)發(fā)展具有重要意義。磷酸轉運蛋白作為磷吸收和轉運過程中最重要的蛋白,對其(特別是AM真菌中的磷酸轉運蛋白)結構與功能的研究有助于將AM真菌更好地應用到農(nóng)業(yè)生產(chǎn)實踐中。不同于植物的磷酸轉運蛋白,對AM真菌中磷酸轉運蛋白組成及功能方面的研究一直比較滯后。由于 AM 真菌是多核細胞活體專性共生微生物,導致外源質粒很難轉入并穩(wěn)定遺傳,目前其基因的敲除技術也尚未成熟,很難運用反向遺傳學技術研究其特定基因的功能。隨著現(xiàn)代生理和分子生物學技術的不斷進步,為菌根真菌的發(fā)展注入了新的活力,使得對菌根這一復雜系統(tǒng)的認識取得了長足發(fā)展,同時也使AM真菌促進植物吸收利用磷素的機制不斷被揭示。但是不論是形態(tài)、生理生化還是分子機制方面,對AM真菌促進植物吸收磷素研究的廣度和深度都遠遠不夠。加之已開展的研究大多是從AM真菌和外生菌根入手,對于其它類型菌根的研究尚且處于空白,因此需加強對其它類型的菌根真菌的研究。

        表3 與磷吸收轉運相關的一些磷酸轉運蛋白/基因Table 3 Phosphate(Pi) transporter proteins or genes related to phosphorus absorption and transportation

        References:

        [1] Schachtman D P,Reid R J,Ayling S M.Phosphorus uptake by plants:From soil to cell.Plant Physiology,1998,116(2):447-453.

        [2] Raghothama K G.Phosphate acquisition.Annual Review of Plant Physiology and Plant Biology,1999,50(1):665-693.

        [3] 沈善敏,萬洪富,謝建昌.中國土壤肥力.北京:中國農(nóng)業(yè)出版社,1998.

        [4] Holford I C R.Soil phosphorus:Its measurement,and its uptake by plants.Australian Journal of Soil Research,1997,35(2):227-240.

        [5] Heijden M G A V D,Klironomos J N,Ursic M,Moutoglis P,Streitwolf-Engel R,Boller T,Wiemken A,Sanders I R.Mycorrhizal fungal diversity determines plant biodiversity,ecosystem variability and productivity.Nature,1998,396:69-72.

        [6] Remy W,Taylor T N,Hass H,Kerp H.Four hundred-million-year-old vesicular arbuscular mycorrhizae.Proceedings of the National Academy of Sciences,1994,91(25):11841-11843.

        [7] Schroeder J I,Delhaize E,Frommer W B,Guerinot M L,Harrison M J,Herrera-Estrella L,Horie T,Kochian L V,Munns R,Nishizawa N K,Tsay Y F,Sanders D.Using membrane transporters to improve crops for sustainable food production.Nature,2013,497:60-66.

        [8] Recorbet G,Abdallah C,Renaut J,Wipf D,Dumas-Gaudot E.Protein actors sustaining arbuscular mycorrhizal symbiosis:Underground artists break the silence.New Phytologist,2013,199(1):26-40.

        [9] Hart M M,Reader R J,Klironomos J N.Plant coexistence mediated by arbuscular mycorrhizal fungi.Trends in Ecology and Evolution,2003,18(8):418-423.

        [10] Cozzolino V,Meo V D,Piccolo A.Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability.Journal of Geochemical Exploration,2013,129:40-44.

        [11] 賀學禮,趙麗莉,周春菊,李生秀.VA菌根真菌對大蒜幼苗生理特性的影響.西北農(nóng)業(yè)學報,1999,8(2):84-86. He X L,Zhao L L,Zhou C J,Li S X.Effects of mycorrhizal fungi on the physiological characters of garlic seedling.Acta Agriculturae Boreali-Occidentalis Sinica,1999,8(2):84-86.(in Chinese)

        [12] Osonubi O.Comparative effects of vesicular-arbuscular mycorrhizal inoculation and phosphorus fertilization on growth and phosphorus uptake of maize (ZeamaysL.) and sorghum (SorghumbicolorL.) plants under drought-stressed conditions.Biology and Fertility of Soils,1994,18(1):55-59.

        [13] 戴開軍,龔宏偉.VA 菌根對冬小麥幼苗生長的影響.西安聯(lián)合大學學報,2002,5(2):34-36. Dai K J,Gong H W.VAGlomusmosseaeeffect on growth of winter wheat sprout.Journal of Xi’an United University,2002,5(2):34-36. (in Chinese)

        [14] Rakshit A,Bhadoria P S.Influence of arbuscular mycorrhizal hyphal length on simulation of P influx with the mechanistic model.African Journal of Microbiology Research,2009,3(1):1-4.

        [15] Yao Q,Wang L R,Zhu H H,Chen J Z.Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (PoncirustrifoliataL. Raf.) seedlings.Scientia Horticulturae,2009,121(4):458-461.

        [16] Solís-Domínguez F A,Valentín-Vargas A,Chorover J,Maier R M.Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings.Science of the Total Environment,2011,409(6):1009-1016.

        [17] Schellenbaum L,Berta G,Ravolanirina F,Tisserant B,Gianinazzi S,Fitter A H.Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (VitisviniferaL.).Annals of Botany,1991,68(2):135-141.

        [18] Wu Q S,Peng Y H,Zou Y N,Liu C Y.Exogenous polyamines affect mycorrhizal development ofGlomusmosseae-colonized citrus (Citrustangerine) seedlings.Science Asia,2010,36:254-258.

        [19] Wu Q S,He X H,Zou Y N,Liu C Y,Xiao J,Li Y.Arbuscular mycorrhizas alter root system architecture ofCitrustangerinethrough regulating metabolism of endogenous polyamines.Plant Growth Regulation,2012,68(1):27-35.

        [20] 宋會興,鐘章成,王開發(fā).土壤水分和接種 VA 菌根對構樹根系形態(tài)和分形特征的影響.林業(yè)科學,2007,43(7):142-147. Song H X,Zhong Z C,Wang K F.Effects of soil moisture and VAM inoculation on root morphology and fractal character inBroussonetiapapyrifera.Scientia Silvae Sinicae,2007,43(7):142-147.(in Chinese)

        [21] 袁麗環(huán),閆桂琴,朱志敏.叢枝菌根 (AM) 真菌對翅果油樹幼苗根系的影響.西北植物學報,2009,29(3):580-585. Yuan L H,Yan G Q,Zhu Z M.Effects of arbuscular mycorrhizal fungi on the seedling roots ofElaeagnusmollisDiels.Acta Botanica Boreali-Occidentalia Sinica,2009,29(3):580-585.(in Chinese)

        [22] 王如巖,于水強,張金池,周垂帆,陳莉莎.干旱脅迫下接種菌根真菌對滇柏和楸樹幼苗根系的影響.南京林業(yè)大學學報:自然科學版,2012,36(6):23-27. Wang R Y,Yu S Q,Zhang J C,Zhou C F,Chen L S.Effects of arbuscular mycorrhizal fungus inoculation on the root ofCupressusduclouxianaandCatalpabungeiseedlings under drought stress.Journal of Nanjing Forestry University:Natural Science Edition,2012,36(6):23-27.(in Chinese)

        [23] 鄒英寧,吳強盛,李艷,黃詠明.叢枝菌根真菌對枳根系形態(tài)和蔗糖,葡萄糖含量的影響.應用生態(tài)學報,2014,25(4):1125-1129. Zou Y N,Wu Q S,Li Y,Huang Y M.Effects of arbuscular mycorrhizal fungi on root system morphology sucrose and glucose contents ofPoncirustrifoliata.Chinese Journal of Applied Ecology,2014,25(4):1125-1129.(in Chinese)

        [24] 張中峰,張金池,黃玉清,郭曉平,楊慧,鄧艷.水分脅迫和接種菌根真菌對青岡櫟根系形態(tài)的影響.生態(tài)學雜志,2015,34(5):1198-1204. Zhang Z F,Zhang J C,Huang Y Q,Guo X P,Yang H,Deng Y.Effects of water stress and mycorrhizal fungi on root morphology ofCyclobalanopsisglaucaseedlings.Chinese Journal of Ecology,2015,34(5):1198-1204.(in Chinese)

        [25] Li X L,George E,Marschner H.Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil.Plant and Soil,1991,136(1):41-48.

        [26] Marschner H,Dell B.Nutrient uptake in mycorrhizal symbiosis.Plant and Soil,1994,159(1):89-102.

        [27] 劉潤進,陳應龍.菌根學.北京:科學出版社,2007. Liu R J,Chen Y L.Mycorrhizology.Beijing:Science Press,2007.(in Chinese)

        [28] Bucher M,Rausch C,Daram P.Molecular and biochemical mechanisms of phosphorus uptake into plants.Journal of Plant Nutrition and Soil Science,2001,164(2):209-217.

        [29] Kyt?viita M M,Vestberg M,Tuomi J.A test of mutual aid in common mycorrhizal networks:Established vegetation negates benefit in seedlings.Ecology,2003,84(4):898-906.

        [30] Heap A J,Newman E I.Links between roots by hyphae of vesicular-arbuscular mycorrhizas.New Phytologist,1980,85(2):169-171.

        [31] Finlay R D,Read D J.The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of14C-labelled carbon between plants interconnected by a common mycelium.New Phytologist,1986,103(1):157-165.

        [32] Newman E I,Devoy C L N,Easen N J,Fowles K J.Plant species that can be linked by VA mycorrhizal fungi.New phytologist,1994:691-693.

        [33] Bethlenfalvay G J,Reyes-Solis M G,Camel S B,Ferrera-Cerrato R.Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium.Physiologia Plantarum,1991,82:423-432.

        [34] Ikram A,Jensen E S,Jakobsen I.No significant transfer of N and P fromPuerariaphaseoloidestoHeveabrasiliensisvia hyphal links of arbuscular mycorrhiza.Soil Biology and Biochemistry,1994,26(11):1541-1547.

        [35] 艾為黨,張俊伶,李隆,李曉林,馮固.三葉草體內磷通過菌絲橋向黑麥草的傳遞研究.應用生態(tài)學報,1999(5):615-618. Ai W D,Zhang J L,Li L,Li X L,Feng G.Phosphorus transfer via mycorrhizal hyphal links from red clover to rye grass.Chinese Journal of Applied Ecology,1999(5):615-618.(in Chinese)

        [36] 張俊伶,李曉林,左元梅,楊志福.三葉草根間菌絲橋傳遞衰亡根系中磷的作用.生態(tài)學報,1998,18(6):589-594. Zhang J L,Li X L,Zuo Y M,Yang Z F.Underground P transfer among roots of red clover via VAM hyphae links.Acta Ecologica Sinica,1998,18(6):589-594.(in Chinese)

        [37] Liu J F,Xia R X,Wang M Y,Wang P,Ran Q Q,Luo Y.Effects of inoculation with arbuscular mycorrhizal fungi on AlPO4uptake byPoncirustrifoliata.The Journal of Applied Ecology,2008,19(10):2155-2160.

        [38] Shibata R,Yano K.Phosphorus acquisition from non-labile sources in peanut and pigeonpea with mycorrhizal interaction.Applied Soil Ecology,2003,24(2):133-141.

        [39] Hinsinger P.Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:A review.Plant and Soil,2001,237(2):173-195.

        [40] 陳龍池,廖利平,汪思龍,肖復明.根系分泌物生態(tài)學研究.生態(tài)學雜志,2002,21(6) :57-62. Chen L C,Liao L P,Wang S L,Xiao F M.A review for research of root exudates ecology.Chinese Journal of Ecology,2002,21(6):57-62.(in Chinese)

        [41] Ryan P R,Delhaize E,Jones D L.Function and mechanism of organic anion exudation from plant roots.Annual Review of Plant Biology,2001,52(1):527-560.

        [42] Dakora F D,Phillips D A.Root exudates as mediators of mineral acquisition in low-nutrient environments.Plant and Soil,2002,245(1):35-47.

        [43] Bais H P,Weir T L,Perry L G,Gilroy S,Vivanco J M.The role of root exudates in rhizosphere interactions with plants and other organisms.Annual Review of Plant Biology,2006,57:233-266.

        [44] Tarafdar J C,Jungk A.Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus.Biology and Fertility of Soils,1987,3(4):199-204.

        [45] Asmar F,Singh T,Nielsen N E.Barley genotypes differ in activity of soluble extracellular phosphatase and depletion of organic phosphorus in the rhizosphere soil.Plant and Soil,1995,172(1):117-122.

        [46] Chen C R,Condron L M,Davis M R,Sherlock R R.Phosphorus dynamics in the rhizosphere of perennial ryegrass (LoliumperenneL.) and radiata pine (PinusradiataD. Don.).Soil Biology and Biochemistry,2002,34(4):487-499.

        [47] 于富強,劉培貴.外生菌根研究及應用的回顧與展望.生態(tài)學報,2002,22(12):2217-2226. Yu F Q,Liu P G.Reviews and prospects of the ectomycorrhizal research and application.Acta Ecologica Sinica,2002,22(12):2217-2226.(in Chinese)

        [48] 畢國昌,臧穆,郭秀珍.滇西北高山針葉林區(qū)主要林型下外生菌根真菌的分布.林業(yè)科學,1989,25(1):33-39. Bi G C,Zang M,Guo X Z.Distribution of ectomycorrhizal fungi under several chief forest types in alpine coniferou region of northwestern Yunnan.Scientia Silvae Sinicae,1989,25(1):33-39. (in Chinese)

        [49] 宋勇春,馮固,李曉林.不同磷源對紅三葉草根際和菌根際磷酸酶活性的影響.應用生態(tài)學報,2003,14(5):781-784. Song Y C,Feng G,Li X L.Effects of different P sources on phosphatase activity of mycorrhizosphere of red clover inoculated with AMF.Chinese Journal of Applied Ecology,2003,14(5):781-784.(in Chinese)

        [50] Amaya-Carpio L,Davies F T,Fox T,He C.Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis,root phosphatase activity,nutrition,and growth ofIpomoeacarneassp. fistulosa.Photosynthetica,2009,47(1):1-10.

        [51] Xie X Y,Weng B S,Cai B P,Dong Y R,Yan C L.Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth and nutrient uptake ofKandeliaobovata(Sheue,Liu & Yong) seedlings in autoclaved soil.Applied Soil Ecology,2014,75:162-171.

        [52] Abdel-Fattah G M,Asrar A A,Al-Amri S M,Abdel-Salam E M.Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange,growth and phosphatase activity of soybean (GlycinemaxL.) plants.Photosynthetica,2014,52(4):581-588.

        [53] 蘇友波,林春,王三根.AM 菌根磷酸酶對玉米菌根際土壤磷的影響及其細胞化學定位.西南農(nóng)業(yè)大學學報,2003,25(2):115-119. Su Y B,Li C,Wang S G.Effects of arbuscular mycorrhizal fungi (AMF) on phosphatase in utilizing soil P in the rhizosphere of corn.Journal of Southwest Agricultural University,2003,25(2):115-119.(in Chinese)

        [54] Wu Q S,Zou Y N,He X H.Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirustrifoliata) seedlings.Scientia Horticulturae,2011,129(2):294-298.

        [55] 尹念輔,楊兵,李鐵松,戈峰.Bt棉與叢枝菌根真菌對植物根際土壤營養(yǎng)物質和土壤酶活性的影響.農(nóng)業(yè)環(huán)境與生態(tài)安全——第五屆全國農(nóng)業(yè)環(huán)境科學學術研討會論文集.南京:農(nóng)業(yè)部環(huán)境保護科研監(jiān)測所,中國農(nóng)業(yè)生態(tài)環(huán)境保護協(xié)會,2013. Yin N F,Yang B,Li T S,Ge F.Effects of Bt cotton and the incubation of arbuscular mycorrhizal fungi on the soil nutrients content and soil enzyme activity in plant rhizosphere.Agricultural Environment and Ecology Security,the Fifth National Agricultural Academic Conference on Environmental Science.Nanjing:Agro-Environmental Protection Institute,Ministry of Agriculture,Chinese Society of Agro-Ecological Environment Protection,2013.(in Chinese)

        [56] H?ussling M,Marschner H.Organic and inorganic soil phosphates and acid phosphatase activity in the rhizosphere of 80-year-old Norway spruce [Piceaabies(L.) Karst.]trees.Biology and Fertility of Soils,1989,8(2):128-133.

        [57] Wang F,Jiang R F,Kertesz M A,Zhang F S,Feng G.Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize (ZeamaysL.).Soil Biology and Biochemistry,2013,65:69-74.

        [58] 劉國棟,李繼云,李振聲.低磷脅迫下小麥根系反應的基因型差異.植物營養(yǎng)與肥料學報,1996,2(3):212-218. Liu G D,Li J Y,Li Z S.The genotypic differences in response of wheat root system to low-phosphorus stress.Plant Nutrition and Fertilizer Science,1996,2(3):212-218.(in Chinese)

        [59] 張福鎖,曹一平.根際動態(tài)過程與植物營養(yǎng).土壤學報,1992,29(3):239-250. Zhang F S,Cao Y P.Rhizosphere dynamics and plant nutrition.Acta Pedologica Sinica,1992,29(3):239-250.(in Chinese)

        [60] 劉進法,王鵬,羅園,謝亞超,萬淵,夏仁學.低磷脅迫下 AM 真菌對枳實生苗吸磷效應及根系分泌有機酸的影響.亞熱帶植物科學,2010,39(1):9-13. Liu J F,Wang P,Luo Y,Xie Y C,Wan Y,Xia R X.Effects of mycorrhizal fungus on absorbing phosphorus and excreting organic acids ofPoncirustrifoliataseedlings under low-phosphorus stress.Subtropical Plant Science,2010,39(1):9-13.(in Chinese)

        [61] 楊紅軍,李勇,黃建國.磷與信號抑制劑對外生菌根真菌分泌草酸的調控作用.微生物學報,2015,55(6):788-794. Yang H J,Li Y,Huang J G.Effect of phosphorus supply and signal inhibitors on oxalate efflux in ectomycorrhizal fungi.Acta Microbiologica Sinica,2015,55(6):788-794.(in Chinese)

        [62] Kuang R,Chan K H,Yeung E,Lim B L.Molecular and biochemical characterization of AtPAP15,a purple acid phosphatase with phytase activity,inArabidopsis.Plant Physiology,2009,151(1):199-209.

        [63] Turner B L.Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.Applied and Environmental Microbiology,2010,76(19):6485-6493.

        [64] Vladimir K,Marcel B.Symbiotic phosphate transport in arbuscular mycorrhizas.Trends in Plant Science,2005,10(1):22-29.

        [65] Cox G,Moran K J,Sanders F,Nockolds C,Tinker P B.Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas.Ⅲ.polyphosphate granules and phosphorus translocation.New Phytologist,1980,84(4):649-659.

        [66] Solaiman M Z,Ezawa T,Kojima T,Saito M.Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus,Gigasporamargarita.Applied and Environmental Microbiology,1999,65(12):5604-5606.

        [67] 謝賢安.叢枝菌根共生體磷信號轉運受體的發(fā)現(xiàn)及其分子機制的研究.武漢:華中農(nóng)業(yè)大學博士學位論文,2013. Xie X A.Transport and signaling through the AM symbioticphosphate transceptor.PhD Thesis.Wuhan:Huazhong Agricultural University,2013.(in Chinese)

        [68] Javot H,Penmetsa R V,Terzaghi N,Cook D R,Harrison M J.AMedicagotruncatulaphosphate transporter indispensable for the arbuscular mycorrhizal symbiosis.Proceedings of the National Academy of Sciences,2007,104(5):1720-1725.

        [69] Smith S E,Read D J.Mycorrhizal Symbiosis. New York:Academic Press,2010.

        [70] Nagy R,Drissner D,Amrhein N,Jakobsen I,Bucher M.Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated.New Phytologist,2009,181(4):950-959.

        [71] Smith S E,Smith F A,Jakobsen I.Functional diversity in arbuscular mycorrhizal (AM) symbioses:The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake.New Phytologist,2004,162(2):511-524.

        [72] Rausch C,Daram P,Brunner S,Jansa J,Laloi M,Leggewie G,Amrhein N,Bucher M.A phosphate transporter expressed in arbuscule-containing cells in potato.Nature,2001,414:462-470.

        [73] Harrison M J,Dewbre G R,Liu J Y.A phosphate transporter fromMedicagotruncatulainvolved in the acquisition of phosphate released by arbuscular mycorrhizal fungi.The Plant Cell,2002,14(10):2413-2429.

        [74] Grace E J,Cotsaftis O,Tester M,Smith F A,Smith S E.Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization,fungal phosphorus uptake or effects on expression of plant phosphate transporter genes.New Phytologist,2009,181(4):938-949.

        [75] Javot H,Pumplin N,Harrison M J.Phosphate in the arbuscular mycorrhizal symbiosis:Transport properties and regulatory roles.Plant,Cell and Environment,2007,30(3):310-322.

        [76] Breuillin F,Schramm J,Hajirezaei M,Ahkami A,Favre P,Druege U,Hause B,Bucher M,Kretzschmar T,Bossolini E,Kuhlemeier C,Martinoia E,Franken P,Scholz U,Reinhardt D.Phosphate systemically inhibits development of arbuscular mycorrhiza inPetuniahybridaand represses genes involved in mycorrhizal functioning.The Plant Journal,2010,64(6):1002-1017.

        [77] Maeda D,Ashida K,Iguchi K,Chechetka S A,Hijikata A,Okusako Y,Deguchi Y,Izui K,Hata S.Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene ofLotusjaponicussuppresses mutualistic symbiosis.Plant and Cell Physiology,2006,47(7):807-817.

        [78] Poulsen K H,Réka N,Gao L L,Smith S E,Bucher M,Smith F A,Jakobsen I.Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus.New Phytologist,2005,168(2):445-454.

        [79] Tian H,Drijber R A,Li X,Miller D N,Wienhold B J.Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (ZeamaysL.).Mycorrhiza,2013,23(6):507-514.

        [80] Burleigh S H,Cavagnaro T,Jakobsen I.Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition.Journal of Experimental Botany,2002,53(374):1593-1601.

        [81] 彭小偉.AM 真菌磷轉運基因及其受體功能研究.武漢:華中農(nóng)業(yè)大學碩士學位論文,2014. Peng X W.Phosphate transporter genes and their receptor function in AM fungi.Master Thesis.Wuhan:Huazhong Agricultural University,2014.(in Chinese)

        [82] Karthikeyan A S,Varadarajan D K,Mukatira U T,D'Urzo M P,Damsz B,Raghothama K G.Regulated expression ofArabidopsisphosphatetransporters.Plant Physiology,2002,130(1):221-233.

        [83] Mudge S R,Rae A L,Diatloff E,Smith F W.Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters inArabidopsis.The Plant Journal,2002,31(3):341-353.

        [84] Schiinmann P H,Richardson A E,Vickers C E,Delhaize E.Promoter analysis of the barleyPhtl; 1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation.Plant Physiology,2004,136:4205-4214.

        [85] 常小箭.水稻磷酸鹽轉運蛋白基因家族的功能分析.武漢:華中農(nóng)業(yè)大學碩士學位論文,2012. Chang X J.Functional analysis of theOryzasativaphosphate transporter gene family.Master Thesis.Wuhan:Huazhong Agricultural University,2012.(in Chinese)

        [86] Smith S E,Jakobsen I,Gr?nlund M,Smith A F.Roles of arbuscular mycorrhizas in plant phosphorus nutrition:Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition.Plant Physiology,2011,156(3):1050-1057.

        [87] Benedetto A,Magurno F,Bonfante P,Lanfranco L.Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungusGlomusmosseae.Mycorrhiza,2005,15(8):620-627.

        [88] Fiorilli V,Lanfranco L,Bonfante P.The expression of GintPT,the phosphate transporter ofRhizophagusirregularis,depends on the symbiotic status and phosphate availability.Planta,2013,237(5):1267-1277.

        [89] Gómez-Ariza J,Balestrini R,Novero M,Bonfante P.Cell-specific gene expression of phosphate transporters in mycorrhizal tomato roots.Biology and Fertility of Soils,2009,45(8):845-853.

        [90] Fiorilli V,Lanfranco L,Bonfante P.The expression ofGintPT,the phosphate transporter ofRhizophagusirregularis,depends on the symbiotic status and phosphate availability.Planta,2013,237(5):1267-1277.

        [91] Balestrini R,Gomez-Ariza J,Lanfranco L,Bonfante P.Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells.Molecular Plant-Microbe Interactions,2007,20(9):1055-1062.

        [92] Hinsinger P.Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:A review.Plant Soil,2001,237(2):173-195.

        (責任編輯 王芳)

        Progress in the elucidation of the mechanisms of arbuscular mycorrhizal fungi in promotion of phosphorus uptake and utilization by plants

        Guo Yan-e, Li Fang, Li Ying-de, Duan Ting-yu

        (State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China)

        Phosphorus is one of the most important nutrients for plant growth and development, and it is also indispensable for plant metabolism. Deficiency of P greatly limits crop growth in one-third to one-half of cultivated land in China. Symbiotic association between plants and arbuscular mycorrhizal fungi (AMF) is widespread, and is of particular importance to improving plant P uptake efficiency. This paper summarizes progress in the elucidation of the mechanisms of mycorrhizal fungi in the promotion of phosphorus uptake and utilization by plants, including aspects of mycorrhizal morphological features, physiology, biochemistry, and molecular biology. In addition, we discuss research on the potential of growth-promoting mechanisms of mycorrhizal fungi. AMF can form a dense network of hyphae in rhizosphere soil and root cortical cells, increase the absorptive surface areas of the root system, reduce nutrient transport distances, excrete phosphatase, organic acid, and protons, and dissociate insoluble phosphate and the specific expression of phosphate transporter genes.

        mycorrhiza; morphological features; physiological and biochemical responses; phosphate transporter

        Duan Ting-yu E-mail:duanty@lzu.edu.cn

        2015-12-29接受日期:2016-06-13

        中央高?;究蒲袠I(yè)務費(2022016zr0003);國家自然科學基金青年項目(31100368)

        郭艷娥(1991-),女,甘肅會寧人,在讀碩士生,研究方向為植物病理學。E-mail:guoye15@lzu.edu.cn

        段廷玉(1976-),男,甘肅靖遠人,副教授,博士,研究方向為菌根生態(tài)學。E-mail:duanty@lzu.edu.cn

        10.11829/j.issn.1001-0629.2015-0747

        S718.83;Q945.12

        A

        1001-0629(2016)12-2379-12*

        郭艷娥,李芳,李應德,段廷玉.AM真菌促進植物吸收利用磷元素的機制.草業(yè)科學,2016,33(12):2379-2390.

        Guo Y E,Li F,Li Y D,Duan T Y.Progress in the elucidation of the mechanisms of arbuscular mycorrhizal fungi in promotion of phosphorus uptake and utilization by plants.Pratacultural Science,2016,33(12):2379-2390.

        猜你喜歡
        叢枝菌根磷酸酶
        外生菌根真菌菌劑的制備及保存研究
        園林科技(2020年2期)2020-01-18 03:28:26
        叢枝蓼化學成分的研究
        中成藥(2018年3期)2018-05-07 13:34:24
        堿性磷酸酶鈣-鈷法染色的不同包埋方法比較
        馬尾松果糖-1,6-二磷酸酶基因克隆及表達模式分析
        磷酸酶基因PTEN對骨肉瘤細胞凋亡機制研究
        絲裂原活化蛋白激酶磷酸酶-1在人胰腺癌組織中的表達
        重金屬污染土壤的生物修復——菌根技術的應用
        供硫和叢枝菌根真菌對洋蔥生長和品質的影響
        接種叢枝菌根真菌對玉米小斑病發(fā)生的影響
        接種叢枝菌根真菌對土壤水穩(wěn)性團聚體特征的影響
        一区二区三区国产精品麻豆| 欧美激情内射喷水高潮| av高清在线不卡直播| 亚洲va欧美va日韩va成人网| 午夜精品久久久久久久无码| 亚洲欧美aⅴ在线资源| 图图国产亚洲综合网站| 亚洲精品黄网在线观看| ZZIJZZIJ亚洲日本少妇| 亚洲无码性爱视频在线观看| 国产精品乱子伦一区二区三区| 韩国女主播一区二区三区在线观看| 自拍情爱视频在线观看| 亚洲av日韩一区二区| 国产乱子伦| 曰本女人牲交全视频免费播放 | 亚洲精品视频一区二区三区四区| 亚洲一区二区日韩专区| 一本大道无码人妻精品专区| 装睡被陌生人摸出水好爽| 特级毛片全部免费播放a一级| 美女狂喷白浆网站视频在线观看| 日本av一区二区三区视频| 人妻夜夜爽天天爽三区| ā片在线观看免费观看| 国产肉丝袜在线观看| 高清国产亚洲va精品| 亚洲中文字幕人妻诱惑| 蜜桃成人精品一区二区三区| 亚洲成a人一区二区三区久久| 国产成人无码av一区二区在线观看| 亚洲欧美中文字幕5发布| 国产精品麻豆成人av电影艾秋| 国产成人综合日韩精品无| 女同另类一区二区三区| av一区二区三区在线| 狠狠色噜噜狠狠狠狠7777米奇| 亚洲高潮喷水中文字幕| 亚洲福利网站在线一区不卡| 国产精品熟女视频一区二区三区| 无码人妻精品一区二区三区夜夜嗨|