亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基質(zhì)血管片段促進(jìn)脂肪移植后再血管化的機(jī)制研究進(jìn)展

        2017-01-11 02:02:33汪正財(cái)顧子春李奕潤(rùn)李華
        組織工程與重建外科雜志 2017年6期
        關(guān)鍵詞:胞外基質(zhì)生長(zhǎng)因子內(nèi)皮

        汪正財(cái) 顧子春 李奕潤(rùn) 李華

        基質(zhì)血管片段促進(jìn)脂肪移植后再血管化的機(jī)制研究進(jìn)展

        汪正財(cái) 顧子春 李奕潤(rùn) 李華

        基質(zhì)血管片段(Stromal vascular fraction,SVF)是移植的脂肪組織中去除成熟脂肪細(xì)胞后所剩余的細(xì)胞成分,除含有一定數(shù)量的脂肪來(lái)源干細(xì)胞(Adipose Derived Stem Cells,ADSC)外,還有許多其他細(xì)胞,均具有促進(jìn)血管生成的作用。本文通過(guò)對(duì)近年來(lái)相關(guān)研究文獻(xiàn)進(jìn)行綜述,以闡明SVF促進(jìn)脂肪移植后再血管化的機(jī)制。綜合文獻(xiàn)結(jié)果,血管的再生與形成受多種因素調(diào)控,SVF細(xì)胞不僅可分泌多種因子,協(xié)同促進(jìn)血管再生,還具有周細(xì)胞形態(tài)可穩(wěn)定內(nèi)皮網(wǎng)絡(luò)。而SVF包含的ADSC具有多向分化潛能,包含的脂肪巨噬細(xì)胞在缺氧環(huán)境下可促進(jìn)局部血管生成,有望為臨床上提高自體脂肪移植的存活率提供方向。

        基質(zhì)血管片段 再血管化 脂肪移植 脂肪來(lái)源干細(xì)胞 巨噬細(xì)胞

        自體脂肪移植來(lái)源廣泛、取材容易、微創(chuàng)、充填效果好,且不存在免疫排斥反應(yīng),已廣泛應(yīng)用于臨床。但是,存在術(shù)后移植脂肪存活率不確定,影響了臨床應(yīng)用的效果[1]。

        研究表明ADSCs輔助下的自體脂肪移植,能夠增加脂肪存活率,術(shù)后4個(gè)月時(shí)脂肪體積可超過(guò)原始體積的80%[2],因?yàn)锳DSCs能夠在早期促進(jìn)移植區(qū)的血管化[3-4]。實(shí)驗(yàn)證明,血供良好的供區(qū)脂肪更容易存活[5]。因此,研究脂肪移植后的血運(yùn)重建分子機(jī)制,可為提高自體脂肪移植存活率提供思路。

        SVF輔助自體脂肪移植的臨床前期動(dòng)物模型實(shí)驗(yàn)表明,與傳統(tǒng)的脂肪移植相比,SVF輔助移植能明顯增加移植受區(qū)毛細(xì)血管密度、提高移植脂肪的存活率[6]。有研究顯示,脂肪移植術(shù)后,SVF細(xì)胞與脂肪來(lái)源間葉干細(xì)胞相比,其表皮生長(zhǎng)因子(EGF)、趨化因子(SDF-1 或 CXCL12,NAP-2 或 CXCL7)、趨化因子受體(CXCR1,CCR2 和 CCR3)相關(guān)基因表達(dá)均明顯上調(diào)[7]。另外,SVF能通過(guò)下調(diào)炎癥相關(guān)基因IL-6和趨化因子配體2(CXCL2)的表達(dá),來(lái)調(diào)節(jié)炎癥反應(yīng),減少中性粒細(xì)胞的浸潤(rùn),促進(jìn)血管再生[8-9]。上述結(jié)果表明,SVF可能通過(guò)分泌相關(guān)活化因子調(diào)節(jié)血管再生。

        但是,SVF通過(guò)何種機(jī)制促進(jìn)再血管化目前仍不明確,我們將對(duì)SVF的組成細(xì)胞成分,及其包含細(xì)胞促進(jìn)再血管化機(jī)制的研究進(jìn)展進(jìn)行綜述。

        1 SVF組成

        SVF是脂肪組織經(jīng)膠原酶消化后提取的細(xì)胞成分總和,是一組混雜的細(xì)胞群,包含ADSCs、血管內(nèi)皮祖細(xì)胞、單核細(xì)胞、周細(xì)胞、成纖維細(xì)胞、紅細(xì)胞、造血干細(xì)胞、淋巴細(xì)胞、巨噬細(xì)胞,以及細(xì)胞外基質(zhì)等[10-13]。

        2 SVF在脂肪移植中促進(jìn)再血管化的機(jī)制

        2.1 SVF直接參與血管重建

        研究表明,在脂肪移植的早期,SVF中已分解細(xì)胞成分的再循環(huán)利用和血管內(nèi)皮細(xì)胞之間的動(dòng)態(tài)重組,能夠促使SVF快速形成血管網(wǎng)[14]。

        2.1.1 ADSC通過(guò)分化直接參與血管再生

        ADSC是多能干細(xì)胞,可以直接分化為血管內(nèi)皮細(xì)胞、平滑肌細(xì)胞和周細(xì)胞[15-16]。而內(nèi)皮細(xì)胞和血管壁細(xì)胞(平滑肌細(xì)胞和周細(xì)胞)可通過(guò) TGF-β、血管生成素-2、PDGF-B/PDGFR-β、Notch、S1P/Edg信號(hào)通路的激活來(lái)調(diào)節(jié)血管生長(zhǎng)、穩(wěn)定、成熟[17-18]。同時(shí),周細(xì)胞還可促使血管內(nèi)皮祖細(xì)胞的出現(xiàn),維持血管完整性,并協(xié)同形成血管網(wǎng)[19-20]。

        2.1.2 基質(zhì)細(xì)胞穩(wěn)定內(nèi)皮網(wǎng)絡(luò)并參與形成血管網(wǎng)絡(luò)系統(tǒng)

        Traktuev等[21]的研究表明,脂肪基質(zhì)細(xì)胞可協(xié)同內(nèi)皮細(xì)胞共同參與形成新的微血管,構(gòu)成穩(wěn)定的血管網(wǎng)絡(luò)系統(tǒng)。該研究將含有脂肪基質(zhì)細(xì)胞和內(nèi)皮細(xì)胞混合物的膠原基質(zhì)移植到小鼠皮下,2周后發(fā)現(xiàn)基質(zhì)細(xì)胞和內(nèi)皮細(xì)胞混合移植區(qū)的血管網(wǎng)的密度和成熟程度,要明顯高于單純基質(zhì)細(xì)胞或內(nèi)皮細(xì)胞移植區(qū)。

        2.2 SVF通過(guò)旁分泌促進(jìn)顆粒脂肪移植術(shù)后血管再生

        在SVF移植組織中,其血管密度、血流量,以及分泌的肝細(xì)胞生長(zhǎng)因子(Hepatocyte growth factor,HGF)、血管內(nèi)皮生長(zhǎng)因子(Vascular endothelial growth factor,VEGF)和堿性成纖維細(xì)胞生長(zhǎng)因子(Basic fibroblast growth factor,bFGF)等,均比對(duì)照組明顯增多[22-23]。若抑制HGF的合成,可觀察到SVF細(xì)胞促缺血組織血管化的能力明顯減弱[24];且經(jīng)VEGF抗體處理過(guò)的干細(xì)胞在缺血組織中喪失了促血管再生能力[25]。

        SVF在脂肪移植后可分泌抗炎癥因子,如IL-6、8、11、17,細(xì)胞趨化因子,單核細(xì)胞趨化蛋白1和2,巨噬細(xì)胞集落刺激因子等;也可分泌免疫調(diào)節(jié)因子如IL-1Ra;還可抑制促炎癥因子干擾素γ和IL-12的分泌[26-27],促進(jìn)組織炎癥的修復(fù),對(duì)血管生成起著輔助協(xié)同作用[28]。SVF同時(shí)也可分泌角質(zhì)形成細(xì)胞生長(zhǎng)因子、VEGF、成纖維細(xì)胞生長(zhǎng)因子2和內(nèi)皮細(xì)胞生長(zhǎng)因子,促進(jìn)傷口上皮化;還可分泌血管生成素、瘦素,調(diào)節(jié)血管的形成[29]。

        2.2.1 ADSC分泌眾多生物活性因子以促進(jìn)血管生成

        Procházka等[30]通過(guò)分離ADSC分泌的因子,制成濃縮治療因子,注射到兔缺血肢體中,發(fā)現(xiàn)實(shí)驗(yàn)組缺血組織血流灌注是對(duì)照組的2倍;免疫組化顯示實(shí)驗(yàn)組毛細(xì)血管密度明顯多于對(duì)照組。這表明ADSC分泌的細(xì)胞因子可促進(jìn)血管再生。

        事實(shí)上,ADSC在脂肪移植后,可有效地分泌大量促血管生成因子和抗凋亡因子,如HGF、bFGF、VEGF、PDGF-B和TGF-β等[31-32]。其中,VEGF可活化內(nèi)皮祖細(xì)胞;誘導(dǎo)內(nèi)皮細(xì)胞表達(dá)整合素1、αv、β3、β5及其配體,分泌多種組織蛋白酶,降解細(xì)胞外基質(zhì);共同促進(jìn)內(nèi)皮細(xì)胞的增殖、遷移和新生血管的融合,抑制內(nèi)皮細(xì)胞凋亡[33-35]。HGF則與其受體結(jié)合后,通過(guò)激活Grb2/Sos-Ras-Raf-MAPK信號(hào)途徑,以促進(jìn)血管內(nèi)皮細(xì)胞的增殖[36-37]。bFGF可通過(guò)FGFR1(成纖維細(xì)胞生長(zhǎng)因子受體1)/c-Src/p38/NF-κB (核因子-κB)信號(hào)途徑,誘導(dǎo)VEGF的表達(dá)[38];同時(shí)核因子-κB的活化可促進(jìn)內(nèi)皮細(xì)胞DNA合成、細(xì)胞分裂增生[39],促進(jìn)血管的再生。TGF-β有助于細(xì)胞外基質(zhì)的產(chǎn)生,并能促進(jìn)內(nèi)皮細(xì)胞和壁細(xì)胞之間的相互作用[40],有利于血管的生成。

        血小板源性生長(zhǎng)因子 (Platelet Derived Growth Factor,PDGF)促進(jìn)再血管化的可能機(jī)制包括:①PDGF-C促進(jìn)內(nèi)皮細(xì)胞、周細(xì)胞和平滑肌細(xì)胞的遷移、增殖;②PDGF-C招募成纖維細(xì)胞,促進(jìn)其增殖遷移,這對(duì)于細(xì)胞骨架的形成繼而促進(jìn)新生血管的生成具有重要作用;③PDGF-C通過(guò)調(diào)節(jié)巨噬細(xì)胞的遷移增殖和基因表達(dá)來(lái)促進(jìn)血管化[41];④PDGF促使ADSC的VEGF基因表達(dá)上調(diào),分泌VEGF增多,促進(jìn)血管的再生[21];⑤PDGF刺激 ADSC分泌細(xì)胞外囊泡(EV),EV包含一系列促血管再生因子,如MFG-E8、ANGPTL1、血小板生成素和基質(zhì)金屬蛋白酶(MMP),促進(jìn)內(nèi)皮細(xì)胞遷移并激活血管再生因子和其他信號(hào)分子,從而加快血管的重建[42]。PDGF刺激ADSC產(chǎn)生的EV還合成表達(dá)C-Kit和SCF蛋白;C-Kit是一種酪氨酸激酶受體,在祖細(xì)胞分化為血管內(nèi)皮細(xì)胞時(shí)表達(dá),是內(nèi)皮祖細(xì)胞增殖、動(dòng)員的關(guān)鍵因素[43],因而EV在脂肪移植后可聚集更多的內(nèi)皮祖細(xì)胞,有利于血管再生。SCF是C-Kit配體,具有促進(jìn)內(nèi)皮細(xì)胞類血管形成、遷移和存活的作用[44];若阻斷C-Kit與SCF蛋白可觀察到EV促血管生成效應(yīng)明顯減弱[45]。

        由于脂肪移植后組織處于缺氧狀態(tài),刺激ADSC激活缺氧誘導(dǎo)因子 HIF-1α的表達(dá),而 HIF-1α可使VEGF、血小板生長(zhǎng)因子、血管生成素、HGF、bFGF等促血管生成因子基因的表達(dá)上調(diào)[46-48]。這些細(xì)胞因子與血管內(nèi)皮細(xì)胞或相應(yīng)細(xì)胞上的受體結(jié)合后,可發(fā)揮促血管生成效應(yīng)[48]。

        近期研究發(fā)現(xiàn),ADSC可通過(guò)分泌微泡促進(jìn)血管再生,其潛在機(jī)制可能是微小RNA-31通過(guò)微泡從ADSC遷移到血管內(nèi)皮細(xì)胞內(nèi),標(biāo)記并抑制缺氧誘導(dǎo)因子抑制因子(一種抗血管生成基因),從而促進(jìn)新生血管的形成[49]。

        2.2.2 脂肪巨噬細(xì)胞的旁分泌作用

        Koh等[14]在動(dòng)物實(shí)驗(yàn)中,將去除了巨噬細(xì)胞的SVF移植到去除了巨噬細(xì)胞的小鼠中,發(fā)現(xiàn)其在中央和周圍的移植區(qū)血管數(shù)量比對(duì)照組明顯減少,且周邊形成的血管末端是鈍性而不連續(xù)的。這表明巨噬細(xì)胞對(duì)于移植后血管網(wǎng)的形成具有重要作用;而去巨噬細(xì)胞的SVF移植到正常的小鼠中形成的血管在移植中央?yún)^(qū)域較多,周邊區(qū)域較少,加入VEGF-A后血管網(wǎng)的密度可部分恢復(fù)正常,表明脂肪巨噬細(xì)胞可能通過(guò)分泌VEGF-A和其他血管生成因子促進(jìn)新血管網(wǎng)形成。研究表明,缺氧可誘導(dǎo)巨噬細(xì)胞分泌VEGF、bFGF等血管再生因子,促進(jìn)新生血管的形成[50]。

        脂肪巨噬細(xì)胞根據(jù)其活化狀態(tài)不同可分為M1型巨噬細(xì)胞和M2型巨噬細(xì)胞。在SVF中,90%以上的脂肪巨噬細(xì)胞都是M2型[51]。M1型巨噬細(xì)胞是一種促炎癥型巨噬細(xì)胞,可被促炎癥介質(zhì)(如 IFNγ)激活,而大量分泌 TNF-α、IL-6、IL-12等促炎癥因子;M2型巨噬細(xì)胞則是一種抗炎癥型巨噬細(xì)胞,ADSC分泌的PGE2通過(guò)PGE2-EP2/4途徑促進(jìn)M2巨噬細(xì)胞分化,分化成熟的M2巨噬細(xì)胞能夠分泌IL-4、IL-10、TGF-β等抗炎因子,以及bFGF、VEGF等促血管生成因子,抑制炎癥反應(yīng)、促血管網(wǎng)生成[33,52],增加SVF輔助自體脂肪移植術(shù)后的脂肪細(xì)胞長(zhǎng)期生存率[53]。而IL-10不僅能夠在缺氧條件下促進(jìn)M2巨噬細(xì)胞分泌VEGF,抑制M1巨噬細(xì)胞增殖[54],還可修復(fù)內(nèi)皮細(xì)胞衰老性功能損傷,維持動(dòng)脈正常結(jié)構(gòu)[55-56],改善移植區(qū)域缺血狀態(tài)。

        巨噬細(xì)胞可分泌基質(zhì)金屬蛋白酶1(MMP-1),降解血管基底膜及其周圍的細(xì)胞外基質(zhì)[57],還可分泌MMP-9、MMP-12、MMP-7,促進(jìn)相鄰血管內(nèi)皮頂端細(xì)胞之間的融合,遷移延伸而形成新生管腔,生成血管[58-59]。有實(shí)驗(yàn)表明,巨噬細(xì)胞通過(guò)調(diào)節(jié)TIE-2的表達(dá),來(lái)參與缺血組織的血管形成[60]。

        2.2.3 內(nèi)皮細(xì)胞的分泌作用

        內(nèi)皮細(xì)胞可分泌外泌體,相鄰的內(nèi)皮細(xì)胞可作為靶細(xì)胞與外泌體結(jié)合,其中含有的mi-RNA(miR-214)可抑制相鄰內(nèi)皮細(xì)胞的毛細(xì)血管共濟(jì)失調(diào)突變基因的表達(dá)和凋亡,促進(jìn)內(nèi)皮生長(zhǎng)、遷移以及新生血管的形成[61-62]。

        內(nèi)皮細(xì)胞也可通過(guò)表達(dá)CXCL-1激活ERK1/2信號(hào)通路,誘導(dǎo)表皮細(xì)胞生長(zhǎng)因子(Epidermal Growth Factor,EGF)的分泌,促進(jìn)血管生成[63]。

        脂肪移植后的組織損傷,可誘導(dǎo)受損的內(nèi)皮細(xì)胞、細(xì)胞外基質(zhì)、血小板等滲出液的其他成分,共同釋放大量的促血管化因子,如 bFGF、PDGF、TGF-β 和 EGF,以促進(jìn)移植區(qū)域的血管再生,改善缺血、缺氧情況[64]。

        2.2.4 其他細(xì)胞成分的促血管作用

        SVF含有的細(xì)胞外基質(zhì)能通過(guò)促進(jìn)血管的出芽延伸、內(nèi)腔的形成和形態(tài)的成熟,從而促進(jìn)新生血管網(wǎng)的生長(zhǎng)[37,65]。基質(zhì)細(xì)胞、成纖維細(xì)胞和平滑肌細(xì)胞均能分泌HGF,調(diào)節(jié)血管再生[37]。

        3 結(jié)論與展望

        血管生成的基本過(guò)程包括:血管基底膜的降解;內(nèi)皮細(xì)胞的增殖、遷移;血管的融合、重塑;周細(xì)胞的穩(wěn)定。而SVF是一組混雜的細(xì)胞群,包含有各類細(xì)胞成分,可直接參與或間接分泌生物活性因子誘導(dǎo)基底膜的降解,影響內(nèi)皮細(xì)胞的增殖、遷移,促進(jìn)新生血管的融合與重塑,增加周細(xì)胞對(duì)血管網(wǎng)的穩(wěn)定,從而調(diào)節(jié)脂肪移植術(shù)后的血管再生。因此,SVF是一個(gè)整體,各成分之間相互影響,協(xié)同作用于血管生成的整個(gè)過(guò)程,但是各成分之間協(xié)同促血管再生和各細(xì)胞促再血管化的具體機(jī)制仍需要進(jìn)一步探索。

        SVF促脂肪移植術(shù)后再血管化,在臨床有著廣闊的應(yīng)用前景,不僅可提高顆粒脂肪移植術(shù)后脂肪細(xì)胞的存活率、促進(jìn)燒傷創(chuàng)面愈合、改善糖尿病足潰瘍與糖尿病視網(wǎng)膜病變的血運(yùn),還可改善心肌缺血、提高心功能、促放射性潰瘍創(chuàng)面愈合[12]。但有關(guān)SVF的細(xì)胞輔助治療尚處于臨床前期研究或人體實(shí)驗(yàn)研究階段,其有效性和安全性仍需進(jìn)一步探討。

        [1] 李青峰.自體脂肪移植技術(shù)[M].北京:軍事科學(xué)出版社,2014:1-2.

        [2] Kolle SF,Fischer-Nielsen A,Mathiasen AB,et al.Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival:a randomised placebo-controlled trial[J].Lancet,2013,382(9898):1113-1120.

        [3] Yuan Y,Gao J,Liu L,et al.Role of adipose-derived stem cells in enhancing angiogenesis early after aspirated fat transplantation:induction or differentiation[J]?Cell Biol Int,2013,37(6):547-550.

        [4] Zhu M,Dong Z,Gao J,et al.Adipocyte regeneration after free fat transplantation:promotion by stromal vascular fraction cells[J].Cell Transplant,2015,24(1):49-62.

        [5] Guerrerosantos J.The fate of intramuscularly injected fat autografts:an experimental study[J].Aesthetic Plast Surg,2005,29(1):62.

        [6] Toyserkani NM,Quaade ML,Sorensen JA.Cell-assisted lipotransfer:a systematic review of its efficacy[J].Aesthetic Plast Surg,2016,40(2):309-318.

        [7] Chae DS,Han S,Son M,et al.Stromal vascular fraction shows robust wound healing through high chemotactic and epithelialization property[J].Cytotherapy,2017,19(4):543-554.

        [8] Foubert P,Gonzalez AD,Teodosescu S,et al.Adipose-derived regenerative cell therapy for burn wound healing:a comparison of two delivery methods[J].Adv Wound Care(New Rochelle),2016,5(7):288-298.

        [9] Feng Z,Ting J,Alfonso Z,et al.Fresh and cryopreserved,uncultured adipose tissue-derived stem and regenerative cells ameliorate ischemia-reperfusion-induced acute kidney injury[J].Nephrol Dial Transplant,2010,25(12):3874-3884.

        [10] Bourin P,Bunnell BA,Casteilla L,et al.Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells:a joint statement of the International Federation for Adipose Therapeutics and Science(IFATS)and the International Society for Cellular Therapy(ISCT)[J].Cytotherapy,2013,15(6):641-648.

        [11] Guo J,Nguyen A,Banyard DA,et al.Stromal vascular fraction:a regenerative reality?Part 2:Mechanisms of regenerative action[J].J Plast Reconstr Aesthet Surg,2016,69(2):180-188.

        [12] Nguyen A,Guo J,Banyard DA,et al.Stromal vascular fraction:a regenerative reality?Part 1:Current concepts and review of the literature[J].J Plast Reconstr Aesthet Surg,2016,69(2):170-179.

        [13] Gentile P,Orlandi A,Scioli MG,et al.Concise review:adiposederived stromal vascular fraction cells and platelet-rich plasma:basic and clinical implications for tissue engineering therapies in regenerative surgery[J].Stem Cells Transl Med,2012,1(3):230-236.

        [14] Koh YJ,Koh BI,Kim H,et al.Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells[J].Arterioscler Thromb Vasc Biol,2011,31(5):1141-1150.

        [15] Maumus M,Peyrafitte JA,D'Angelo R,et al.Native human adipose stromal cells:localization,morphology and phenotype[J].Int J Obes(Lond),2011,35(9):1141-1153.

        [16] Gimble JM,Katz AJ,Bunnell BA.Adipose-derived stem cells for regenerative medicine[J].Circ Res,2007,100(9):1249-1260.

        [17] Armulik A,Genové G,Betsholtz C.Pericytes:developmental,physiological,and pathological perspectives,problems,and promises[J].Dev Cell,2011,21(2):193-215.

        [18] Armulik A,Abramsson A,Betsholtz C.Endothelial/pericyte interactions[J].Circ Res,2005,97(6):512-523.

        [19] Dar A,Domev H,Ben-Yosef O,et al.Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb[J].Circulation,2012,125(1):87-99.

        [20] Mills SJ,Cowin AJ,Kaur P.Pericytes,mesenchymal stem cells and the wound healing process[J].Cells,2013,2(3):621-634.

        [21] Traktuev DO,Prater DN,Merfeld-Clauss S,et al.Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells[J].Circ Res,2009,104(12):1410-1420.

        [22] Suga H,Glotzbach JP,Sorkin M,et al.Paracrine mechanism of angiogenesis in adipose-derived stem cell transplantation[J].Ann Plast Surg,2014,72(2):234-241.

        [23] Atalay S,Coruh A,Deniz K.Stromal vascular fraction improves deep partial thickness burn wound healing[J].Burns,2014,40(7):1375-1383.

        [24] Cai L,Johnstone BH,Cook TG,et al.Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization[J].Stem Cells,2007,25(12):3234-3243.

        [25] Sasaki K,Murohara T,Ikeda H,et al.Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis[J].J Clin Invest,2002,109(5):603-611.

        [26] Semon JA,Zhang X,Pandey AC,et al.Administration of murine stromal vascular fraction ameliorates chronic experimental autoimmune encephalomyelitis[J].Stem Cells Transl Med,2013,2(10):789-796.

        [27] Blaber SP,Webster RA,Hill CJ,et al.Analysis of in vitro secretion profiles from adipose-derived cell populations[J].J Transl Med,2012,10:172.

        [28] Traktuev DO,Merfeld-Clauss S,Li J,et al.A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers,reside in a periendothelial location,and stabilize endothelial networks[J].Circ Res,2008,102(1):77-85.

        [29] Park BS,Jang KA,Sung JH,et al.Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging[J].Dermatol Surg,2008,34(10):1323-1326.

        [30] Procházka V,Jurcíková J,Lassák O,et al.Therapeutic potential of adipose-derived therapeutic factor concentrate for treating critical limb ischemia[J].Cell Transplant,2016,25(9):1623-1633.

        [31] Kondo K,Shintani S,Shibata R,et al.Implantation of adiposederived regenerative cells enhances ischemia-induced angiogenesis[J].Arterioscler Thromb Vasc Biol,2009,29(1):61-66.

        [32] Kwon HM,Hur SM,Park KY,et al.Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis[J].Vascul Pharmacol,2014,63(1):19-28.

        [33] Hao C,Shintani S,Shimizu Y,et al.Therapeutic angiogenesis by autologous adipose-derived regenerative cells:comparison with bone marrow mononuclear cells[J].Am J Physiol Heart Circ Physiol,2014,307(6):H869-H879.

        [34] Montenegro CF,Salla-Pontes CL,Ribeiro JU,et al.Blocking alphavbeta3 integrin by a recombinant RGD disintegrin impairs VEGF signaling in endothelial cells[J].Biochimie,2012,94(8):1812-1820.

        [35] Claesson-Welsh L,Welsh M.VEGFA and tumour angiogenesis[J].J Int Med,2013,273(2):114-127.

        [36] Stuart KA,Riordan SM,Lidder S,et al.Hepatocyte growth factor/scatter factor-induced intracellular signalling[J].Int J Exp Pathol,2000,81(1):17-30.

        [37] Newman AC,Chou W,Welch-Reardon KM,et al.Analysis of stromal cell secretomes reveals a critical role for stromal cellderived hepatocyte growth factor and fibronectin in angiogenesis[J].Arterioscler Thromb Vasc Biol,2013,33(3):513-522.

        [38] Tzeng HE,Chen PC,Lin KW,et al.Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis[J].Clin Sci(Lond),2015,129(2):147-158.

        [39] Yi EY,Kim YJ.Xylitol inhibits in vitro and in vivo angiogenesis by suppressing the NF-κB and Akt signaling pathways[J].Int J Oncol,2013,43(1):315-320.

        [40] Hirschi KK,Skalak TC,Peirce SM,et al.Vascular assembly in natural and engineered tissues[J].Ann N Y Acad Sci,2002,961:223-242.

        [41] Li X,Kumar A,Zhang F,et al.VEGF-independent angiogenic pathways induced by PDGF-C[J].Oncotarget,2010,1(4):309-314.

        [42] Rundhaug JE.Matrix metalloproteinases and angiogenesis[J].J Cell Mol Med,2005,9(2):267-285.

        [43] Matsui J,Wakabayashi T,Asada M,et al.Stem cell factor/c-kit signaling promotes the survival,migration,and capillary tube formation of human umbilical vein endothelial cells[J].J Biol Chem,2004,279(18):18600-18607.

        [44] Abu El-Asrar AM,Struyf S,Opdenakker G,et al.Expression of stem cell factor/c-kit signaling pathway components in diabetic fibrovascular epiretinal membranes[J].Mol Vis,2010,16:1098-1107.

        [45] Lopatina T,Bruno S,Tetta C,et al.Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential[J].Cell Commun Signal,2014,12:26.

        [46] Martin-Rendon E,Hale SJ,Ryan D,et al.Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia[J].Stem Cells,2007,25(4):1003-1012.

        [47] Rezvani HR,Ali N,Nissen LJ,et al.HIF-1alpha in epidermis:oxygen sensing,cutaneous angiogenesis,cancer,and non-cancer disorders[J].J Invest Dermatol,2011,131(9):1793-1805.

        [48] Kelly BD,Hackett SF,Hirota K,et al.Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1[J].Circ Res,2003,93(11):1074-1081.

        [49] Kang T,Jones TM,Naddell C,et al.Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31[J].Stem Cells Transl Med,2016,5(4):440-450.

        [50] Nucera S,Biziato D,De Palma M.The interplay between macrophages and angiogenesis in development,tissue injury and regeneration[J].Int J Dev Biol,2011,55(4-5):495-503.

        [51] Eto H,Ishimine H,Kinoshita K,et al.Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency[J].Stem Cells Dev,2013,22(6):985-997.

        [52] Li P,Lu M,Nguyen MT,et al.Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice[J].J Biol Chem,2010,285(20):15333-15345.

        [53] Dong Z,Fu R,Liu L,et al.Stromal vascular fraction(SVF)cells enhance long-term survival of autologous fat grafting through the facilitation facilitation of M2 macrophages[J].Cell Biol Int,2013,37(8):855-859.

        [54] Wu WK,Llewellyn OP,Bates DO,et al.IL-10 regulation of macrophage VEGF production is dependent on macrophage polarisation and hypoxia[J].Immunobiology,2010,215(9-10):796-803.

        [55] Dammanahalli JK,Wang X,Sun Z.Genetic interleukin-10 deficiency causes vascular remodeling via the upregulation of Nox1[J].J Hypertens,2011,29(11):2116-2125.

        [56] Kinzenbaw DA,Chu Y,Pena Silva RA,et al.Interleukin-10 protectsagainstaging-induced endothelialdysfunction [J].Physiol Rep,2013,1(6):e00149.

        [57] Sheng L,Yang M,Li H,et al.Transplantation of adipose stromal cells promotes neovascularization of random skin flaps[J].Tohoku J Exp Med,2011,224(3):229-234.

        [58] Arroyo AG,Iruela-Arispe ML.Extracellular matrix,inflammation,and the angiogenic response[J].Cardiovasc Res,2010,86(2):226-235.

        [59] Squadrito ML,De Palma M.Macrophage regulation of tumor angiogenesis:implications for cancer therapy[J].Mol Aspects Med,2011,32(2):123-145.

        [60] Patel AS,Smith A,Nucera S,et al.TIE2-expressing monocytes/macrophages regulate revascularization of the ischemic limb[J].EMBO Mol Med,2013,5(6):858-869.

        [61] van Balkom BW,de Jong OG,Smits M,et al.Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells[J].Blood,2013,121(19):3997-4006.

        [62] Aurora AB,Mahmoud AI,Luo X,et al.MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+overload and cell death[J].J Clin Invest,2012,122(4):1222-1232.

        [63] Miyake M,Goodison S,Urquidi V,et al.Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways[J].Lab Invest,2013,93(7):768-778.

        [64] Eto H,Suga H,Inoue K,et al.Adipose injury-associated factors mitigate hypoxia in ischemic tissues through activation of adiposederived stem/progenitor/stromal cells and induction of angiogenesis[J].Am J Pathol,2011,178(5):2322-2332.

        [65] Bauer AL,Jackson TL,Jiang Y.Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis[J].PLoS Comput Biol,2009,5(7):e1000445.

        Mechanism of Promoted Neovascularization by SVF after Fat Grafting


        WANG Zhengcai,GU Zichun,LI Yirun,LI Hua.Department of Plastic and Reconstructive Surgery,Sir Run Run Shaw Hospital,Medical College,Zhejiang University,Hangzhou 310016,China.Corresponding author:LI Hua(E-mail:hualihz@sina.com).

        【Summary】Stromal vascular fraction(SVF)are the remaining cells of the ingredients after removing mature fat cells in the adipose tissue of transplantation.In addition to containing a certain amount of adipose derived stem cells(ADSC),SVF also includes many other cells,which may all have the potential of promoting angiogenesis.In this paper,the role of SVF in angiogenesis after fat transplantation was summarized by reviewing relative literature in recent years.According to the literature,angiogenesis and fat graft revascularization are regulated by various factors:SVF promotes secretion of a diverse array of cytokines and growth;SVF differentiated to pericytes has the function of stabilizing endothelium vascular network;As components of SVF,adipose derived stem cells (ADSC)have the potential of multi-directional differentiation,and macrophages can promote local angiogenesis in hypoxia environment.These results may provide directions of improving the survival rate of fat cells in clinical autologous fat transplantation.

        Stromal vascular fraction;Revascularization;Fat graft;Adipose-derived stem cells;Adipose macrophages

        R622+.9

        B

        1673-0364(2017)06-0349-05

        10.3969/j.issn.1673-0364.2017.06.014

        浙江省自然科學(xué)基金項(xiàng)目(LY14H150001)。

        310003 浙江省杭州市 浙江大學(xué)醫(yī)學(xué)院附屬邵逸夫醫(yī)院整形外科。

        李華(E-mail:hualihz@sina.com)。

        2017年9月29日;

        2017年10月23日)

        猜你喜歡
        胞外基質(zhì)生長(zhǎng)因子內(nèi)皮
        脫細(xì)胞外基質(zhì)制備與應(yīng)用的研究現(xiàn)狀
        關(guān)于經(jīng)絡(luò)是一種細(xì)胞外基質(zhì)通道的假說(shuō)
        鼠神經(jīng)生長(zhǎng)因子對(duì)2型糖尿病相關(guān)阿爾茨海默病的治療探索
        胃癌組織中成纖維細(xì)胞生長(zhǎng)因子19和成纖維細(xì)胞生長(zhǎng)因子受體4的表達(dá)及臨床意義
        Wnt3a基因沉默對(duì)內(nèi)皮祖細(xì)胞增殖的影響
        內(nèi)皮祖細(xì)胞在缺血性腦卒中診治中的研究進(jìn)展
        鼠神經(jīng)生長(zhǎng)因子修復(fù)周圍神經(jīng)損傷對(duì)斷掌再植術(shù)的影響
        水螅細(xì)胞外基質(zhì)及其在發(fā)生和再生中的作用
        轉(zhuǎn)化生長(zhǎng)因子β激活激酶-1在乳腺癌組織中的表達(dá)及臨床意義
        鐮形棘豆總黃酮對(duì)TGF-β1誘導(dǎo)的人腎小管上皮細(xì)胞分泌細(xì)胞外基質(zhì)成分的影響
        亚洲欧美国产精品久久久| 亚洲娇小与黑人巨大交| 人人爽人人爽人人爽| 欧美在线观看一区二区| 日韩在线手机专区av| 欧美成人免费观看国产| 亚洲精品成人av一区二区| 久久无人码人妻一区二区三区| 性色av色香蕉一区二区蜜桃| 亚洲熟妇自偷自拍另欧美| 无套内谢孕妇毛片免费看看| 国产品精品久久久久中文| 国产一区二区三区成人av| 成人av片在线观看免费| a级毛片免费观看网站| a级黑人大硬长爽猛出猛进 | 1区2区3区高清视频| 国产精品亚洲专区在线播放| av福利资源在线观看| 亚洲综合网国产精品一区| 久久国产精品精品国产色婷婷 | 亚洲国产福利成人一区二区 | 扒开非洲女人大荫蒂视频| 日韩人妻中文字幕高清在线| 亚洲熟女乱综合一区二区| 免费视频一区二区| 亚洲综合天堂一二三区| 制服丝袜一区二区三区| 久久老子午夜精品无码怎么打| 99精品视频69v精品视频免费| 黑丝美腿国产在线观看| 中文字幕无线码免费人妻| 极品新婚夜少妇真紧| 国语对白做受xxxxx在线中国| 久久久久无码中文字幕| 中文字幕av人妻少妇一区二区 | 久热这里只有精品视频6| 欧美三级超在线视频| 精品老熟女一区二区三区在线| 五月天国产成人av免费观看| 欧美三级不卡视频|