譚喬鳳++王旭++王浩++雷曉輝
摘要:水文預(yù)測是水文學(xué)為經(jīng)濟(jì)和社會(huì)服務(wù)的重要方面。其預(yù)報(bào)結(jié)果不僅能為水庫優(yōu)化調(diào)度提供決策支持,而且對(duì)水電系統(tǒng)的經(jīng)濟(jì)運(yùn)行、航運(yùn)以及防洪等方面具有重大意義。自回歸模型(AR模型)、人工神經(jīng)網(wǎng)絡(luò)(ANN)和自適應(yīng)神經(jīng)模糊推理系統(tǒng)(ANFIS)在日徑流時(shí)間序列中應(yīng)用廣泛。將這三種模型應(yīng)用于桐子林的日徑流時(shí)間序列預(yù)測中,不僅采用納什系數(shù)(NS系數(shù))、均方根誤差(RMSE)和平均相對(duì)誤差(MARE)為評(píng)價(jià)指標(biāo),對(duì)三種模型的綜合性能進(jìn)行了比較。而且,在對(duì)三種模型預(yù)測結(jié)果的平均相對(duì)誤差的閾值統(tǒng)計(jì)基礎(chǔ)上,分析了三種模型的預(yù)測誤差分布。同時(shí),通過研究模型性能指標(biāo)隨預(yù)見期的變化過程評(píng)價(jià)了三種模型不同預(yù)見期下的預(yù)測能力。結(jié)果表明ANFIS相對(duì)于ANN和AR模型不僅具有更好的模擬能力、泛化能力,而且在相同的預(yù)見期下具有更優(yōu)的模型性能,可以作為日徑流時(shí)間序列預(yù)測的推薦模型。
關(guān)鍵詞:自回歸模型;人工神經(jīng)網(wǎng)絡(luò);自適應(yīng)神經(jīng)模糊推理系統(tǒng);日徑流時(shí)間序列預(yù)測
中圖分類號(hào):P338 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):16721683(2016)06001206
Comparative study of ANN,ANFIS and AR model for daily runoff time series prediction
TAN Qiaofeng1,WANG Xu2,WANG Hao2,LEI Xiaohui2
(1.College of Water Resource and Hydropower,Sichuan University,Chengdu 610065,China;
2.China Institute of Hydropower and Water Resources Research,Beijing 100038,China)
Abstract:Hydrological prediction is an important aspect of hydrology′s service for economic and society.The prediction result not only provides decision support for reservoir generation operation,but also is of great significance to the economical operation of hydropower systems,navigation,flood control and so on.The autoregressive model (AR model),artificial neural network (ANN) and adaptive neural fuzzy inference system (ANFIS) have been widely applied in the daily runoff time series prediction.In this paper,these three models were applied in daily runoff prediction at Tongzilin station.NashSutcliffe efficiency coefficient (NS coefficient),root mean square error (RMSE) and mean absolute relative error (MARE) were used to evaluate the performances of three models.Threshold statistics index was used to analyze prediction error distribution of three models.At the same time,the prediction ability of three models was studied by gradually increasing the prediction period.The results showed that ANFIS had not only better simulation ability and generalization ability,but also better model performance in the same prediction period compared to ANN and AR model.As a result,ANFIS can be a recommended prediction model for daily runoff time series.
Key words:autoregressive model;artificial neural network;adaptive neural fuzzy inference system;daily runoff prediction
水文預(yù)測是防汛、抗旱和水資源利用等重大決策的重要依據(jù),歷來受到各方面的關(guān)注。目前應(yīng)用廣泛的水文預(yù)測模型可以分為數(shù)據(jù)驅(qū)動(dòng)模型和過程驅(qū)動(dòng)模型。過程驅(qū)動(dòng)模型是以水文學(xué)概念為基礎(chǔ),對(duì)徑流的產(chǎn)流過程與河道演進(jìn)過程進(jìn)行模擬,從而進(jìn)行流量過程預(yù)測的數(shù)學(xué)模型。數(shù)據(jù)驅(qū)動(dòng)模型則是基本不考慮水文過程的物理機(jī)制,而以建立輸入輸出數(shù)據(jù)之間的最優(yōu)數(shù)學(xué)關(guān)系為目標(biāo)的黑箱子方法。數(shù)據(jù)驅(qū)動(dòng)模型以回歸模型最為常用,近幾十年來新的預(yù)測手段得到很快發(fā)展,如神經(jīng)網(wǎng)絡(luò)模型、非線性時(shí)間序列分析模型、模糊數(shù)學(xué)方法等。隨著水文數(shù)據(jù)的獲取能力及計(jì)算能力的飛速發(fā)展,數(shù)據(jù)驅(qū)動(dòng)模型在水文預(yù)測中得到越來越廣泛的關(guān)注和應(yīng)用。
自回歸模型[1](簡稱AR模型)是水文上使用最廣泛的數(shù)據(jù)驅(qū)動(dòng)模型,其優(yōu)點(diǎn)是使用簡單方便,易于寫出表達(dá)式,不僅能反映水文序列的一些統(tǒng)計(jì)特性,而且是從水文現(xiàn)象物理過程的分析和概化來建立隨機(jī)模型,其中的參數(shù)據(jù)有一定的物理意義。AR模型作為最成熟且應(yīng)用最為廣泛的時(shí)間序列預(yù)測模型,已經(jīng)成為衡量其它模型好壞的標(biāo)準(zhǔn),一般為了證明提出的統(tǒng)計(jì)模型性能良好都要求其性能優(yōu)于簡單方便的AR模型。人工神經(jīng)網(wǎng)絡(luò)[2](簡稱ANN)作為一種新興的數(shù)據(jù)驅(qū)動(dòng)模型,由于其強(qiáng)大的并行推理、容錯(cuò)能力被廣泛的用于洪水水位預(yù)測[3]、地下水位預(yù)測[45]、降雨預(yù)測[6]、徑流預(yù)測[79]等水文預(yù)測的各個(gè)方面。自適應(yīng)神經(jīng)模糊推理系統(tǒng)[10](簡稱ANFIS)相比于ANN發(fā)展較晚,但其作為神經(jīng)網(wǎng)絡(luò)與模糊推理的有機(jī)結(jié)合,不僅保留了神經(jīng)網(wǎng)絡(luò)具有的自學(xué)習(xí)功能,還具有模糊推理表達(dá)模糊語言的特點(diǎn),近些年在水文預(yù)測上也有大量應(yīng)用[1114]。
對(duì)于一個(gè)水文時(shí)間序列我們即可以選擇簡單方便的AR模型,又可以選擇非線性映射能力較強(qiáng)的ANN和ANFIS進(jìn)行模擬和預(yù)測。文獻(xiàn)[15]對(duì)于三種模型在日徑流時(shí)間序列預(yù)測中的應(yīng)用做了一定的比較,但僅僅是以納什系數(shù)、均方根誤差和相關(guān)系數(shù)為性能指標(biāo)評(píng)價(jià)了各個(gè)模型的綜合性能。究竟各個(gè)預(yù)測模型的誤差如何分布以及模型在不同預(yù)見期下的預(yù)測能力如何,并沒有做相關(guān)研究。本文在此基礎(chǔ)上對(duì)AR模型、ANN和ANFIS在日徑流時(shí)間序列預(yù)測中的應(yīng)用效果進(jìn)行了更深入的研究,以期為日徑流預(yù)測模型的選擇提供指導(dǎo)。研究主要包括以下內(nèi)容。
(1)選用納什系數(shù)(NS系數(shù))、均方根誤差(RMSE)和平均相對(duì)誤差(MARE)為性能評(píng)價(jià)指標(biāo),對(duì)三種模型的綜合性能進(jìn)行比較。
(2)對(duì)模型輸出日徑流序列相對(duì)于實(shí)測日徑流序列的平均相對(duì)誤差進(jìn)行閾值統(tǒng)計(jì),分析三種模型的預(yù)測誤差分布。
(3)通過研究模型性能指標(biāo)隨預(yù)見期延長的變化過程評(píng)價(jià)三種模型在不同預(yù)見期下的預(yù)測能力。
1 研究區(qū)概況
本次研究選用的桐子林水電站是國家規(guī)劃的十三大水能基地之一—雅礱江水電基地的下游河段最末一個(gè)梯級(jí)電站。桐子林水電站以發(fā)電任務(wù)為主,兼有下游綜合用水要求。本文對(duì)桐子林水庫日徑流預(yù)測的三種模型進(jìn)行比較研究,并分析預(yù)測結(jié)果,以期為桐子林電站的日徑流預(yù)測模型選擇提供依據(jù),也為多模型應(yīng)用效果的分析比較提供一種思路。研究選用桐子林水電站1999年-2012年的日徑流資料,其日徑流過程線見圖1。
2 模型建立
2.1 模型選取
ANN、ANFIS和AR模型的構(gòu)建都分為模型訓(xùn)練階段和模型檢驗(yàn)階段。采用1999年-2008年逐日徑流資料用于模型訓(xùn)練,2009年-2012年的逐日徑流資料用于模型檢驗(yàn)。為了分析訓(xùn)練期日徑流資料的代表性,分析了訓(xùn)練期和檢驗(yàn)期的日徑流資料統(tǒng)計(jì)特性見表1。從表1中可以看出,檢驗(yàn)期的日徑流最大值小于訓(xùn)練期的日徑流最大值,檢驗(yàn)期的日徑流最小值大于訓(xùn)練期的日徑流最小值,可以認(rèn)為模型訓(xùn)練期包括檢驗(yàn)期出現(xiàn)的所有水文情形,模型對(duì)于檢驗(yàn)期有效。
為了建立日徑流時(shí)間序列預(yù)測模型,需要對(duì)日徑流的自相關(guān)性和偏相關(guān)性進(jìn)行分析,找出對(duì)待預(yù)測徑流影響大的前期徑流。通過分析滯時(shí)為1~15 d的日徑流自相關(guān)系數(shù)和偏相關(guān)系數(shù),以滯時(shí)為橫坐標(biāo),自相關(guān)系數(shù)和偏相關(guān)系數(shù)為縱坐標(biāo),分別得到日徑流時(shí)間序列的自相關(guān)圖2和偏相關(guān)圖3。從圖2和圖3可以發(fā)現(xiàn)Qt+1受此前7 d日徑流影響較大。因此,對(duì)于三種模型都分別建立了以下7個(gè)模型:
4 結(jié)論
(1)AR模型簡單方便,很小的模型階數(shù)就能得到令人滿意的效果,且模型在檢驗(yàn)階段仍能夠保持一個(gè)穩(wěn)定的性能。但是模型階數(shù)增加到一定的程度后再增加輸入變量對(duì)于AR模型的性能并沒有多大的提高,而且隨著預(yù)見期的增加AR模型的性能急劇下降,因此當(dāng)預(yù)見期較長時(shí)不宜選擇AR模型作為預(yù)測模型。
(2)ANN使用得當(dāng)能得到和ANFIS差不多的模擬能力和預(yù)測能力,但是ANN相對(duì)于AR模型和ANFIS存在不穩(wěn)定性,很難找到在訓(xùn)練期和檢驗(yàn)期性能都好的模型階數(shù)。實(shí)驗(yàn)發(fā)現(xiàn),ANN使用時(shí)不僅存在隱層節(jié)點(diǎn)的不確定性,而且由于初始權(quán)重的影響,即使隱層節(jié)點(diǎn)一樣時(shí),不同時(shí)間的輸出也是不一樣的。
(3)相比于ANN和AR模型,ANFIS不僅有很好的模擬能力,還有很好的泛化能力和穩(wěn)健性。ANFIS輸出誤差小,且延長預(yù)見期模型仍能保持一個(gè)穩(wěn)定性能,因此ANFIS可以作為日徑流時(shí)間序列預(yù)測的推薦模型。
參考文獻(xiàn)(References):
[1] 丁晶,劉權(quán)授.隨機(jī)水文學(xué)[M].北京:中國水利水電出版社,1997.(DING Jing,LIU Quanshou.Stochastic hydrology[M],Beijing:China Water & Power Press,1997.(in Chinese))
[2] 張立明.人工神經(jīng)網(wǎng)絡(luò)的模型及其應(yīng)用[M].上海:復(fù)旦大學(xué)出版社,1993.(ZHANG Liming.Artificial neural network model and its application[M].Shanghai:Fudan University Press,1993.(in Chinese))
[3] 朱星明,盧長娜,王如云,等.基于人工神經(jīng)網(wǎng)絡(luò)的洪水水位預(yù)測模型[J].水利學(xué)報(bào),2005,36(7):806811.(ZHU Mingxing,LU Changna,WANG Ruyun,et al.Artificial neural network model for flood water level forecasting[J].Journal of Hydraulic Engineering,2005,36(7):806811.(in Chinese))
[4] V Nourani,A A Mogaddam,A O.Nadiri.An ANN‐based model for spatiotemporal groundwater level forecasting[J].Hydrological Processes,2008,22:50545066.
[5] H Yoon,S C Jun,Y Hyun.A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer[J].Journal of Hydrology,2011,396:128138.
[6] C Jeong,J Y Shin,T Kim.Monthly precipitation forecasting with a neurofuzzy model[J].Water resources management,2012,26:44674483.
[7] 張俊,程春田,楊斌斌,等.基于改進(jìn) BP 網(wǎng)絡(luò)的日徑流時(shí)間序列預(yù)測模型研究[J].水電能源科學(xué),2009,26(6):1416.(ZHANG Jun,CHENG Chuntian,YANG Binbin,et al.Study on daily runoff forecasting based on improved BP network[J].Water Resources and Power,2009,26(6):1416.(in Chinese))
[8] Wang W,Van Gelder P H,Vrijling J K,et al.Prediction daily streamflow using hybrid ANN models[J].Journal of Hydrology,2006,324(1):383399.
[9] 顧海燕,徐文科,于雷.基于 BP 神經(jīng)網(wǎng)絡(luò)的河川年徑流量預(yù)測[J].東北林業(yè)大學(xué)學(xué)報(bào),2007,35(10):8385.(GU Haiyan,XU Wenke,YU Lei,et al.Prediction of annual runoff in Songhua river valley based on BP neural networks[J].Journal of Northeast Forestry University,2007,35(10):8385.(in Chinese))
[10] Jang J S R.ANFIS:adaptivenetworkbased fuzzy inference system[J].Systems,Man and Cybernetics,IEEE Transactions on,1993,23(3):665685.
[11] A ElShafie O Jaafer,S A Akrami.Adaptive neurofuzzy inference system based model for rainfall forecasting in Klang River[J].Malaysia,2001,pp.28752888.
[12] 王濤,楊開林,郭新蕾,等.模糊理論和神經(jīng)網(wǎng)絡(luò)預(yù)測河流冰期水溫的比較研究[J].水利學(xué)報(bào),2013,44(007):842847.(WANG Tao,YANG Kailin,GUO Xinlei,et al.Comparative study of ANFIS and ANN applied to freezeup water temperature forecasting[J].Journal of Hydraulic Engineering,2013,44(007):842847.(in Chinese))
[13] Wang W,Qiu L.Prediction of annual runoff using adaptive network based fuzzy inference system[C]//Fuzzy Systems and Knowledge Discovery (FSKD),2010 Seventh International Conference on.IEEE,2010,3:13241327.
[14] Nayak P C,Sudheer K P,Rangan D M,et al.A neurofuzzy computing technique for modeling hydrological time series[J].Journal of Hydrology,2004,291(1):5266.
[15] Lohani A K,Kumar R,Singh R D.Hydrological time series modeling:A comparison between adaptive neurofuzzy,neural network and autoregressive techniques[J].Journal of Hydrology,2012,442:2335.
[16] 高大啟.有教師的線性基本函數(shù)前向三層神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)研究[J].計(jì)算機(jī)學(xué)報(bào),1998,21(1):8086.( GAO Daqi.On structures of supervised linear basis function feedforward threelayered neural networks[J].Chinese Journal of Computers.1998,21(1):8086.(in Chinese))
[17] Shanker M,Hu M Y,Hung M S.Effect of data standardization on neural network training[J].Omega,1996,24(4):385397.