譚 杰, 王 亮, 馬添翼, 鄒士方, 孫慧玲, 燕敬平, 孫曉杰??
(1.中國水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所,農(nóng)業(yè)部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室,山東 青島 266071;2.煙臺(tái)水產(chǎn)研究所,山東 煙臺(tái) 264000;3.威海市文登區(qū)海洋與漁業(yè)執(zhí)法大隊(duì),山東 威海264400;4.山東安源水產(chǎn)股份有限公司,山東 煙臺(tái) 265617)
干露脅迫對(duì)刺參中韓群體雜交子一代應(yīng)激及免疫指標(biāo)的影響?
譚 杰1, 王 亮2, 馬添翼3, 鄒士方4, 孫慧玲1, 燕敬平1, 孫曉杰1??
(1.中國水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所,農(nóng)業(yè)部海洋漁業(yè)可持續(xù)發(fā)展重點(diǎn)實(shí)驗(yàn)室,山東 青島 266071;2.煙臺(tái)水產(chǎn)研究所,山東 煙臺(tái) 264000;3.威海市文登區(qū)海洋與漁業(yè)執(zhí)法大隊(duì),山東 威海264400;4.山東安源水產(chǎn)股份有限公司,山東 煙臺(tái) 265617)
通過刺參中國群體(C)和韓國群體(K)群體間雜交和群體內(nèi)自繁,獲得了4個(gè)交配組合CC(C♀×C♂)、KK(K♀×K♂)、CK(C♀×K♂)和KC(K♀×C♂)的子一代。實(shí)驗(yàn)研究了干露脅迫對(duì)4組刺參體腔液中兒茶酚胺類激素水平和免疫指標(biāo)的影響,比較了刺參中韓群體雜交和自交子一代對(duì)干露脅迫的應(yīng)激反應(yīng)。結(jié)果顯示:受到干露脅迫的4組刺參體腔液內(nèi)兒茶酚胺類激素水平都出現(xiàn)上升的趨勢(shì),其中KK和KC組激素水平上升幅度大于CC和CK組。4組刺參體腔液內(nèi)細(xì)胞數(shù)在脅迫開始后逐漸上升,KK和KC組在脅迫結(jié)束時(shí)顯著高于初始值。4組刺參體腔液細(xì)胞吞噬活性都呈“降低-升高-又下降”的趨勢(shì),但在整個(gè)實(shí)驗(yàn)過程中變化不顯著。干露導(dǎo)致4組刺參體腔液內(nèi)超氧化物歧化酶活性顯著上升,同時(shí),KK和KC組的過氧化氫酶活性顯著上升。4組刺參體腔液內(nèi)溶菌酶活性在脅迫過程中受到抑制,但變化不顯著。上述結(jié)果表明,刺參中韓群體雜交和自交子一代對(duì)干露脅迫的應(yīng)激程度不同,CC和CK組子一代對(duì)干露脅迫具有更好的抗性。
刺參;干露;應(yīng)激;神經(jīng)內(nèi)分泌;免疫
干露是指水生生物在一定時(shí)間內(nèi)離開水而暴露在空氣中的一種狀態(tài)。由于水生生物一般不能直接利用空氣中的氧氣,因此干露使水生生物處于缺氧脅迫中。大量研究表明,干露脅迫會(huì)對(duì)水生生物帶來諸多負(fù)面影響,包括導(dǎo)致水生動(dòng)物生長減緩[1],降低了水生動(dòng)物對(duì)疾病的抵抗力[2]和養(yǎng)殖成活率[3]。在養(yǎng)殖生產(chǎn)過程中,刺參(Apostichopusjaponicus)經(jīng)常會(huì)受到干露脅迫的影響。在幼參中間培育的倒池過程中,幼參會(huì)干露于空氣中;在運(yùn)輸刺參苗的過程中,經(jīng)常會(huì)采用干運(yùn)法,這種運(yùn)輸方法往往使刺參處于干露狀態(tài)數(shù)小時(shí)。
當(dāng)動(dòng)物受到生物或非生物脅迫作用時(shí),行為和生理都將產(chǎn)生復(fù)雜的變化,以便在外界環(huán)境變化時(shí)協(xié)調(diào)體內(nèi)環(huán)境的穩(wěn)定,也就是應(yīng)激反應(yīng)。越來越多的研究表明,當(dāng)海洋無脊椎動(dòng)物受到外界環(huán)境脅迫后,它們的神經(jīng)系統(tǒng)釋放出兒茶酚胺類激素(腎上腺素、去甲腎上腺素和多巴胺)作為神經(jīng)遞質(zhì),抑制免疫系統(tǒng)的免疫功能[4-6]。無脊椎動(dòng)物的免疫系統(tǒng)包括細(xì)胞免疫和體液免疫[7],棘皮動(dòng)物由體腔液中的體腔液細(xì)胞行使免疫功能[8]。與貝類中的血淋巴細(xì)胞一樣,體腔液細(xì)胞負(fù)責(zé)對(duì)外來入侵物進(jìn)行吞噬、包裹,同時(shí)產(chǎn)生活性氧對(duì)入侵物進(jìn)行破壞[9]。研究干露脅迫條件下刺參神經(jīng)內(nèi)分泌和免疫指標(biāo)的變化,可以為選育耐干露刺參提供依據(jù)。
雜交是生物遺傳育種的重要方法之一,通過遺傳背景不同的親本進(jìn)行交配獲得的雜交后代在生長、抗逆和品質(zhì)等性狀上往往表現(xiàn)出優(yōu)于單親或雙親的雜種優(yōu)勢(shì)。在水產(chǎn)動(dòng)物中,通過種內(nèi)和種間雜交已培育出一系列的優(yōu)良品種,如大菱鲆(Scophthalmusmaximus)的“丹法鲆”[10]、中間球海膽(Strongylocentrotusintermedius)的“大金”[11]、鮑的“西盤鮑”[11]、凡納濱對(duì)蝦(Litopenaeusvannamei)的“壬海1號(hào)”[11]等。刺參的種內(nèi)雜交也已在中國群體與俄羅斯群體[12]、中國群體與日本群體[13]、中國群體與韓國群體[14]之間成功開展,相關(guān)學(xué)者對(duì)刺參雜交后代的生長、抗病、耐低溫和高溫等性狀的雜交優(yōu)勢(shì)進(jìn)行了分析,而有關(guān)雜交與自交刺參對(duì)干露脅迫的應(yīng)激反應(yīng),尚未見報(bào)道。
本研究以刺參中國群體和韓國群體的雜交子一代以及兩群體的自繁后代為材料,比較了干露條件下刺參兒茶酚胺類激素水平和免疫指標(biāo)的變化,以期為選育耐脅迫刺參提供參考。
1.1 實(shí)驗(yàn)材料
實(shí)驗(yàn)所用刺參取自山東安源水產(chǎn)股份有限公司,為刺參中國養(yǎng)殖群體與韓國野生群體的自繁后代,以及兩群體的雜交子一代。分別為中國自交組(C♀×C♂,CC)、韓國自交組(K♀×K♂,KK)、正交組(K♀×C♂,KC)和反交組(C♀×K♂,CK),體重分別為(5.63±0.35)、(5.83±0.49)、(6.11±0.54)和(5.76±0.37) g。其中,韓國群體引自韓國江原道,中國養(yǎng)殖群體為安源水產(chǎn)股份有限公司人工選育的快速生長F2代。
1.2 實(shí)驗(yàn)方法
1.2.1 刺參暫養(yǎng) 各組刺參暫養(yǎng)于200 L水槽中,每個(gè)水槽中暫養(yǎng)200頭刺參,實(shí)驗(yàn)采用沙濾水(水溫10~13 ℃;pH=7.5~8.0;溶解氧6~7 mg·L-1;鹽度30~31),實(shí)驗(yàn)期間保持充氣。刺參在水槽內(nèi)馴化兩周,期間每天按刺參體重的5%投喂鼠尾藻粉和海泥混合的飼料,并根據(jù)攝食狀態(tài)適當(dāng)調(diào)整。每天全量換水一次,同時(shí)清除殘餌和糞便。
1.2.2 干露脅迫 實(shí)驗(yàn)開始前,檢查每個(gè)刺參的體表無損傷。實(shí)驗(yàn)開始時(shí),將各水槽中海水排出,使刺參暴露于空氣中1 h,實(shí)驗(yàn)期間氣溫保持與暫養(yǎng)水溫一致。1 h后,各水槽中重新注入海水,所加海水與先前暫養(yǎng)海水條件相同。分別在實(shí)驗(yàn)開始后0、0.5、1、2、4、8、16、32 h,每組取15頭刺參用于抽取刺參體腔液,每頭刺參只抽取一次,已抽取體腔液的刺參移出水槽。
1.2.3 取樣 用注射器從刺參體腔內(nèi)抽取體腔液,單次取樣在20 s內(nèi)完成,盡可能降低取樣對(duì)刺參的影響。每5個(gè)刺參的體腔液混合成2 mL樣品。用血球計(jì)數(shù)板迅速統(tǒng)計(jì)總體腔液細(xì)胞數(shù),每個(gè)樣品計(jì)數(shù)4次,結(jié)果表示為cells·mL-1體腔液。取200 μL體腔液,用抗凝劑(0.02 mol·L-1EGTA,0.48 mol·L-1NaCl,0.019 mol·L-1KCl,0.068 mol·L-1Tri-HCl,pH=7.6)[9]將體腔液細(xì)胞濃度稀釋到106cells·mL-1,用于吞噬活性的測(cè)定。剩余的體腔液保存于-80 ℃,用于兒茶酚胺類激素和酶活性的測(cè)定。
1.2.4 兒茶酚胺類激素水平的測(cè)定 兒茶酚胺類激素包括去甲腎上腺素(Noradrenaline,NA)和多巴胺(Dopamine,DOP)參考[15]的方法,采用高效液相色譜儀測(cè)量。體腔液在4 ℃下融化后,600 r·min-1離心10 min,取500 μL上清液置于滅過菌的Eppendorf管中,加入500 μL Tris緩沖液(1.5 mol·L-1,0.07 mol·L-1EDTA,pH=8.6),50 μL 5 nmol·L-1焦亞硫酸鈉,100 μL 10 ng·mL-1DHBA和10 mg酸洗氧化鋁。混合物在震蕩器上震蕩15 min,1 000 r·min-1離心2 min后去上清。氧化鋁用蒸餾水清洗后1 000 r·min-1離心2 min去上清。然后,加入100 μL 0.2 mol·L-1乙酸,混合10 min后,1 000 r·min-1離心2 min。小心收集上清液,-20 ℃保存,2周之內(nèi)分析。兒茶酚胺類激素在安捷倫XDB C18色譜柱(150 mm×4.6 mm,5 μm)上分離,流動(dòng)相為50 mmol·L-1檸檬酸,0.05 mmol·L-1EDTA,50 mmol·L-1NaH2PO4,3 mmol·L-1NaCl,0.4 mmol·L-1辛烷磺酸,5%甲醇,pH=3.0,流速為1 mL·min-1。安捷倫ESA電化學(xué)檢測(cè)器電壓為0.7 V,靈敏度為5 nAFS。1.2.5 吞噬活性分析 吞噬活性的測(cè)定參考Balarin 等[16]的方法,并進(jìn)行適當(dāng)修改。將濃度為106cells·mL-1的體腔液100 μL置于載玻片上,在濕盒中附著30 min后用抗凝劑清洗,然后滴加100 μL釀酒酵母蒸餾水懸濁液,酵母與體腔液細(xì)胞的比例為100∶1。繼續(xù)孵化1 h后,浸入蒸餾水中洗掉未被吞噬的酵母細(xì)胞。體腔液細(xì)胞在1%蔗糖和1%戊二醛溶液中4 ℃下固定30 min,磷酸鹽緩沖液清洗后,5%吉姆薩染液染色10 min,水洗后顯微鏡下觀察。統(tǒng)計(jì)200個(gè)體腔液細(xì)胞中含有酵母細(xì)胞的體腔液細(xì)胞比例,每張玻片統(tǒng)計(jì)3次。
1.2.6 超氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶(catalase,CAT)和溶菌酶(lysozyme, LZM)活性分析 體腔液于4℃融化后,離心(4 ℃,3 000 r·min-1)10 min,取上清液用SOD、CAT和LZM試劑盒(南京建成生物工程研究所,南京,中國)檢測(cè)酶活性。1個(gè)SOD活性單位定義為1 mL反應(yīng)液中50%SOD被抑制時(shí)所對(duì)應(yīng)的SOD量(U·mL-1);1個(gè)CAT活性單位定義為1 mL反應(yīng)液每秒鐘分解1 μmol的H2O2的量(U·mL-1);1個(gè)LZM活性單位定義為藤黃微球菌(Micrococcusluteus)細(xì)胞懸濁液吸光度在每分鐘內(nèi)的下降速率(U·mL-1)[17]。
1.3 數(shù)據(jù)分析
結(jié)果用平均值±標(biāo)準(zhǔn)差(Mean±SE)表示,采用統(tǒng)計(jì)分析軟件SPSS17.0對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,并采用單因素方差分析(One-Way ANOVA)和Tukey’s HSD法比較各組不同時(shí)間點(diǎn)數(shù)據(jù),差異顯著水平設(shè)定為P<0.05。
2.1 干露脅迫對(duì)4組刺參體腔液中兒茶酚胺類激素水平的影響
4組刺參體腔液中兩種兒茶酚胺類激素水平在脅迫開始后都呈上升趨勢(shì),至脅迫結(jié)束時(shí)(1 h)上升至最高值,之后開始下降,其中CC、CK、KC組在實(shí)驗(yàn)開始后2 h恢復(fù)到初始水平,KK組在實(shí)驗(yàn)開始后4 h恢復(fù)到初始水平(見圖1)。實(shí)驗(yàn)開始時(shí)(0 h),4組刺參體腔液中去甲腎上腺素和多巴胺水平?jīng)]有顯著差異,分別在5.24~5.61 ng·mL-1之間和0.57~0.64 ng·mL-1之間。4組刺參體腔液中的去甲腎上腺素水平在脅迫結(jié)束時(shí)(1 h)顯著高于初始值,其中KK組最高,為(14.40±0.40) ng·mL-1(見圖1a)。4組刺參體腔液中多巴胺水平在整個(gè)實(shí)驗(yàn)過程中變化不顯著(見圖1b)。在脅迫結(jié)束時(shí)(1 h),KK組和KC組去甲腎上腺素水平較初始值分別上升了174.81%和129.20%高于CC組和CK組的116.01%和104.99%。KK組和KC組多巴胺水平較初始值分別上升了89.47%和65.62%高于CC組和CK組的62.5%和54.1%。
(同一組各時(shí)間點(diǎn)均值上標(biāo)注不同小寫字母為差異顯著(P<0.05)。The values within the same group with different lowercase letters are significantly different at the levels of 0.05.)
圖1 干露脅迫對(duì)4組刺參體腔液內(nèi)去甲腎上腺素(a)和多巴胺(b)水平的影響
Fig.1 Effects of an air-exposure stress on noradrenaline(a) and dopamine (b) concentrations in coelomic fluid of four groups sea cucumberA.japonicus
2.2 干露脅迫對(duì)4組刺參體腔液中體腔液細(xì)胞濃度和細(xì)胞吞噬活性的影響
KK組和KC組刺參體腔液中細(xì)胞初始濃度分別為3.67×106和3.40×106cells·mL-1,脅迫開始后細(xì)胞濃度逐漸升高,至脅迫結(jié)束時(shí)(1 h),分別上升到7.73×106和7.93×106cells·mL-1,顯著高于初始值,脅迫結(jié)束后,細(xì)胞濃度逐漸降低,至實(shí)驗(yàn)開始后16 h恢復(fù)到初始值(見圖2a)。CC組和CK組刺參體腔液中細(xì)胞初始濃度分別為4.63×106和4.53×106cells·mL-1,脅迫開始后細(xì)胞濃度也逐漸升高,至脅迫結(jié)束時(shí)(1 h)上升到最高點(diǎn),之后開始降低,在整個(gè)實(shí)驗(yàn)過程中細(xì)胞濃度變化不顯著。
實(shí)驗(yàn)開始時(shí),CC、KK、CK、KC組刺參體腔液中細(xì)胞吞噬活性分別為(16.0±1.4)%、(16.3±2.6)%、(15.8±0.9)%和(16.8±3.4)%。脅迫開始后細(xì)胞吞噬活性逐漸降低,至脅迫結(jié)束時(shí)(1 h),KK組最低,為(11.5±1.7)%;脅迫結(jié)束后細(xì)胞吞噬活性逐漸上升,至實(shí)驗(yàn)開始后4 h升高至最高值,其中KK組最高,為(20.2±0.9)%,此后4組刺參體腔液細(xì)胞吞噬活性逐漸下降。在實(shí)驗(yàn)過程中,細(xì)胞吞噬活性變化不顯著(見圖2b)。
圖2 干露脅迫對(duì)4組刺參體腔液內(nèi)細(xì)胞濃度和
(同一組各時(shí)間點(diǎn)均值上標(biāo)注不同小寫字母為差異顯著(P<0.05)。The values within the same group with different lowercase letters are significantly different at the levels of 0.05.)
圖2 干露脅迫對(duì)4組刺參體腔液內(nèi)細(xì)胞濃度和細(xì)胞吞噬活性的影響
Fig.2 Effect of an air-exposure stress on (a) coelomocytes concentrations and (b) phagocytosis activities in coelomic fluid of four groupsA.japonicus
2.3 干露脅迫對(duì)4組刺參體腔液中免疫酶指標(biāo)的影響
4組刺參體腔液內(nèi)SOD活性在實(shí)驗(yàn)開始時(shí)介于(60.96±3.97)~(67.42±5.20) U·mL-1之間,脅迫開始后呈上升趨勢(shì),在實(shí)驗(yàn)開始后2 h,4組刺參體腔液內(nèi)SOD活性達(dá)到最高值,且均顯著高于初始值,介于(100.13±7.37)~(106.78±4.52) U·mL-1之間,此后開始逐漸降低,至實(shí)驗(yàn)開始后4 h恢復(fù)到初始值(見圖3a)。
4組刺參體腔液內(nèi)CAT活性在實(shí)驗(yàn)開始時(shí)介于(2.16±0.16)~(2.52±0.37) U·mL-1之間,脅迫開始后,4組刺參體腔液內(nèi)CAT活性均開始上升,至實(shí)驗(yàn)開始后2 h達(dá)到最高值,其中,KK組和KC組顯著高于初始值,分別為(5.57±0.26)和(5.62±0.44)U·mL-1,此后,CAT活性逐漸降低,分別在實(shí)驗(yàn)開始后8和4 h恢復(fù)到初始水平。而CC組和CK組在實(shí)驗(yàn)過程中CAT活性變化不顯著(見圖3b)。
4組刺參體腔液內(nèi)LSZ活性在實(shí)驗(yàn)開始時(shí)介于(5.70±0.57)~(6.10±0.64) U·mL-1之間,脅迫開始后呈下降趨勢(shì),至脅迫結(jié)束時(shí)(1 h)各組LSZ活性達(dá)到最低值,介于(5.17±0.33)~(5.48±0.37) U·mL-1之間。脅迫結(jié)束后,LSZ活性開始逐漸上升,恢復(fù)到初始值(見圖3c)。
在本研究中,受到干露脅迫的4組刺參體腔液內(nèi)兒茶酚胺類激素水平上升,這與在章魚(Eledonecirrhosa)的研究中得到的結(jié)果相同,Malham et al發(fā)現(xiàn)干露能引起章魚兒茶酚胺類激素水平的上升[18]。 缺氧脅迫下,凡納濱對(duì)蝦(L.vannamei)血淋巴中多巴胺的濃度也顯著上升[19]。越來越多的研究表明,當(dāng)動(dòng)物受到外界脅迫因素影響時(shí),神經(jīng)系統(tǒng)會(huì)釋放出兒茶酚胺類激素,這些激素作為神經(jīng)遞質(zhì)把能量從生殖、生長和免疫等生理活動(dòng)中轉(zhuǎn)移到其他能幫助動(dòng)物保持新陳代謝平衡的生理活動(dòng)中去[4]。這種釋放行為通常非常迅速,導(dǎo)致激素水平的急劇上升[20]。在實(shí)驗(yàn)過程中,刺參體腔液內(nèi)去甲腎上腺素水平變化顯著,而多巴胺水平變化不顯著。Wang等對(duì)刺參夏眠期間體腔液內(nèi)兒茶酚胺類激素水平的研究表明,去甲腎上腺素水平在夏眠期間變化顯著而多巴胺水平變化不顯著[21],這說明相比較多巴胺,刺參更多以去甲腎上腺素作為神經(jīng)遞質(zhì)。
海洋無脊椎動(dòng)物通常由血淋巴細(xì)胞行使免疫功能,而在棘皮動(dòng)物中,由體腔液細(xì)胞作為免疫功能的效應(yīng)器[8]。章魚和雞簾蛤(Chameleagallina)在受到干露脅迫后,其血淋巴中血淋巴細(xì)胞濃度都呈下降的趨勢(shì),將其放回海水中后,血淋巴細(xì)胞濃度逐漸上升,甚至上升到顯著高于初始值的水平[18,22]。在本研究中,受到干露脅迫的刺參體腔液中細(xì)胞濃度顯著升高,之后逐漸恢復(fù)到初始值。這種細(xì)胞濃度變化的不同說明棘皮動(dòng)物對(duì)干露脅迫的應(yīng)激反應(yīng)與軟體動(dòng)物不同。在軟體動(dòng)物中,外界脅迫可能導(dǎo)致血淋巴細(xì)胞的溶解,也可能使血淋巴細(xì)胞從血淋巴遷移到組織中,因此血淋巴中的細(xì)胞濃度降低[22]。而在棘皮動(dòng)物中,Holm等發(fā)現(xiàn)海星(Asteriasrubens)的體腔上皮是新生體腔液細(xì)胞的主要來源之一,向海星體腔內(nèi)注射脂多糖可造成體腔上皮釋放體腔液細(xì)胞[23]。同樣,干露脅迫可能誘導(dǎo)刺參體腔上皮中體腔液細(xì)胞的分裂,然后進(jìn)入體腔液中,造成體腔液中細(xì)胞濃度的上升。在實(shí)驗(yàn)過程中,我們也觀察到在干露狀態(tài)下,部分刺參會(huì)排出液體,經(jīng)顯微觀察,排出的液體中不含有體腔液細(xì)胞,因此,也有可能是由于體腔液中水分流失造成細(xì)胞濃度升高。在此之后,體腔液細(xì)胞進(jìn)入相鄰的組織,體腔液內(nèi)細(xì)胞數(shù)隨之下降并恢復(fù)到初始值[24]。
(同一組各時(shí)間點(diǎn)均值上標(biāo)注不同小寫字母為差異顯著(P<0.05)。The values within the same group with different lowercase letters are significantly different at the levels of 0.05.)
圖3 干露脅迫對(duì)4組刺參體腔液內(nèi)SOD(a)、CAT(b)和LSZ(c)活性的影響
Fig.3 Effect of an air-exposure stress on SOD(a), CAT (b),and LSZ (c) activities in coelomic fluid of four groupsA.japonicus
在無脊椎動(dòng)物中,免疫細(xì)胞的吞噬活性是機(jī)體防御的重要機(jī)制[25]。在本研究中,干露脅迫造成4組刺參體腔液細(xì)胞吞噬活性的下降。同樣,干露脅迫也造成四角蛤蜊(Mactraveneriformis)血淋巴細(xì)胞吞噬活性顯著下降[26]。吞噬細(xì)胞通過向外來入侵顆粒移動(dòng)并用偽足將其吞咽來完成吞噬作用。在脅迫條件下,吞噬細(xì)胞的活動(dòng)能力被抑制,因此吞噬活性下降[27]。此外,缺氧脅迫也能改變虛斑海星(A.rubens)體腔液中細(xì)胞組成比例,造成吞噬細(xì)胞比例下降[28]。干露脅迫條件下,刺參體腔液細(xì)胞中吞噬細(xì)胞比例的下降也可能是造成體腔液吞噬活性下降的原因。在脅迫結(jié)束后,刺參體腔液細(xì)胞的吞噬活性開始上升,這可能是一種補(bǔ)償機(jī)制,刺參通過自身的調(diào)節(jié)來彌補(bǔ)脅迫對(duì)免疫功能的抑制[29]。
溶菌酶是水產(chǎn)動(dòng)物非特異性免疫的重要組成部分。水產(chǎn)動(dòng)物的吞噬細(xì)胞在對(duì)入侵病原體進(jìn)行吞噬的過程中會(huì)釋放溶菌酶到血淋巴中,其對(duì)多種革蘭氏陰性菌和陽性菌具有殺滅作用[35],同時(shí)溶菌酶還可以反饋刺激吞噬細(xì)胞的吞噬作用[36]。本研究中,盡管4組刺參體腔液中溶菌酶活性在整個(gè)實(shí)驗(yàn)過程中變化不顯著,但仍在脅迫開始后呈現(xiàn)下降趨勢(shì),這和在雞簾蛤(C.gallina)[21]和硬殼蛤(MercenariaMercenaria)[37]中的研究結(jié)果相同。水產(chǎn)動(dòng)物在受到環(huán)境脅迫影響后,會(huì)將能量從生長、繁殖和免疫等生理活動(dòng)轉(zhuǎn)移到生物體在應(yīng)激狀態(tài)下適應(yīng)和存活急需的生理功能[38],因此免疫細(xì)胞的一些免疫功能受到了抑制。
本研究中,CC組和CK組刺參體腔液中的NA和DOP濃度在脅迫過程中的上升幅度低于KK組和KC組,并且,這兩組刺參體腔液細(xì)胞濃度在實(shí)驗(yàn)過程中沒有發(fā)生顯著變化,而KK組和KC組體腔液細(xì)胞濃度在實(shí)驗(yàn)過程中發(fā)生了顯著變化。這可能是因?yàn)镃C組為養(yǎng)殖選育群體,數(shù)代的人工選擇使其對(duì)干露脅迫的應(yīng)激程度降低。Douxfils也發(fā)現(xiàn)人工選育的第四代河鱸(Percafluviatilis)對(duì)急性脅迫的應(yīng)激程度降低[39]。由于對(duì)脅迫的應(yīng)激程度是可遺傳的[40],因此可能是因?yàn)槟感孕?yīng)的存在,KC組對(duì)干露脅迫的應(yīng)激程度較高,CK組對(duì)干露脅迫的應(yīng)激程度較低。
研究表明,脅迫對(duì)水生生物的諸多經(jīng)濟(jì)性狀具有負(fù)面影響,包括生長率、食物轉(zhuǎn)化率、抗病力和繁殖力等[41]。Fevolden 等發(fā)現(xiàn)對(duì)脅迫應(yīng)激程度低的虹鱒(Oncorhynchus mykiss)生長更快[42]。Douxfils et al認(rèn)為對(duì)脅迫應(yīng)激程度降低,生物體就可以將更多的能量分配于生長,因此選育的第四代河鱸(P.fluviatilis)受到脅迫后生長比第一代更快[39]。前期研究表明,CK組相比較其他三組,在生長性狀上表現(xiàn)出一定優(yōu)勢(shì)[14]。此外,F(xiàn)evolden等發(fā)現(xiàn)對(duì)脅迫應(yīng)激程度高的虹鱒在面臨環(huán)境變化時(shí),需要更長的時(shí)間去適應(yīng)環(huán)境重新開始生長[43]。因此相比其他三組,CK組在生長上可能更具有優(yōu)勢(shì)。
[1] 楊鳳, 譚文明, 閆喜武, 等. 干露及淡水浸泡對(duì)菲律賓蛤仔稚貝生長和存活的影響[J]. 水產(chǎn)科學(xué), 2012, 31(3): 143-146. Yang F, Tan W M, Yan X W, et al. Effects of exposure to air, immersion in fresh-water on growth and survival of juvenile manila clamRuditapesphilippinarum[J]. Fisheries Science, 2012, 31(3): 143-146.
[2] Allen S M, Burnett L E. The effects of intertidal air exposure on the respiratory physiology and the killing activity of hemocytes in the pacific oyster,Crassostreagigas(Thunberg)[J]. Journal of Experimental Marine Biology and Ecology, 2008, 357: 165-171.
[3] 姜令緒, 劉群, 王仁杰, 等. 三疣梭子蟹(Portunustrituberculatus)幼體不同干露溫度下死亡率的研究[J]. 海洋與湖沼, 2012, 43(1): 127-132. Jiang L X, Liu Q, Wang R J, et al. Larvae mortality ofPortunusTrituberculatusunder different desiccation temperatures[J]. Oceanologia Et Limnologia Sinica, 2012, 43(1): 127-132.
[4] Lacoste A, Malham S K, Cueff A, et al. Stress-induced catecholomine changes in the hemolymph of the oysterCrassostreagigas[J]. General and Comparative Endocrinology, 2001, 122: 181-188.
[5] Kuchel R P, Raftos D A, Nair S. Immunosuppressive effects of environmental stressors on immunological function inPinctadaimbricata[J]. Fish & Shellfish Immunology, 2010, 29: 930-936.
[6] Wang Y J, Hu M H, Cheung S G, et al. Immune parameter changes of hemocytes in green-lipped musselPernaviridisexposure to hypoxia and hyposalinity[J]. Aquaculture, 2012, 356-357: 22-29.
[7] Schmid-Hempel P. Variation in immune defence as a question of evolutionary ecology[J]. Proceedings of The Royal Society of London Series B, 2003, 270: 375-466.
[8] Coteur G, Corriere N, Dubois Ph. Environmental factors influencing the immune responses of the common European starfish (Asteriasrubens)[J]. Fish & Shellfish Immunology, 2004, 16: 51-63.
[9] Gu M, Ma H M, Mai K S, et al. Immune response of sea cucumberApostichopusjaponicuscoelomocytes to several immunostimulants in vitro[J]. Aquaculture, 2010, 306: 49-56.
[10] 石峰, 張勁松, 趙蘭英, 等. “大菱鲆‘丹法鲆’與普通大菱鲆養(yǎng)殖效果對(duì)比實(shí)驗(yàn)[J]. 中國水產(chǎn),2014(4): 60-61. Shi F, Zhang J S, Zhao L Y, et al. Comparison of the culture efficiency of Danfa and common turbotScophthalmusmaximus[J]. China Fisheries, 2014(4): 60-61.
[11] 全國水產(chǎn)技術(shù)推廣總站. 2015水產(chǎn)新品種推廣指南[M]. 北京:中國農(nóng)業(yè)出版社, 2015. National Fisheries Technology Extension Center. 2015 guidelines for the promotion of new varieties of aquatic products[M]. Beijing: China Agriculture Press, 2015.
[12] Chang Y Q, Shi S B, Zhao C, et al. Characteristics of Papillae in Wild, Cultivated and Hybrid Sea Cucumbers (Apostichopusjaponicus) [J]. African Journal of Biotechnology, 2011, 10(63): 13780-13788.
[13] 胡美燕, 李琪, 孔令鋒, 等. 中國刺參與日本紅刺參雜交子一代的早期生長比較[J]. 中國海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 39(9): 375-380. Hu M Y, Li Q, Kong L F, et al. Comparative study on juvenile growth of hybrids between Chinese and Japanese stocks of sea cucumber (Stichopusjaponicus)[J]. Periodical of Ocean University of China, 2009, 39(9): 375-380.
[14] 譚杰, 王亮, 高菲, 等. 中國刺參(Apostichopusjaponicus)與韓國刺參雜交子一代生長和抗病力比較[J]. 漁業(yè)科學(xué)進(jìn)展, 2015(4):109-115. Tan J, Wang L, Gao F, et al. Comparative study on growth and disease resistance of hybrids between Chinese and Korean stocks of sea cucumberApostichopusjaponicus[J]. Progress in Fishery Sciences, 2015(4): 109-115.
[15] Qu Y, Li X, Yu Y, et al. The effect of different grading equipment on stress levels assessd by catecholamine measurements in Pacific oysters,Crassostreagigas(Thunberg)[J]. Aquacultural Engineering, 2009, 40: 11-16.
[16] Ballarin L, Pampanin D M, Marin M G. Mechanical disturbance affects haemocyte functionality in the venus clamChameleagallina[J]. Comparative Biochemistry and Physiology A, 2003, 136: 631-640.
[17] Yan F J, Tian X L, Dong S L, et al. Growth performance, immune response, and disease resistance againstVibriosplendidusinfection in juvenile sea cucumberApostichopusjaponicusfed a supplementary diet of the potential probioticParacoccusmarcusiiDB11[J]. Aquaculture, 2014, 420-421(2):105-111.
[18] Malham S K, Lacoste A, Gelebart F, et al. A first insight into stress-induced neuroendocrine and immune changes in the octopusEledonecirrhosa[J]. Aquatic Living Resources, 2002, 15: 187-192.
[19] Hu F W, Pan L Q, Jing F T. Effects of hypoxia on dopamine concentration and the immune response of White Shrimp (Litopenaeusvannamei)[J]. Journal of Ocean University of China, 2009, 8: 77-82.
[20] Randall D J, Perry S F. Catecholamines[M]. Hoard W S, Randall D J. Fish Physiology, New York: Academic Press, 1992: 225-300.
[21] Wang F Y, Yang H S, Gabr H R, Gao f. Immune condition ofApostichopusjaponicusduring aestivation[J]. Aquaculture, 2008, 285: 238-243.
[22] Pampanin D M, Ballarin L, Carotenuto L, et al. Air exposure and functionality ofChameleagallinahaemocytes: Effects on haematocrit, adhesion, phagocytosis and enzyme contents[J]. Comparative Biochemistry and Physiology A, 2002, 131(3): 605-614.
[23] Holm K, Dupont S, Skold H, et al. Induced cell proliferation in putative haematopoietic tissues of the sea star,Asteriasrubens(L.)[J]. Journal of Experimental Biology, 2008, 211: 2551-2558.
[24] Chang C C, Hung M D, Cheng W. Norepinephrine depresses the immunity and disease-resistance ability via α1- and β1- adrenergic reciptors ofMacrobrachiumrosenbergii[J]. Developmental and Comparative Immunology, 2011, 35: 685-691.
[25] Bayne C J. Phagocytosis and non-self recognition in invertebrates[J]. Bioscience, 1990, 40(10): 723-731.
[26] Yu J H, Choi M C, Park S W. Effects of anoxia on immune functions in the surf clamMactraveneriformis[J]. Zoological Studies, 2010, 49(1): 94-101.
[27] Mosca F, Narcisi V, Calzetta A, et al. Effects of high temperature and exposure to air on mussel (Mytilusgalloprovincialis, Lmk 1819) hemocyte phagocytosis: Modulation of spreading and oxidative response[J]. Tissue & Cell, 2013, 45(3): 198-203.
[28] Oweson C, Li C, S?derh?ll I, et al. Effects of manganese and hypoxia on coelomocyte renewal in the echinodermAsteriasrubens(L.)[J]. Aquatic Toxicology, 2010, 100(1): 84-90.
[29] Malham S K, Lacoste A, Gélébart F, et al. Evidence for a direct link between stress and immunity in the molluscHaliotistuberculata[J]. Jouranl of Experimental Zoology Part A, 2003, 295(2): 136-144.
[30] Roch P. Defense mechanisms and disease prevention in farmed marine invertebrates[J]. Aquaculture, 1999, 172(1-2): 125-145.
[31] Hermes-Lima M, Storey J M, Storey K B. Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails[J]. Comparative Biochemistry and Physiology B, 1998, 120(3): 437-448.
[32] 田相利, 何瑞鵬, 錢圓, 等. 干露脅迫對(duì)刺參體壁非特異性免疫的影響[J]. 河北漁業(yè), 2014, 7: 21-26. Tian X L, He R P, Qian Y, et al. Effects of desiccation on non-specific immune indices in sea cucumberApostichopusjaponicusunder different temperatures[J]. Hebei Fishery, 2014, 7: 21-26.
[33] Hermes-Lima M, Zenteno-Savin T. Animal response to drastic changes in oxygen availability and physiological oxidative stress[J]. Comparative Biochemistry and Physiology C, 2002, 133(4): 537-556.
[34] Romero M C, Ansaldo M, Lovrich G A. Effect of aerial exposure on the antioxidant status in the subantarctic stone crabParalomisgranulosa(Decapoda: Anomura)[J]. Comparative Biochemistry and Physiology C , 2007, 146(1-2): 54-59.
[35] Matozzo V, Monari M, Foschi J, et al. Exposure to anoxia of the clamChameleagallinaⅠ. Effects on immune responses[J]. Journal of Experimental Marine Biology and Ecology, 2005, 325(2): 163-174.
[36] Saurabh S, Sahoo P. Lysozyme: an important defence molecule of fish innate immune system[J]. Aquaculture Research, 2008, 39(3): 223-239.
[37] Hawkins L E, Brooks J D, Brooks S, et al. The effect of tidal exposure on aspects of metabolic and immunological activity in the hard clamMercenariaMercenaria(Linnaeus)[J]. Comparative Biochemistry and Physiology A, 1993, 104(2): 225-228.
[38] Chrousos G P, Gold P W. The concepts of stress and stress system disorders. Overview of physical and behavioural homeostasis[J]. The Journal of American Medical Association, 1992, 267: 1244-1252.
[39] Douxfils J, Mandiki S N M, Marotte G, et al. Does domestication process affect stress response in juvenile Eurasian perchPercafluviatilis?[J]. Comparative Biochemistry and Physiology A, 2011, 159(1): 92-99.
[40] Almasi B, Jenni L, Jenni-Eiermann S, et al. Regulation of stress response is heritable and functionally linked to melanin-based coloration[J]. Journal of Evolutionary Biology, 2010, 23(5): 987-996.
[41] Gregory M Weber, Jeffrey T Silverstein. Evaluation of a stress response for use in a selective breeding program for improved growth and disease resistance in rainbow trout[J]. North American Journal of Aquaculture, 2007, 69(1): 69-79.
[42] Fevolden S E, R?ed K H, Fjalestad K T. Selection response of cortisol and lysozyme in rainbow trout and correlation to growth[J]. Aquaculture, 2002, 205(1-2): 61-75.
[43] Fevolden S E, R?ed K H, Fjalestad K. A combined salt and confinement stress enhances mortality in rainbow trout (Oncorhynchusmykiss) selected for high stress responsiveness[J]. Aquaculture, 2003, 216(1-4): 67-76.
責(zé)任編輯 高 蓓
Comparative Study on Air Exposure Stress Responses of Hybrids Between Chinese and Korean Stocks of Sea Cucumber
TAN Jie1, WANG Liang2, MA Tian-Yi3, ZOU Shi-Fang4, SUN Hui-Ling1, YAN Jing-Ping1, SUN Xiao-Jie1
(1.The Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; 2.Yantai Fishery Research Institute, Yantai 264003, China; 3.Oceanic and Fishery Administration, Wendeng District, Weihai 264400; 4. Shandong Anyuan Aquaculture Co., Ltd, Penglai 265617, China)
Stress has been demonstrated to retard growth, depress immune, and compromise disease resistance in marine invertebrates. Therefore, in any aquaculture species, it will be beneficial to improve stress resistance through breeding. Heterosis resulting from cross between different populations is an important component of breed improvement in marine animals. Through complete diallel cross, the offspring of four mating combinations, C(♂)×C(♀), K(♂)×K(♀), C(♂)×K(♀) and K(♂)×C(♀) were obtained from mating within and between Chinese population (C) and Korean population (K) of sea cucumber (Apostichopusjaponicus). The objective of this study is to compare the physiological responses of four above-mentioned groups of the sea cucumber to air-exposure, one of the major handling stress during seed nursery of juvenile sea cucumber. The stress responses of four groups sea cucumber were evaluated following exposure to air for one hour. Coelomic fluid was sampled at 0 (pre-challenge), 0.5, 1, 2, 4, 8, 16 and 32 h, for analysis of neuroendocrine and immune parameters. All groups represented classical neuroendocrine changes indicative of the generalized stress response. The concentrations of noradrenaline and dopamine in coelomic fluid increased during the stress, and the concentrations of noradrenaline at the end of stress were significantly higher than the initial values in four groups. The magnitudes of the catecholamines rised were greater in the K(♂)×K(♀) and K(♂)×C(♀) groups. Coelomocytes concentrations in coelomic fluid of four groups increased transiently after the beginning of the stress, and they were significant higher than the initial values in K(♂)×K(♀) and K(♂)×C(♀) groups at the end of stress. Although coelomocytes phagocytosis fluctuated during the experiment, there were no significant differences between different sample points. Air exposure increased the superoxide dismutase activities significantly in four groups and increased the catalase activities significantly in K(♂)×K(♀) and K(♂)×C(♀) groups. The lysozyme activities of four groups were depressed during stress, however they showed no significant differences during the experiment. The results indicated that the C(♂)×C(♀) and C(♂)×K(♀) groups were more resistant to the air exposure stress.
Apostichopusjaponicus; air exposure; stress response; neuroendocrine; immune
山東省科技發(fā)展計(jì)劃項(xiàng)目(2012GGA06021);農(nóng)業(yè)部北方海水增養(yǎng)殖重點(diǎn)實(shí)驗(yàn)室基金項(xiàng)目(2014-MSENC-KF-03);中國水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所基本科研業(yè)務(wù)費(fèi)項(xiàng)目(20603022016019)資助 Supported by Science and Technology Development Planning Project of Shandong Province (2012GGA06021); the Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea, Ministry of Agriculture, P.R.China (2014-MSENC-KF-03);Special Scientific Research Funds for Central Non-profit Institutes, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences(20603022016019).
2016-05-04;
2016-10-09
譚 杰(1980-),男,助理研究員。E-mail: tanjie@ysfri.ac.cn
?? 通訊作者:E-mail:sunxj@ysfri.ac.cn
S917.4
A
1672-5174(2017)01-089-07
10.16441/j.cnki.hdxb.20160078
譚杰, 王亮, 馬添翼, 等. 干露脅迫對(duì)刺參中韓群體雜交子一代應(yīng)激及免疫指標(biāo)的影響[J]. 中國海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 47(1): 89-95.
TAN Jie, WANG Liang, MA Tian-Yi, et al. Comparative study on air exposure stress responses of hybrids between chinese and Korean Stocks of sea cucumber [J]. Periodical of Ocean University of China, 2017, 47(1): 89-95.
中國海洋大學(xué)學(xué)報(bào)(自然科學(xué)版)2017年1期